Articles | Volume 19, issue 2
https://doi.org/10.5194/cp-19-419-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-419-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea ice and productivity changes over the last glacial cycle in the Adélie Land region, East Antarctica, based on diatom assemblage variability
Lea Pesjak
CORRESPONDING AUTHOR
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, 7000, Australia
Andrew McMinn
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, 7000, Australia
Zanna Chase
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, 7000, Australia
Helen Bostock
School of Earth and Environmental Sciences, University of Queensland, Brisbane, 4072, Australia
National Institute of Water and Atmospheric Research (NIWA),
Wellington, New Zealand
Related authors
No articles found.
Megan Jeffers, Chris Chapman, Bernadette M. Sloyan, and Helen Bostock
EGUsphere, https://doi.org/10.5194/egusphere-2024-2265, https://doi.org/10.5194/egusphere-2024-2265, 2024
Short summary
Short summary
The East Australian Current (EAC) significantly impacts the marine environment of Australia's east coast. This study analyses physical and biogeochemical data from around the EAC mooring array between 2012 to 2022 to understand nutrient variability at approximately 27° S. Both seasonality and the EAC's lateral position affects the distribution of nutrients in the water column. These findings reveal occurrences of the upwelling of deep EAC nutrient rich water into the oligotrophic surface waters.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Sazlina Salleh and Andrew McMinn
Biogeosciences, 18, 5313–5326, https://doi.org/10.5194/bg-18-5313-2021, https://doi.org/10.5194/bg-18-5313-2021, 2021
Short summary
Short summary
The benthic diatom communities in Tanjung Rhu, Malaysia, were regularly exposed to high light and temperature variability during the tidal cycle, resulting in low photosynthetic efficiency. We examined the impact of high temperatures on diatoms' photosynthetic capacities, and temperatures beyond 50 °C caused severe photoinhibition. At the same time, those diatoms exposed to temperatures of 40 °C did not show any sign of photoinhibition.
Bruce L. Greaves, Andrew T. Davidson, Alexander D. Fraser, John P. McKinlay, Andrew Martin, Andrew McMinn, and Simon W. Wright
Biogeosciences, 17, 3815–3835, https://doi.org/10.5194/bg-17-3815-2020, https://doi.org/10.5194/bg-17-3815-2020, 2020
Short summary
Short summary
We observed that variation in the Southern Annular Mode (SAM) over 11 years showed a relationship with the species composition of hard-shelled phytoplankton in the seasonal ice zone (SIZ) of the Southern Ocean. Phytoplankton in the SIZ are productive during the southern spring and summer when the area is ice-free, with production feeding most Antarctic life. The SAM is known to be increasing with climate change, and changes in phytoplankton in the SIZ may have implications for higher life forms.
Pearse J. Buchanan, Richard J. Matear, Zanna Chase, Steven J. Phipps, and Nathan L. Bindoff
Geosci. Model Dev., 12, 1491–1523, https://doi.org/10.5194/gmd-12-1491-2019, https://doi.org/10.5194/gmd-12-1491-2019, 2019
Short summary
Short summary
Oceanic sediment cores are commonly used to understand past climates. The composition of the sediments changes with the ocean above it. An understanding of oceanographic conditions that existed many thousands of years ago, in some cases many millions of years ago, can therefore be extracted from sediment cores. We simulate two chemical signatures (13C and 15N) of sediment cores in a model. This study assesses the model before it is applied to reinterpret the sedimentary record.
Alyce M. Hancock, Andrew T. Davidson, John McKinlay, Andrew McMinn, Kai G. Schulz, and Rick L. van den Enden
Biogeosciences, 15, 2393–2410, https://doi.org/10.5194/bg-15-2393-2018, https://doi.org/10.5194/bg-15-2393-2018, 2018
Short summary
Short summary
Absorption of carbon dioxide (CO2) realized by humans is decreasing the ocean pH (ocean acidification). Single-celled organisms (microbes) support the Antarctic ecosystem, yet little is known about their sensitivity to ocean acidification. This study shows a shift in a natural Antarctic microbial community, with CO2 levels exceeding 634 μatm changing the community composition and favouring small cells. This would have significant flow effects for Antarctic food webs and elemental cycles.
