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Abstract. The complex biological and physical processes
that preserve paleoclimate information over centuries or
longer introduce variations in proxy time series that are un-
related to the true climate. These non-climatic variations act
on different timescales and are often referred to as “noise” of
a specific color, based on similarities between a time series’
power spectrum and the electromagnetic spectrum of light.
For example, “white noise” equally affects all timescales,
where “red noise” dominates only on long timescales, sim-
ilar to longwave red light. Noise spectra in proxy records
have far-reaching implications in paleoclimate research, but
noise characteristics are often assumed based on first princi-
ples rather than estimated directly, risking either inflating or
underestimating error at particular frequencies. Here, we pro-
vide concrete definitions of the various types of timescale-
dependent errors that are present in proxy data, and review
the literature on methods for quantifying noise terms. We
then synthesize the results of several published studies that
use a common empirical approach for estimating the noise
spectrum in ice-core, coral, and tree-ring data. We posit that
the colors of proxy noise are archive-specific, with white
noise dominating in depositional archives such as ice cores
and marine sediment cores, while red noise is more com-
mon in biological archives such as tree rings and corals. Our
synthesis supports assigning specific colored noise terms in
proxy system models, data assimilations and other experi-
ments.

1 Introduction

Paleoclimate proxy records archive past climate information
via biophysical or depositional pathways and preserve it in
rings, layers or strata. The processes that create these records
integrate non-climatic variability alongside the climate sig-
nal either during the archiving process, or afterwards as the
physical record is modified over time (Cook, 1987; Evans et
al., 2013). Recovering paleoclimate information from these
archives requires sophisticated data processing and modeling
techniques intended to extract climate-related variance from
noisy time series (von Storch et al., 2004; Cook and Kair-
iukstis, 1990; Hughes and Ammann, 2009; Dee et al., 2016).
Recognizing that these methods may be imperfect, the chal-
lenge lies in rigorously quantifying and minimizing the im-
pact of non-climatic variations on the signal of past climate
change.

Modification of climate signals in proxy time series can
result in the addition of variance from random or unrelated
fluctuations, loss of variance through smoothing, shifts in
timing due to irregularities in the deposition or uncertainties
in dating, or a combination of these effects (Fig. 1). We re-
gard a process that adds variance on top of an existing cli-
mate signal as a “noise process”, whereas the loss of vari-
ance through smoothing also constitutes error (i.e., any dif-
ference between the true and reconstructed climate at a given
timescale), but not noise, per se. Smoothing processes are
typically deterministic to some extent. For example, two co-
located ice-core records with similar physical properties are
both affected by same isotopic diffusion and their correlation
at a certain time-scale will not be affected in the absence of
additional noise (Whillans and Grootes, 1985). It is further
possible to correct individual records for deterministic errors
if the process is well-understood (Schiffelbein, 1985; Meko,
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Figure 1. Conceptual diagram showing integration of different
types of timescale-dependent proxy errors alongside climate signals
via stochastic noise and subtractive smoothing.

1981; Dolman et al., 2021a; Shaw et al., 2024). By con-
trast, noise is typically independent, generating differences
between nearby records as well as to the true climate signal.
Observation and measurement errors are best represented by
stochastic, uncorrelated noise unless they represent system-
atic bias, for example due to a change in the measurement
apparatus. Because these types of noise are typically inde-
pendent, averaging, or “stacking” individual records reduces
noise while retaining the climate signal.

Both noise and smoothing processes incorporate unique
timescale-dependent uncertainties alongside climate signals.
For example, trees integrate multi-decadal age-growth trends
alongside climate variations, such that tree-ring time se-
ries are typically “detrended” before they are used in re-
constructions (Fritts, 1976; Cook and Kairiukstis, 1990;
Speer, 2010). Incomplete removal of age-growth trends re-
sults in long-term biases in tree-ring data, even if interan-
nual correlations with climate data remain reasonably strong
(Melvin and Briffa, 2008, 2014a, b). By contrast, physical
smoothing processes such as isotopic diffusion or bioturba-
tion in sediments act on fast timescales by removing cli-
mate information from within deposited layers (Johnsen et
al., 2000; Whillans and Grootes, 1985; Hutson, 1980; Peng
and Broeker, 1984). Smoothing dampens the climate signal
at annual to centennial timescales, becoming less influen-

Figure 2. Spectral noise models with correlation structures referred
to by analogy to colored light. Left panels show a simulated time
series with the noise spectra shown in the right panels. Top: white
noise with no correlation with timescale (β = 0). Middle: red noise
(sometimes referred to as pink noise) with a positive relationship to
timescale (β = 1). Bottom: blue noise with a negative relationship to
timescale (β =−1). Note that β values for noise spectra are calcu-
lated as the slope of a linear model on a log-log plot, and expressed
as β = slope×−1, following the convention where β describes the
relationship between power and increasing timescale.

tial on longer timescales such that millennial-scale shifts in
climate are retained (Schiffelbein and Hills, 1984; Laepple
and Huybers, 2013; Münch and Laepple, 2018; Bothe et al.,
2019).

