Articles | Volume 20, issue 5
https://doi.org/10.5194/cp-20-1125-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-1125-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: An improved methodology for calculating the Southern Annular Mode index to aid consistency between climate studies
Laura Velasquez-Jimenez
CORRESPONDING AUTHOR
Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
Australian Centre for Excellence in Antarctic Science, Australian National University, Canberra ACT 2601, Australia
Nerilie J. Abram
Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
Australian Centre for Excellence in Antarctic Science, Australian National University, Canberra ACT 2601, Australia
ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra ACT 2601, Australia
ARC Centre of Excellence for Weather of the 21st Century, Australian National University, Canberra ACT 2601, Australia
Related authors
No articles found.
Georgina Falster, Gab Abramowitz, Sanaa Hobeichi, Cath Hughes, Pauline Treble, Nerilie J. Abram, Michael I. Bird, Alexandre Cauquoin, Bronwyn Dixon, Russell Drysdale, Chenhui Jin, Niels Munksgaard, Bernadette Proemse, Jonathan J. Tyler, Martin Werner, and Carol Tadros
EGUsphere, https://doi.org/10.5194/egusphere-2025-2458, https://doi.org/10.5194/egusphere-2025-2458, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a random forest approach to produce estimates of monthly precipitation stable isotope variability from 1962–2023, at high resolution across the entire Australian continent. Comprehensive skill and sensitivity testing shows that our random forest models skilfully predict precipitation isotope values in places and times that observations are not available. We make all outputs publicly available, facilitating use in fields from ecology and hydrology to archaeology and forensic science.
Andrew D. King, Nerilie J. Abram, Eduardo Alastrué de Asenjo, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2025-903, https://doi.org/10.5194/egusphere-2025-903, 2025
Short summary
Short summary
It is vital that climate changes under net zero emissions are well understood to support decision making processes. Current modelling efforts are insufficient, partly due to limited simulation lengths. We propose a framework for 1000-year-long simulations that attempts to minimise computing resources by leveraging existing simulations. This will ultimately increase understanding of the implications of current climate policies for the Earth System over coming decades and centuries.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Sarah L. Jackson, Tessa R. Vance, Camilla Crockart, Andrew Moy, Christopher Plummer, and Nerilie J. Abram
Clim. Past, 19, 1653–1675, https://doi.org/10.5194/cp-19-1653-2023, https://doi.org/10.5194/cp-19-1653-2023, 2023
Short summary
Short summary
Ice core records are useful tools for reconstructing past climate. However, ice cores favour recording climate conditions at times when snowfall occurs. Large snowfall events in Antarctica are often associated with warmer-than-usual temperatures. We show that this results in a tendency for the Mount Brown South ice core record to preserve a temperature record biased to the climate conditions that exist during extreme events, rather than a temperature record that reflects the mean annual climate.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Nicky M. Wright, Claire E. Krause, Steven J. Phipps, Ghyslaine Boschat, and Nerilie J. Abram
Clim. Past, 18, 1509–1528, https://doi.org/10.5194/cp-18-1509-2022, https://doi.org/10.5194/cp-18-1509-2022, 2022
Short summary
Short summary
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM reconstructions show changes that last millennium climate simulations do not reproduce. We test the SAM's sensitivity to solar forcing using simulations with a range of solar values and transient last millennium simulations with large-amplitude solar variations. We find that solar forcing can alter the SAM and that strong solar forcing transient simulations better match proxy-based reconstructions.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Cited articles
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J., and Boer, M. M.: Connections of climate change and variability to large and extreme forest fires in southeast Australia, Communications Earth & Environment, 2, 8, https://doi.org/10.1038/s43247-020-00065-8, 2021. a
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D., and Chang, K.-L.: A pause in Southern Hemisphere circulation trends due to the Montreal Protocol, Nature, 579, 544–548, 2020. a
Barrucand, M. G., Zitto, M. E., Piotrkowski, R., Canziani, P., and O'Neill, A.: Historical SAM index time series: linear and nonlinear analysis, Int. J. Climatol., 38, e1091–e1106, 2018. a
Campitelli, E., Díaz, L. B., and Vera, C.: Assessment of zonally symmetric and asymmetric components of the Southern Annular Mode using a novel approach, Clim. Dynam., 58, 161–178, 2022. a
Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O'Farrell, S., Rashid, H., Srbinovsky, J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F. B., Domingues, C. M., Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan, S. M., Roberts, D., Smillie, J., Snow, K., Ward, M., and Yang, R.: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.2285, 2019. a
Fogt, R. L. and Bromwich, D. H.: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode, J. Climate, 19, 979–997, 2006. a
Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere, Wires Clim. Change, 11, e652, https://doi.org/10.1002/wcc.652, 2020. a, b