Andrew McMinn
Biogeosciences, 14, 3927–3935, https://doi.org/10.5194/bg-14-3927-2017, https://doi.org/10.5194/bg-14-3927-2017, 2017
Short summary
Short summary
Dissolved carbon dioxide levels in the oceans are rising and this is causing a drop in the pH (ocean acidification). This potentially effects all marine organisms, including those in polar regions. Sea ice algae are naturally exposed to a wide range of pH and CO2 concentrations, particularly during the ice formation and melting cycles. However, all studies so far have shown ice algae to be quite resilient to change. This includes the effects of co-stressors such as light, iron and temperature.
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary
Short summary
We quantify the contributions of physical and biogeochemical changes in the ocean to enhancing ocean carbon storage at the Last Glacial Maximum. We find that simulated circulation and surface conditions cannot explain changes in carbon storage or other major biogeochemical fields that existed during the glacial climate. Key modifications to the functioning of the biological pump are therefore required to explain the glacial climate and improve model–proxy agreement for all fields.
Related subject area
Subject: Ice Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Ice-proximal sea-ice reconstruction in Powell Basin, Antarctica since the Last Interglacial
Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka)
Reconstructing Antarctic winter sea-ice extent during Marine Isotope Stage 5e
Reconstructing the evolution of ice sheets, sea level, and atmospheric CO2 during the past 3.6 million years
The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin
Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history
A Late Pleistocene sea level stack
Sea level ~400 000 years ago (MIS 11): analogue for present and future sea-level?
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246, https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial-interglacial sea ice response to a changing climate and enhance our understanding of the ocean-sea ice-ice shelf interactions and dynamics.
Matthew Chadwick, Xavier Crosta, Oliver Esper, Lena Thöle, and Karen E. Kohfeld
Clim. Past, 18, 1815–1829, https://doi.org/10.5194/cp-18-1815-2022, https://doi.org/10.5194/cp-18-1815-2022, 2022
Short summary
Short summary
Algae preserved in seafloor sediments have allowed us to reconstruct how Antarctic sea ice has varied between cold and warm time periods in the last 130 000 years. The patterns and timings of sea-ice increase and decrease vary between different parts of the Southern Ocean. Sea ice is most sensitive to changing climate at the external edges of Southern Ocean gyres (large areas of rotating ocean currents).
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, https://doi.org/10.5194/cp-17-361-2021, 2021
Short summary
Short summary
For the past 2.6 million years, the Earth has experienced glacial cycles, where vast ice sheets periodically grew to cover large parts of North America and Eurasia. In the earlier part of this period, this happened every 40 000 years. This value changed 1.2 million years ago to 100 000 years: the Mid-Pleistocene Transition. We investigate this interesting period using an ice-sheet model, studying the interactions between ice sheets and the global climate.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Linsen Dong, Yanguang Liu, Xuefa Shi, Leonid Polyak, Yuanhui Huang, Xisheng Fang, Jianxing Liu, Jianjun Zou, Kunshan Wang, Fuqiang Sun, and Xuchen Wang
Clim. Past, 13, 511–531, https://doi.org/10.5194/cp-13-511-2017, https://doi.org/10.5194/cp-13-511-2017, 2017
Short summary
Short summary
In this manuscript, we present the results of our study conducted for a sediment core (ARC4-BN05) collected in the Arctic Ocean. Detailed examination of clay and bulk mineralogy along with grain size, content of Ca and Mn, and planktonic foraminiferal numbers in core ARC4–BN05 provides important new information about sedimentary environments and provenance. Based on these proxies, we try to reveal late to middle Pleistocene glacial history.
Rachel M. Spratt and Lorraine E. Lisiecki
Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, https://doi.org/10.5194/cp-12-1079-2016, 2016
Short summary
Short summary
This study presents an average of seven Late Pleistocene sea level records, which improves the signal-to-noise ratio for estimates of sea level change during glacial cycles of the past 800 000 years.
D. Q. Bowen
Clim. Past, 6, 19–29, https://doi.org/10.5194/cp-6-19-2010, https://doi.org/10.5194/cp-6-19-2010, 2010
Cited articles
Alley, R. B., Anandakrishnan, S., Christianson, K., Horgan, H. J., Muto, A.,
Parizek, B. R., Pollard, D., and Walker, R. T.: Oceanic forcing of ice-sheet
retreat: West Antarctica and more, Annu. Rev. Earth Planet. Sci., 43, 207–231, 2015.