These timescale-dependent variations can be analyzed in
the spectral domain and referred to using colors by loose
analogy to the frequency spectrum of light (Fig. 2). Time se-
ries with relatively more low- than high-frequency variabil-
ity are considered to be “red”, by analogy to long-wave red
light, whereas a “white” time series implies that power spec-
tral density is distributed evenly across the frequency space.

Low-frequency temperature variability is generally under-
stood to exhibit increasing power with timescale, meaning
that noise-free temperature proxy spectra would theoretically
display a red spectrum (Pelletier, 1998; Huybers and Curry,
2006; Zhu et al., 2019). Noise, because it originates from
a variety of sources may display different correlation struc-
tures. The integration of noise and climate signals may ei-
ther further “redden” or “whiten” the spectrum by modify-
ing the correlation structure of the raw time series. The rela-
tionship between power spectral density S(f ) and frequency
f is often summarized using a power-law scaling exponent
β such that S(f )∼ f−β (Box 1) (Vautard and Ghil, 1989;
Fraedrich and Blender, 2003; Hébert et al., 2021). The ex-
ponent β represents the relationship between frequency (or
time period) and power spectral density, which appears as
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Box 1. Summarizing the timescale-dependency of proxy noise us-
ing spectral power-laws.

a linear relationship plotted on a log–log scale. By conven-
tion, the exponent is defined as the negative of the relation-
ship with frequency such that a positive exponent represents
increasing variance with timescale. Red noise processes are
represented with a positive slope value (β > 0); the term
“pink noise” is sometimes used specifically for β = 1 (Zhu
et al., 2023). Red noise is a common noise model that im-
plies autocorrelated errors that affect low-frequencies at a
greater magnitude. (Mann et al., 2007; von Storch et al.,
2009; Smerdon, 2012). By contrast, a “white” noise process
implies errors uncorrelated in time such that the variance is
distributed evenly across the frequency space (β = 0), sim-
ilar to the spectrum of white light. White noise is the sim-
plest and most commonly-applied noise model in paleocli-
mate research (Fisher et al., 1985, Ammann and Whal, 2007;
von Storch et al., 2004; Mann et al., 2005; Lee et al., 2008;
Smerdon, 2010, 2012). Finally, blue noise refers to processes
with relatively higher variability at high frequencies (β < 0).
Blue noise, which is less commonly used, is characterized by
an anti-correlated structure, implying rapidly vanishing ef-
fects with increasing timescale (Mann and Rutherford, 2002;
Mann et al., 2007).

Our understanding of proxy noise characteristics has
evolved out of the need to reconcile diverging results in
records that should, in principle, contain the same climate
signal. For certain processes, such as the effects of mea-
surement error, aliasing due to under-sampling, or deposi-
tional noise from roughness at the snow surface, the noise
power spectrum can be derived from first principles and ex-
pressed in closed-form solutions (Fisher et al., 1985; Schif-
felbein, 1985; Kunz et al., 2020; Dolman et al., 2021b). In
cases where the physical and biological processes affect-
ing proxies are well-understood, a more flexible approach
is to use proxy system models (PSMs) (Jones et al., 2009;
Vaganov et al., 2011; Evans et al., 2013; Tolwinski-Ward
et al., 2011; Dee et al., 2016, 2017; Dolman and Laepple,
2018). In this case, climate data sets of temperature and pre-
cipitation from instrumental data, climate models or stochas-
tic simulations are used as input to the PSM, and synthetic

proxy time series are simulated. The spectrum of the noise
can then be estimated through comparison to the climate time
series (Dee et al., 2017). By omitting processes that are not
well-understood, PSMs may underestimate the noise level.
For example, stratigraphic noise in ice-core-based proxies
can account for more than half of the isotope signal (Hirsch
et al., 2023) but stratigraphic processes are not represented
in current isotope PSMs (Dee et al., 2015). To account for
“known unknowns” recent studies have added estimates of
noise with specific spectral properties to mimic these extra-
neous sources of variability in PSM output, using models or
reanalysis data as external validation (Dee et al., 2018; Evans
et al., 2014; Zhu et al., 2023; Bothe et al., 2019).