Goyal, R., England, M. H., Sen Gupta, A., and Jucker, M.: Reduction in surface climate change achieved by the 1987 Montreal Protocol, Environ. Res. Lett., 14, 124041, https://doi.org/10.1088/1748-9326/ab4874, 2019. a
Goyal, R., Sen Gupta, A., Jucker, M., and England, M. H.: Historical and projected changes in the Southern Hemisphere surface westerlies, Geophys. Res. Lett., 48, e2020GL090849, https://doi.org/10.1029/2020GL090849, 2021. a
Goyal, R., Jucker, M., Gupta, A. S., and England, M. H.: A New Zonal Wave-3 Index for the Southern Hemisphere, J. Climate, 35, 5137–5149, 2022. a
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., and Blankenship, D. D.: The climate data toolbox for MATLAB, Geochem. Geophy. Geosy., 20, 3774–3781, 2019. a
Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., and Sutton, R.: Observed emergence of the climate change signal: from the familiar to the unknown, Geophys. Res. Lett., 47, e2019GL086259, https://doi.org/10.1029/2019GL086259, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R.., Schepers, D., SImmons, A., Soci, C., Abdalla, S., Abellan, X., Gianpaolo, B., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Lalotaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a
o, M., Kiem, A. S., and Verdon-Kidd, D. C.: The Southern Annular Mode: a comparison of indices, Hydrol. Earth Syst. Sci., 16, 967–982, https://doi.org/10.5194/hess-16-967-2012, 2012. a
Jones, J. M., Fogt, R. L., Widmann, M., Marshall, G. J., Jones, P. D., and Visbeck, M.: Historical SAM variability. Part I: Century-length seasonal reconstructions, J. Climate, 22, 5319–5345, 2009. a
Kidston, J., Renwick, J., and McGregor, J.: Hemispheric-scale seasonality of the Southern Annular Mode and impacts on the climate of New Zealand, J. Climate, 22, 4759–4770, 2009. a
King, J., Anchukaitis, K. J., Allen, K., Vance, T., and Hessl, A.: Trends and variability in the Southern Annular Mode over the Common Era, Nat. Commun., 14, 2324, https://doi.org/10.1038/s41467-023-37643-1, 2023. a
Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W., Dowdy, A. J., and Arblaster, J. M.: Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex, Nat. Geosci., 12, 896–901, 2019. a
Mariani, M. and Fletcher, M.-S.: The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia, Geophys. Res. Lett., 43, 1702–1709, 2016. a
Meneghini, B., Simmonds, I., and Smith, I. N.: Association between Australian rainfall and the southern annular mode, Int. J. Climatol., 27, 109–121, 2007. a
Mo, K. C.: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies, J. Climate, 13, 3599–3610, 2000. a
Pawlowicz, R.: M_Map: A mapping package for MATLAB, version 1.4 m, Computer Software, UBC EOAS, https://www.eoas.ubc.ca/~rich/map.html (last access: 10 February 2023), 2020. a
Pepler, A.: Record lack of cyclones in southern Australia during 2019, Geophys. Res. Lett., 47, e2020GL088488, https://doi.org/10.1029/2020GL088488, 2020. a
Reason, C. and Rouault, M.: Links between the Antarctic Oscillation and winter rainfall over western South Africa, Geophys. Res. Lett., 32, L07705, https://doi.org/10.1029/2005GL022419, 2005. a
Silvestri, G. E. and Vera, C. S.: Antarctic Oscillation signal on precipitation anomalies over southeastern South America, Geophys. Res. Lett., 30, 2115, https://doi.org/10.1029/2003GL018277, 2003. a
Spensberger, C., Reeder, M. J., Spengler, T., and Patterson, M.: The connection between the southern annular mode and a feature-based perspective on Southern Hemisphere midlatitude winter variability, J. Climate, 33, 115–129, 2020. a
Thompson, D. W. and Solomon, S.: Interpretation of recent Southern Hemisphere climate change, Science, 296, 895–899, 2002. a
Thompson, D. W. and Wallace, J. M.: Annular modes in the extratropical circulation. Part I: Month-to-month variability, J. Climate, 13, 1000–1016, 2000. a
Thompson, D. W., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4, 741–749, 2011. a
Trouet, V. and Van Oldenborgh, G. J.: KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology, Tree-Ring Res., 69, 3–13, 2013. a
Velasquez-Jimenez, L.: Data and code to replicate analyses and figures in Velasquez-Jimenez and Abram (2024), Technical Note, Zenodo [code] and [data set], https://doi.org/10.5281/zenodo.11095736, 2024. a, b
Vera, C. S. and Osman, M.: Activity of the Southern Annular Mode during 2015–2016 El Niño event and its impact on Southern Hemisphere climate anomalies, Int. J. Climatol., 38, e1288–e1295, 2018. a
Villalba, R., Lara, A., Masiokas, M. H., Urrutia, R., Luckman, B. H., Marshall, G. J., Mundo, I. A., Christie, D. A., Cook, E. R., Neukom, R., Allen, K., Fenwick, P., Boninsegna, J. A., Srur, A. S., Morales, M. S., Araneo, D., Palmer, J. G., Cuq, E., Aravena, J. C., Holz, A., and LeQuesne, C.: Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode, Nat. Geosci., 5, 793–798, 2012. a
Visbeck, M.: A station-based southern annular mode index from 1884 to 2005, J. Climate, 22, 940–950, 2009. a
Wright, N. M., Krause, C. E., Phipps, S. J., Boschat, G., and Abram, N. J.: Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode, Clim. Past, 18, 1509–1528, https://doi.org/10.5194/cp-18-1509-2022, 2022. a, b, c, d
Short summary
The Southern Annular Mode (SAM) influences climate in the Southern Hemisphere. We investigate the effects of calculation method and data used to calculate the SAM index and how it influences the relationship between the SAM and climate. We propose a method to calculate a natural SAM index that facilitates consistency between studies, including when using different data resolutions, avoiding distortion of SAM impacts and allowing for more reliable results of past and future SAM trends.
The Southern Annular Mode (SAM) influences climate in the Southern Hemisphere. We investigate...