Armand, L. K. and Zielinski, U., Diatom species of the genus Rhizosolenia
from Southern Ocean sediments: distribution and taxonomic notes, Diatom Res., 16, 259–294, 2011.
Armand, L. K., Crosta, X., Romero, O., and Pichon, J. J.: The biogeography of
major diatom taxa in Southern Ocean sediments: 1. Sea ice related species,
Palaeogeogr. Palaeocl. Palaeoecol., 223, 93–126, 2005.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., and Greku, R.: 'The
International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 – A new bathymetric compilation covering circum-Antarctic waters, Geophys. Res. Lett., 40, 3111–3117, 2013.
Arrigo, K. R. and Van Dijken, G. L.: Phytoplankton dynamics within 37 Antarctic coastal polynya systems, J. Geophys. Res.-Oceans, 108, 3271, https://doi.org/10.1029/2002JC001739, 2003.
Beans, C., Hecq, J. H., Koubbi, P., Vallet, C., Wright, S., and Goffart, A.:
A study of the diatom-dominated microplankton summer assemblages in coastal
waters from Terre Adélie to the Mertz Glacier, East Antarctica (139∘ E–145∘ E), Polar Biol., 31, 1101–1117, 2008.
Bonn, W. J., Gingele, F. X., Grobe, H., Mackensen, A., and Fütterer, D.
K.: Palaeoproductivity at the Antarctic continental margin: opal and barium
records for the last 400 ka, Palaeogeogr. Palaeocl. Palaeoecol., 139, 195–211, 1998.
Burckle, L. H.: Ecology and palaeoecology of the marine diatom Eucampia
antarctica (Castr.) Mangin, Mar. Micropaleontol., 9, 77–86, 1984.
Caburlotto, A., De Santis, L., Zanolla, C., Camerlenghi, A., and Dix, J.: New
insights into Quaternary glacial dynamic changes on the George V Land
continental margin (East Antarctica), Quaternary Sci. Rev., 25, 3029–3049, 2006.
Caburlotto, A., Lucchi, R. G., De Santis, L., Macri, P., and Tolotti, R.:
Sedimentary processes on the Wilkes Land continental rise reflect changes in
glacial dynamic and bottom water flow, Int. J. Earth Sci., 99, 909–926, 2010.
Chadwick, M., Crosta, X., Esper, O., Thöle, L., and Kohfeld, K. E.: Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka), Clim. Past, 18, 1815–1829, https://doi.org/10.5194/cp-18-1815-2022, 2022.
Cody, R. D., Levy, R. H., Harwood, D. M., and Sadler, P. M.: Thinking outside
the zone: High-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeogr. Palaeocl. Palaeoecol., 260, 92–121, 2008.
Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M.,
Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim, B. K., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Galindo, A. L., Patterson, M. O., Sangiorgi, F., Pierce, E. L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J. A. P., Bijl, P. K., Carr, S. A., Dunbar, R. B., Flores, J. A., Hayden, T. G., Katsuki, K., Kong, G. S., Nakai, M., Olney, M. P., Pekar, S. F., Pross, J., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Tuo, S., Welsh, K., and Yamane, M.: Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth, Nat. Geosci., 6, 1017–1025, 2013.
Cooke, D. W. and Hayes, J. D.: Estimates of Antarctic Ocean seasonal sea-ice
cover during glacial intervals, Antarct. Geosci., 131, 1017–1025, 1982.
Crosta, X., Strum, A., Armand, L. K., and Pichon, J. J.: Late Quaternary sea
ice history in the Indian sector of the Southern Ocean as recorded by diatom
assemblages, Mar. Micropaleontol., 50, 209–223, 2004.
Crosta, X., Romero, O., Armand, L. K., and Pichon, J. J.: The biogeography of
major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeogr. Palaeocl. Palaeoecol., 223, 66–92, 2005.
Crosta, X., Debret, M., Denis, D., Courty, M. A., and Ther, O.: Holocene long- and short-term climate changes off Adélie Land, East Antarctica,
Geochem. Geophy. Geosy., 8, Q11009, https://doi.org/10.1029/2007GC001718, 2007.