Alternatively, empirical proxy noise spectra can be derived
by relying solely on proxies by exploiting the spatial corre-
lation of climate signals in nearby records, building on the
assumption that non-climatic noise is independent between
records. This approach has the advantage of being able to ex-
ploit the full length of paleoclimate time series without rely-
ing on climate models or short instrumental time series, and
without the assumption that physical processes themselves
are well-understood. One limitation is that this method relies
on the availability of replicated or nearby records that have
low time-uncertainty, such as corals, tree rings, banded ice
cores or laminated sediments. If empirical noise estimates
are consistent with those derived from mechanistic models
this both validates the processes represented in PSMs creates
a strong basis for using the resulting noise spectra in a variety
of research applications.

In this study, we synthesize noise estimates derived di-
rectly from multiple proxy types and interpret their spectral
characteristics in the context of known biological and phys-
ical processes. This provides a basis for evaluating signal fi-
delity and for refining assumptions commonly made in proxy
system models and other experiments. We present noise esti-
mates published in three studies where noise terms were de-
rived using a simple empirical approach that partitions shared
signal from independent variance on all timescales (Münch
and Laepple, 2018), which we describe in the extended data
section (Appendix A). We show results for published ice
cores from Münch and Laepple (2018), tree rings (McPart-
land et al., 2024), and corals (Dolman et al., 2025). By pre-
senting these findings alongside evidence from first princi-
ples and existing literature we aim to deepen a collective un-
derstanding of the behavior of proxy noise.

The tree-ring and coral data were sourced from global
databases compiled by the Past Global Changes (PAGES)
initiative (PAGES2k Consortium, 2017; Walter et al., 2023),
and the ice-core data represent two large clusters of cores
from Antarctica and Greenland (Graf et al., 2002; Weißbach
et al., 2016; Hörhold et al., 2023) (Appendix B). Full de-
tails on each result are provided in the aforementioned stud-
ies. We focus our discussion on the noise spectra and result-
ing signal-to-noise ratio. Evaluating the climate signal spec-
tra would ideally involve comparison with data and models,
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which are beyond the scope of this paper. In the extended
data section, we reproduce the signal spectra and sample den-
sity at each frequency to provide all information involved in
the noise spectra calculations and their uncertainty estimates
(Appendix C).

2 The colors of proxy noise across paleo archives

Our review of published noise estimates demonstrates that
tree rings and corals exhibit clear red noise spectra with pos-
itive scaling exponent β values of 0.8 and 0.5 respectively
(Fig. 3a, b) such that the power of the noise increases with
timescale (McPartland et al. (2024), Dolman et al. (2025). As
the noise increases more than the climate signal, this leads to
a decline of the signal-to-noise ratio (SNR) (Fig. 3d, e). Tree-
ring and coral records result from the growth or accretion of
layers by an individual organism over time such that life his-
tory or changes in the biological archiving system may af-
fect proxy formation. Evidence suggests that proxy records
composed of repeated measurements made on single long-
lived organisms through time are susceptible to ontogenetic
effects, the legacies of past disturbances, or slow changes in
the behavior of the sensor.

In dendroclimatology, the pitfalls associated with tree on-
togeny have been well-documented (Fritts, 1976; Cook et
al., 1995; Esper and Frank, 2009). Cambial age impacts
both tree-ring width and density such that detrending to re-
move juvenile age trends is a near universal practice (Cook
and Kairiukstis 1990). Even after detrending, residual age
effects could partially explain the persistent low-frequency
bias observed in tree-ring records (Franke et al., 2013; Ault
et al., 2013). Detrending itself can also introduce biases at
medium-frequencies, particularly when fitting raw time se-
ries with negative exponential curves or rigid spline func-
tions (Cook and Peters, 1997; Melvin and Briffa, 2008,
2014a, b; Esper, 2003; Briffa and Melvin, 2011). Techniques
such as “signal-free” detrending have aimed at boosting low-
frequency variability while minimizing bias (Melvin and
Briffa, 2008), but despite retaining more low-frequency vari-
ance, tests of this method indicated only minor improvements
in signal strength and signal-free chronologies retained their
red-noise spectra (McPartland et al., 2020, 2024). By ex-
tension, red noise is likely a feature of bivalve and scle-
rosponge chronologies, which contain similar age-growth
trends to those found in trees and are detrended using the
methods originally developed in dendrochronology (Jones,
1983; Rypel et al., 2008; Hollyman et al., 2018; McCulloch
et al., 2024).