Crosta, X., Kohfeld, K. E., Bostock, H. C., Chadwick, M., Du Vivier, A.,
Esper, O., Etourneau, J., Jones, J., Leventer, A., Müller, J., Rhodes, R. H., Allen, C. S., Ghadi, P., Lamping, N., Lange, C., Lawler, K.-A., Lund, D., Marzocchi, A., Meissner, K. J., Menviel, L., Nair, A., Patterson, M., Pike, J., Prebble, J. G., Riesselman, C., Sadatzki, H., Sime, L. C., Shukla, S. K., Thöle, L., Vorrath, M.-E., Xiao, W., and Yang, J.: Antarctic sea ice
over the past 130,000 years, Part 1: A review of what proxy records tell us,
EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-99, 2022.
DeMaster, D. J.: The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Ac., 45, 1715–1732, 1981.
Depoorter, M. A., Bamber, J., Griggs, J., Lenaerts, J. T., Ligtenberg, S. R., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92, 2013.
Diekmann, B., Fütterer, D., Grobe, H., Hillenbrand, C., Kuhn, G., Michels, K., Petschick, R., and Pirrung, M.: Terrigenous sediment supply in the polar to temperate South Atlantic: Land-ocean links of environmental changes during the late Quaternary, in: The South Atlantic in the Late Quaternary: Reconstruction of material budgets and current systems, edited by: Wefer, G., Mulitza, S., and Ratmeyer, V., Springer-Verlag, Berlin, Heidelberg, Germany, 375–399, ISBN 3540210288, 2004.
Domack, E., Jull, A. T., Anderson, J., Linick, T., and Williams, C.: Application of tandem accelerator mass-spectrometer dating to late Pleistocene-Holocene sediments of the East Antarctic continental shelf, Quatern. Res., 31, 277–287, 1989.
Domack, E. W.: Sedimentology of glacial and glacial marine deposits on the
George V-Adelie continental shelf, East Antarctica, Boreas, 11, 79–97, 1982.
Escutia, C., Warnke, D., Acton, G. D., Barcena, A., Burckle, L., Canals, M.,
and Frazee, C. S.: Sediment distribution and sedimentary processes across
the Antarctic Wilkes Land margin during the Quaternary, Deep-Sea Res. Pt. II, 50, 1481–1508, 2003.
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.: 2017 updated daily, Sea Ice Index', Version 3, NSIDC – National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.7265/N5K072F8, 2017.
Fink, D., Hotchkis, M., Hua, Q., Jacobsen, G., Smith, A. M., Zoppi, U., Child, D., Mifsud, C., van der Gaast, H., and Williams, A.: The antares AMS
facility at ANSTO, Nucl. Instrum. Meth. Phys. Res. B, 223, 109–115, 2004.
Fryxell, G.: Comparison of winter and summer growth stages of the diatom
Eucampia antarctica from the Kerguelen Plateau and south of the Antarctic
convergence zone, Proc. ODP. Sci. Results, 119, 675–685, 1991.
Gadd, P. S. and Heijnis, H. H.: The potential of ITRAX core scanning:
applications in quaternary science, Paper presented at the AQUA Biennial
Meeting, 29 June–4 July 2014, The Grand Hotel, Mildura, https://apo.ansto.gov.au/dspace/handle/10238/9381 (last access: 8 February 2023), 2014.
Garrison, D. L. and Buck, K. R.: The biota of Antarctic pack ice in the
Weddell Sea and Antarctic Peninsula regions, Polar Biol., 10, 211–219, 1989.
Gersonde, R. and Zielinski, U.: The reconstruction of late Quaternary Antarctic sea-ice distribution- the use of diatoms as a proxy for sea-ice,
Palaeogeogr. Palaeocl. Palaeoecol., 162, 263–286, 2000.
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG
Last Glacial Maximum-a circum-Antarctic view based on siliceous microfossil
records, Quaternary Sci. Rev., 24, 869–896, 2005.
Grobe, H. and Mackensen, A.: Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin, in: The Antarctic paleoenvironment: A perspective on Global Change, Antarctic Research Series 56, American Geophysical Union, 349–376, https://doi.org/10.1016/j.quascirev.2021.107069, 1992.
Hartman, J. D., Sangiorgi, F., Barcena, M. A., Tateo, F., Giglio, F.,
Albertazzi, S., Trincardi, F., Bijl, P. K., Langone, L., and Asioli, A.:
Sea-ice, primary productivity and ocean temperatures at the Antarctic
marginal zone during late Pleistocene, Quaternary Sci. Rev., 266, 497–506, https://doi.org/10.1017/S0954102007000697, 2021.