Tree rings are also smoothed on fast timescales as a result
of the carryover, or “memory”, of prior years’ growth. Bi-
ological memory adds temporal autocorrelation to tree ring
time series which has the effect of steepening the slope of
the noise spectra by dampening high frequency power spec-
tral density (Zhang et al., 2015; Lücke et al., 2019; McPart-

land et al., 2024). “Pre-whitening” chronologies by adjusting
their temporal autocorrelation structure to match the climate
target improves the interannual correlation between data and
proxy (Meko, 1981), but by virtue of removing additional
variability at high-frequencies, decreases the ratio of high to
low power spectral density that defines the noise slope term
β.

Coral aragonite records might similarly be affected by
changes in the biology of individual or descendent polyps
over time resulting in a slow drift in the temperature re-
sponse of the proxy which would appear as low-frequency
variability. Such changes could be growth-rate related due
to reaction-kinetic effects (Goodkin et al., 2005; Hayashi et
al., 2013; Maier et al., 2004; Saenger et al., 2008; Suzuki
et al., 2005), result from changes in the calcification pro-
cess (Lough, 2004), or persistent baseline shifts in trace el-
ement ratios following thermal stress events (D’Olivo and
McCulloch, 2017; D’Olivo et al., 2019) perhaps mediated
by changes in the composition of photosynthetic symbionts
(Berkelmans and van Oppen, 2006; Cohen, 2002; Little et
al., 2004).

The stacks of ice cores from both Greenland and Antarc-
tica that we analyzed show a high white noise level where
β is approximately equal to zero (Fig. 3e, f) (Münch and
Laepple, 2018). As the climate variations become more pro-
nounced on longer timescales, this leads to an increasing
signal-to-noise ratio with time. We argue that proxies that
are primarily the result of deposition, rather than growth
or accretion primarily contain white noise stemming from
stratigraphic processes. Precipitation intermittency and post-
depositional redistribution in ice cores result in adjacent mea-
surements that represent water from different precipitation
events (Laepple et al., 2018; Casado et al., 2020; Zuhr et al.,
2023). By extension, in marine sediments where foraminifera
or diatoms are deposited from the water column, each sam-
ple represents a new set of individuals such that biological ef-
fects are uncorrelated between measurements. From process-
based experiments, it has been demonstrated that noise in
sediment records is also predominantly white with the sig-
nal level increasing as more individuals are measured (Kunz
et al., 2020; Dolman et al., 2021b). In both ice and sedi-
ment core records of near-surface temperature, seasonal de-
positional cycles are much stronger than any interannual or
even millennial climate change and the sparse subsampling
of the seasonal signal leads to aliasing of independent noise
within the signal of annual variation (Kunz et al., 2020). Pre-
cipitation intermittency and depositional redistribution break
up the signal of the large seasonal cycle that would appear
as a spike in the spectrum at annual timescales if the signal
were recorded without disruption. Instead, the spike is redis-
tributed as white noise across all frequencies (Casado et al.,
2020; Münch et al., 2021).

We identified fewer examples of blue noise processes
in the paleoclimate literature. Because its effects diminish
quickly with time, blue noise does not introduce error past
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Figure 3. Estimates of proxy noise spectra (a–c) and timescale-dependent signal-to-noise ratios (d–f). Top: (a) mean noise spectra for tree-
ring width and density records from the northern hemisphere, (b) mean noise spectra for tropical coral δ18O and strontium/calcium (Sr /Ca)
ratios, (c) noise spectra for ice core δ18O from Dronning Maud Land (light blue) in Antarctica and the North Greenland Traverse (dark blue).
Dashed lines on the top row of panels represent an idealized spectral power-law with a slope β = 1 for proxies containing predominantly
red noise (i.e. tree rings and corals), and with β = 0 for proxies (i.e. ice cores) containing predominantly white noise. Bottom: Timescale-
dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores. Dashed lines represent an SNR of 1. Confidence
intervals on all spectra represent the 10th and 90th percentiles from a parametric bootstrapping estimation method. Detailed methods for
estimating proxy noise and SNR values can be found in McPartland et al. (2024) (tree rings) and Dolman et al. (2025) (corals).

fast timescales. An example of a true blue noise process is the
infilling of troughs on ice sheets as wind redistributes snow
causing blue noise in noise in annual layer thickness records
from ice cores (Fisher et al., 1985). Blue noise models have
occasionally been tested alongside red and white noise to ac-
count for a variety of potential types of error affecting high-
frequencies, and to improve the fit between synthetic proxy
records and climate model data (Mann et al., 2007; Mann and
Rutherford, 2002).

Like blue noise, smoothing processes predominantly affect
high frequencies and becomes less significant with timescale.
Biological memory in trees, diffusion in ice cores, and biotur-
bation in sediments are all examples of smoothing processes
that lead to correlated errors between the climate and the
proxy signal which can theoretically be accounted for using

deterministic modeling (Matalas, 1962; Berger et al., 1977;
Meko, 1981; Ruddiman et al., 1980; Whillans and Grootes,
1985). Given such a model, the smoothing effect can be re-
versed, as we applied in this example to ice core data to re-
verse the effects of diffusion (Shaw et al., 2024) (see Ap-
pendix A). If, as in the case of diffusion, the smoothing pro-
cess affects the signal and the noise equally, the SNR is un-
biased at all timescales regardless of whether or not a correc-
tion for the smoothing effect is applied. However, when noise
is introduced after smoothing (e.g. measurement noise), the
attenuated climate signal on the high-frequency side will be
masked by a relatively stronger noise level, biasing the SNR
spectrum downwards toward high frequencies. In any case,
knowledge about and accounting for smoothing processes in
paleoclimate time series is critical for evaluating the short-
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term effects of climate forcing events such as volcanic erup-
tions (Esper et al., 2015; Zhang et al., 2015; Lücke et al.,
2019), but is potentially less critical for reconstructing low-
frequency variations in climate.

3 Time uncertainty and noise color

Dating for all three proxy types discussed here is primarily
achieved by some kind of band dating, or by counting an-
nual cycles in geochemical tracers. If bands or cycles are
missed, or double counted, this introduces time-uncertainty
and an additional source of error in the reconstructed cli-
mate time series (Comboul et al., 2014). Time uncertainty
has little effect on the shape of individual power spectra when
the spectra are broadband, as is typical for climate time se-
ries (Rhines and Huybers, 2011). However, it reduces co-
herence between records, diminishing high-frequency power
in stacked spectra and biasing SNR estimates downward at
shorter timescales (Münch and Laepple, 2018; Fig. D1). The
effect of time-uncertainty acts as a linear transfer function on
the stacked spectra and can be estimated and corrected for
if the time uncertainty is known, although this was not ap-
plied here (Appendix D). For the ice-core records analyzed
here, the time-uncertainty is due to potential variations in the
accumulation rate between volcanic tie-points and is negligi-
ble for frequencies below 1/10 years (Münch and Laepple,
2018, their Fig. B1).

For the sub-annual resolution coral records used here, age
models mostly come from counting annual cycles in the
geochemical tracers. However, for most coral records there
are no independently dated tie-points and so it is not possi-
ble to directly estimate counting error rates and correct for
time-uncertainty. Simulations with potential error rates de-
rived from corals show that the slope of the SNR is biased
in the opposite direction to the one we estimate (Fig. D1)
and that even for very large error rates of 1 in 10 years’
time-uncertainty cannot account for the low SNR at decadal
timescales. Time uncertainty is arguably less of an issue
for tree-ring records as they are considered to be precisely
dated and dendrochronologists routinely employ statistical
cross-dating techniques to identify and eliminate dating er-
rors (Holmes et al., 1986). Through this process locally ab-
sent rings are identified during cross-dating and assigned a
no-data value to avoid affecting the final chronology. The
strength of the tree-ring SNR on sub-decadal timescales is
indicative of this dating precision.

For proxy archives that are not annually resolved such as
reconstructions from non-varved terrestrial and marine sed-
iment cores, the irregular spacing of samples in time and
larger dating uncertainties makes stacking unsuitable for this
type of noise estimation, representing a limitation of this ap-
proach. Alternative methods, such as estimating the SNR as
a function of time uncertainty (Reschke et al., 2019), or ap-
plying tuning methods that align proxy records by maximiz-

ing covariance and assess significance against surrogate data
(Haam and Huybers, 2010), may still allow for empirical
SNR estimation in these cases.