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014.
Holder, L., Duffy, M., Opdyke, B., Leventer, A., Post, A., O'Brien, P., and
Armand, L. K.: Controls since the mid-Pleistocene transition on sedimentation and primary productivity downslope of Totten Glacier, East Antarctica, Paleoceanogr. Paleocl., 35, e2020PA003981, https://doi.org/10.1029/2020PA003981, 2020.
Hua, Q., Jacobsen, G. E., Zoppi, U., Lawson, E. M., Williams, A. A., Smith,
A. M., and McGann, M. J.: Progress in radiocarbon target preparation at the
ANTARES AMS Centre, Radiocarbon, 43, 275–282, 2001.
IBN: IBN SPSS Statistics documentation,
https://www.ibm.com/docs/en/spss-statistics, last access: 20 July 2020.
Jacobs, S. S.: On the nature and significance of the Antarctic Slope Front, Mar. Chem., 35, 9–24, 1991.
Johansen, J. R. and Fryxell, G. A.: The genus Thalassiosira (Bacillariophyceae): studies on species occurring south of the Antarctic
Convergence Zone, Phycologia, 24, 155–179, 1985.
Jones, J., Kohfeld, K. E., Bostock, H., Crosta, X., Liston, M., Dunbar, G., Chase, Z., Leventer, A., Anderson, H., and Jacobsen, G.: Sea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years, Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, 2022.
Jouzel, J., Barkov, N., Barnola, J., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V., Lipenkov, V., Lorius, C., and Petit, J.: Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period, Nature, 364, 407–412, 1993.
Kaczmarska, I., Barbrick, N., Ehrman, J., and Cant, G.: Eucampia Index as an
indicator of the Late Pleistocene oscillations of the winter sea-ice extent
at the ODP Leg 119 Site 745B at the Kerguelen Plateau, in: Twelfth International Diatom Symposium, 30 August–5 September 1992, Renesse, the Netherlands, 103–112, 1993.
Kellogg, T. B. and Truesdale, R. S.: Late Quaternary paleoecology and
paleoclimatology of the Ross Sea: the diatom record, Mar. Micropaleontol., 4, 137–158, 1979.
Knox, G. A.: Biology of the Southern Ocean, in: 2nd Edn., Marine Biology Series, edited by: Lutz, P. L., CRC Press, Taylor and Francis Group, University of Canterbury, Christchurch, New Zealand, 531 pp., ISBN 0849333946, 2006.
Kohfeld, K. E. and Chase, Z.: Temporal evolution of mechanisms controlling
ocean carbon uptake during the last glacial cycle, Earth Planet. Sc. Lett., 472, 206–215, 2017.
Kopczyńska, E. E., Weber, L., and El-Sayed, S.: Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean, Polar
Biol., 6, 161–169, 1986.
Kopczyńska, E. E., Fiala, M., and Jeandel, C.: Annual and interannual
variability in phytoplankton at a permanent station off Kerguelen Islands,
Southern Ocean, Polar Biol., 20, 342–351, 1998.
Leventer, A.: Modern distribution of diatoms in sediments from the George V
Coast, Antarctica, Mar. Micropaleontol., 19, 315–332, 1992.
Leventer, A., Domack, E., Dunbar, R., Pike, J., Stickley, C., Maddison, E.,
Brachfeld, S., Manley, P., and McClennen, C.: Marine sediment record from the
East Antarctic margin reveals dynamics of ice sheet recession, GSA Today,
16, 4, https://doi.org/10.1130/GSAT01612A.1, 2006.
Li, Q., Xiao, W., Wang, R., and Chen, Z.: Diatom based reconstruction of
climate evolution through the Last Glacial Maximum to Holocene in the Cosmonaut Sea, East Antarctica, Deep-Sea Res. Pt II, 194, 104960, https://doi.org/10.1016/j.dsr2.2021.104960, 2021.
Ligowski, R.: Phytoplankton of the Olaf Prydz Bay (Indian Ocean, East
Antarctica) in February 1969, Polish Polar Res., 4, 21–32, 1983.