4 Implications of colored noise for climate
reconstruction

The spectrum of temperature on local to global scales is gen-
erally accepted to be red (Huybers and Curry, 2006; Cheung
et al., 2017; Hasselmann, 1976). For proxies with predomi-
nantly white-noise spectra such as ice cores and sediments,
this implies that the SNR increases with timescale. This ex-
plains why ice cores are faithful recorders of millennial cli-
mate variability (e.g. EPICA community members, 2006),
while they fail in many regions to reconstruct interannual to
decadal changes (Stenni et al., 2017). By contrast, in prox-
ies that contain red noise, the SNR will rise more slowly or
even decline with timescale if the power of the noise rises
more steeply than the signal, as we demonstrate in tree rings
and corals. These proxies are better recorders of fast time-
scale variability where the ratio of signal to noise is highest.
For example, corals can deliver unique information on trop-
ical climate dynamics such as the El Niño Southern Oscilla-
tion (ENSO) (Fig. 3), but have challenges reproducing mul-
tidecadal trends (Scott et al., 2010). The color of the noise
thus influences the timescales at which a robust climate sig-
nal can be reconstructed because it introduces a frequency-
dependence to the SNR.

Information about proxy noise can be used to guide future
study design (e.g. what proxies can be used to answer a cli-
matic hypothesis) and to optimize the sampling and measur-
ing design (e.g. how many cores are needed; what is the op-
timal sampling resolution to minimize noise). It can also be
used to estimate time scale-dependent uncertainty in climate
reconstructions. For individual proxy time series where the
signal increases more strongly with timescale than the noise,
when the signal spectrum is “redder” than the noise, binning
to a coarser timestep or by applying stronger smoothing re-
duces the noise. This improves the SNR, albeit at the cost of
losing information at shorter timescales. The extent to which
uncertainty is reduced by binning or smoothing depends on
the relative spectral slopes of both the signal and noise.

Knowing the color and level of proxy noise is valuable
in a variety of research contexts in paleoclimatology. For
example, accurate noise models are important for pseudo-
proxy experiments (PPEs) in which climate model output is
transformed into pseudo-proxy time series to test the skill
of reconstruction methods and evaluate models (Jones et al.,
2009; Smerdon, 2012). Often PPEs rely on sensitivity tests
using different noise levels or spectral colors (Riedwyl et
al., 2009; Smerdon et al., 2010; Mann and Rutherford, 2002;
Gómez-Navaro et al., 2017). Red noise is often tested along-
side white or sometimes blue noise, but typically using a
first-order autoregressive (AR(1)) process with a fixed spec-
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tral slope (β = 2) (Mann et al., 2007; Riedwyl et al., 2009).
However, this can lead to underestimation of the actual noise,
especially at low frequencies where the spectrum of an AR(1)
process levels out. More recent PPEs have integrated full
PSM complexity with realistic noise estimates (Bothe et al.,
2019; Zhu et al., 2023). Finally, accurate noise estimation
is important in data assimilations and field reconstructions
to bring reconstructed time series into better alignment with
calibration datasets, and to propagate uncertainty in estimates
of past climate variability (Goosse et al., 2010; King et al.,
2021).

5 Conclusion

Building on prior insights from proxy system modeling, and
with reference to a first-principles based understanding of
proxy formation, we present here an overview of how col-
ored noise is represented in different types of paleoclimate
archives. Incorporating empirical, proxy-specific noise mod-
els as presented here into a range of paleoclimate research
activities will help to move away from the assumption that
noise is white or follows a first-order autoregressive process,
which can lead to misinterpreting noise as signal and propa-
gating biases into results. These noise models, or models de-
rived using similar stacking and variance-partitioning meth-
ods, can be used account for the range of unique biologi-
cal and physical processes affecting proxies in pseudo proxy
experiments, data assimilation frameworks, and reconstruc-
tions efforts to improve the representation of patterns of past
climate variability.

Appendix A: Estimating the spectrum of noise

We apply the method of Münch et al. (2018) of combining
clustered proxy records into regional stacks and analyzing
their variance in the frequency domain. This builds on the
assumption that the proxy signal is a function of four main
components: the climate signal, additive noise that arises dur-
ing the proxy creation and archiving stages, measurement
noise, and any smoothing processes that act during archiv-
ing but not on the measurement noise; i.e.

P = f (C,N,6;G)=G (C+N )+6 (A1)

where P , C, N , and 6 stand for the power spectral densities
of the proxy signal, the climate signal, the proxy noise, and
the measurement noise, respectively, and where G is a trans-
fer function that describes a specific smoothing process such
as biological memory, diffusion, or bioturbation.

Given a regional cluster of n proxy records with a similar
climate between sites, the mean power spectrum, M , aver-
aged across all individual records’ spectra, will yield a pre-
cise estimate of the proxy spectrum P . By contrast, the power
spectrum, S, of the stacked record from averaging all records
in the time domain, will also contain the full climate signal,

but with the noise proportions reduced by a factor of n. By
combining both quantities one can derive expressions for the
climate and noise spectra (Münch and Laepple, 2018),

C =
n

n− 1
G−1

(
S−

M

n

)
;

N =
n

n− 1
G−1

(
M − S−

n− 1
n

6

)
(A2)

with the ratio of C :N yielding the frequency-resolved
signal-to-noise ratio (SNR). A common smoothing process
equally biases the signal and the noise spectrum, if not cor-
rected for by means of the inverse transfer functionG−1, and
hence its effect cancels out in the SNR spectrum. We note
that time uncertainty between individual proxy records can
be another source of smoothing in the stacked record, but it is
less straightforward to include into our methodology (Münch
and Laepple, 2018) and is neglected here.

Appendix B: Data

B1 Tree Rings

For the tree-ring data we analyzed the tree-ring records
contained within the Past Global Changes 2k (PAGES2k)
database, a large database compiled to reconstruct global
temperature variations during the last two millennia. This
network of 647 unique paleoclimate records from around the
globe includes 450 tree-ring time series, of which we used
421 records of tree-ring width and density located across the
Northern hemisphere (PAGES 2k Consortium et al., 2013,
2017; Neukom et al., 2019). Spatial clusters were defined
using 250 km radii, such that no two sites were more than
500 km apart. Tree-ring width and density records were clus-
tered separately so that the proxies weren’t mixed within
clusters. This resulted in 253 clusters containing a minimum
of 3, and a maximum of 30 sites per cluster. The average
number of sites per cluster was 8. There were 18 density and
235 ring width clusters. The average length of the overlap-
ping period was around 450 years. The results of all clus-
ters of both proxy types were averaged at the end to derive
the signal, noise and SNR. Uncertainty was calculated us-
ing a parametric bootstrapping approach. (McPartland et al.,
2024).

B2 Corals

We used the coral records contained within the PAGES Coral
Hydro 2k database to obtain coral SNR estimates (Walter
et al., 2023). The Coral Hydro2k database contains 54 oxy-
gen (δ18O) and strontium calcium (Sr /Ca) records from the
global tropics. The database was compiled to reconstruct sea
surface temperature and ocean hydroclimate variability for
the past two centuries. Due to fewer records, 1000 km spatial
clusters were used, resulting in 64 clusters. δ18O and Sr /Ca
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records were clustered separately and the results were aver-
aged. More information on the coral data curation is con-
tained in Dolman et al. (2025).

B3 Ice Cores

As an example in ice-core derived temperature proxies, we
use stable isotope records from the Dronning Maud Land re-
gion in Antarctica (“DML data” in the following; Graf et al.,
2002) and from central-north Greenland (“NGT data” in the
following; Weißbach et al., 2016; Hörhold et al., 2023).

The DML data consist of 15 records, 12 of which cover
the time period from 1800 to 1998 CE and 3 records cover
1000–1998 CE. We combine both datasets by using the in-
dividual spectral results (Münch and Laepple, 2018) of the
shorter records on timescales below decadal and of the longer
records on the supra-decadal timescales. We apply the diffu-
sion correction as in Münch and Laepple (2018) but do not
use their time-uncertainty correction.

The NGT data comprise 14 cores covering the time span
from 1505 to 1979 CE, including original records from
the North Greenland Traverse published in Weißbach et
al. (2016) as well as the extended NGT records from exploit-
ing new drillings as presented in Hörhold et al. (2023). The
corresponding NGT spectra shown in Hörhold et al. (2023)
were not diffusion-corrected; here, to be able to compare the
NGT spectra to those from the DML data, we apply a dif-
fusion correction to the NGT spectra following the method
given in Münch and Laepple (2018) with diffusion length es-
timates calculated as described in Hörhold et al. (2023). Note
that the SNR spectrum shown in Hörhold et al. (2023) used
the ratio of the integrated signal and noise spectra, which is
related to the correlation with the climate signal (Münch and
Laepple, 2018), whereas here we show the direct ratio of the
spectra.
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Appendix C: Signal, noise and signal-to-noise ratio
estimation

Full results for the uncorrected signal, noise and SNR esti-
mates for tree rings, corals and ice-core data (Fig. C1a–d).
Spectra in Fig. 3 represent truncated versions which have
been cut off where sample density in corals and tree rings
drop off (shaded regions), as seen in the spectral density plots
(Fig. C1 bottom panels). In both corals and tree rings, the
SNR rises again due to the reduction in replication and dom-
inance by single or a small number of records with higher
SNR than average (Fig. C1a, b) (see McPartland et al., 2024;
Fig. 2e, f). Confidence intervals on all spectra represent the
10th and 90th percentiles from a parametric bootstrapping
estimation method. In addition to the truncation due to low
sample size, the lowest two spectral estimates on all spectra
are removed during SNR calculation and confidence interval
estimation a the multitaper approach introduces a small bias
at the lowest frequencies (Percival and Walden, 1993).

Figure C1. Timescale-dependent signal, noise and SNR estimates with sample density plots for tree rings (a, e), corals (b, f), and ice-core
δ18O data from Dronning Maud Land in Antarctica (c, g) and the North Greenland Traverse (d, h). Panels (a)–(d) show signal (blue), noise
(green) and SNR (purple) curves, with the uncorrected “proxy” spectra (yellow). Confidence intervals on all spectra represent the 10th and
90th percentiles from a parametric bootstrapping estimation method. The light grey shading indicates the cut-off point for spectral estimates
presented in Fig. 3 when sample density decreases and the results become more uncertain. Detailed methods for estimating proxy noise and
SNR values can be found in McPartland et al. (2024) (tree rings), Münch et al. (2018) (ice cores) and Dolman et al. (2025) (corals).
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Appendix D: Simulated effects of time uncertainty on
timescale-dependent signal-to-noise ratios

To illustrate the potential effects of time uncertainty on esti-
mates of signal-to-noise ratio we used the approach of Com-
boul et al. (2014) as implemented by Münch and Laepple
(2018). Münch and Laepple (2018) show that relative time-
uncertainty between records in a stack acts as a linear trans-
fer function, reducing power in the stack at high frequencies.
The precise shape of the transfer function depends on the
counting error rate, and on the lengths of the time series, as
longer time series allow larger relative errors to accumulate.
It does not depend on the power spectrum of the initial “true”
signal. Here we show the effect on SNR for 100-year time
series with band counting error rates of 1 in 10, 50 and 100
years, with equal probability of missing or double counting
a band. The effect on estimated SNR is shown relative to a
hypothetical true SNR of 1.

Figure D1. The influence of time-uncertainty on SNR estimated by
the stacking method. Here time uncertainty is simulated for a set of
100-year depositional records with band counting error rates of 1 in
10, 50 and 100, and a true SNR of 10 at all frequencies. The simu-
lation was carried out following Münch and Laepple (2018) which
implements the counting error model of Comboul et al. (2014).

Code availability. The general software to conduct the sepa-
ration of signal and noise in the spectral domain and to per-
form the signal-to-noise ratio analysis is available as the R pack-
age proxysnr from the open research data repository Zenodo
(https://doi.org/10.5281/zenodo.17098991, Münch et al., 2025).
Additionally, specific code to reproduce the tree-ring, coral,
and ice-core analyses, respectively, are also available via Zen-
odo (https://doi.org/10.5281/zenodo.10822165, McPartland and
Dolman, 2024; https://doi.org/10.5281/zenodo.14025394, Dolman,

2024; https://doi.org/10.5281/zenodo.17098991, Münch, 2025a;
https://doi.org/10.5281/zenodo.17102273, Münch, 2025b).

Data availability. This work represents a synthesis of mul-
tiple independent research projects. The data needed to re-
produce the tree-ring and coral data are publicly available
through the NOAA National Centers for Environmental In-
formation (https://doi.org/10.25921/YCR3-7588, Emile-Geay et
al., 2017; Walter et al., 2023). The original Antarctic ice-
core isotope data are archived at the PANGAEA database
(https://doi.org/10.1594/PANGAEA.728240, Graf et al., 2002) as
well as the Greenland data except for core NGRIP whose data
is available from the Centre for Ice and Climate of Copenhagen
University (https://doi.org/10.1594/PANGAEA.849161, Weißbach
et al., 2016; Hörhold et al., 2023). PANGAEA is hosted by the
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