Ligowski, R., Godlewski, M., and Lukowski, A.: Sea ice diatoms and ice edge
planktonic diatoms at the northern limit of the Weddell Sea pack ice, in:
Proceedings of the NIPR Symposium on Polar Biology, 5, March 1992, Japan, 9–20, 1992.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lucchi, R. G. and Rebesco, M.: Glacial contourites on the Antarctic Peninsula margin: insight for palaeoenvironmental and palaeoclimatic conditions, Geol. Soc. Lond. Spec. Publ., 276, 111–127, 2007.
Lucchi, R. G., Rebesco, M., Camerlenghi, A., Busetti, M., Tomadin, L., Villa, G., Persico, D., Morigi, C., Bonci, M. C., and Giorgetti, G.: Mid-late
Pleistocene glacimarine sedimentary processes of a high-latitude, deep-sea
sediment drift (Antarctic Peninsula Pacific margin), Mar. Geol., 189, 343–370, 2002.
Maddison, E. J., Pike, J., and Dunbar, R.: Seasonally laminated diatom-rich
sediments from Dumont d'Urville Trough, East Antarctic margin: Late-Holocene
neoglacial sea-ice conditions, Holocene, 22, 857–875, 2012.
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and
Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice
loss and ocean swell, Nature, 558, 383–389, 2018.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A.,
González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish,
T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Sha,o X., and Timmermann A.: Information from Paleoclimate Archives, in: Climate change 2013: the physical science basis, Cambridge University Press, 383–464, https://doi.org/10.1017/CB9781107415324.013, 2013.
McMinn, A.: Late Holocene increase in sea ice extent in fjords of the Vestfold Hills, eastern Antarctica, Antarct. Sci., 12, 80–88, 2000.
McMinn, A., Heijnisj, H., Harle, K., and McOrist, G.: Late-Holocene climatic
change recorded in sediment cores from Ellis Fjord, eastern Antarctica,
Holocene, 11, 291–300, 2001.
Medlin, L. K. and Priddle, J. (Eds.): Polar marine diatoms, the British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, UK, 214 pp., ISBN 0856651400, 1990.
Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida,
M., Ciardini, V., Colizza, E., Melis, R., Salvatore, M. C., and Severi, M.:
Holocene sea ice variability driven by wind and polynya efficiency in the
Ross Sea, Nat. Commun., 8, 1–12, 2017.
Minowa, M., Sugiyama, S., Ito, M., Yamane, S., and Aoki, S.: Thermohaline
structure and circulation beneath the Langhovde Glacier ice shelf in East
Antarctica, Nat. Commun., 12, 1–9, 2021.
Moisan, T. and Fryxell, G.: The distribution of Antarctic diatoms in the
Weddell Sea during austral winter, Botanica Marina, 36, 489–498, 1993.
Mortlock, R. A. and Froelich, P .N.: A simple method for the rapid
determination of biogenic opal in pelagic marine sediments, Deep-Sea
Res. Pt. A, 36, 1415–1426, 1989.
Orsi, A. H., Whitworth III, T., and Nowlin Jr., W. D.: On the meridional
extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, 1995.
Passchier, S.: Linkages between East Antarctic Ice Sheet extent and Southern
Ocean temperatures based on a Pliocene high-resolution record of ice-rafted
debris off Prydz Bay, East Antarctica, Paleoceanography, 26, PA4204, https://doi.org/10.1029/2010PA002061, 2011.
Patterson, M. O., McKay, R., Naish, T., Escutia, C., Jimenez-Espejo, F. J.,
Raymo, M. E., Meyers, S. R., Tauxe, L., Brinkhuis, H., Klaus, A., Fehr, A.,
Bendle, J. A. P., Bijl, P. K., Bohaty, S. M., Carr, S. A., Dunbar, R. B., Flores, J. A., Gonzalez, J. J., Hayden, T. G., Iwai, M., Katsuki, K., Kong, G. S., Nakai, M., Olney, M. P., Passchier, S., Pekar, S. F., Pross, J., Riesselman, C. R., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Sugasaki, S., Tuo, S., van de Flierdt, T., Welsh, K., Williams, T., and Yamane, M.: Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene, Nat. Geosci., 7, 841–847, 2014.
Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L., and Hodgson, D. A.:
Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water, Quaternary Sci. Rev., 119, 54–65, 2015.
Pesjak, L.: The variability of ocean circulation, productivity, and sea ice
in the Adélie region, East Antarctica, over the last two glacial cycles,
PhD thesis, University of Tasmania, https://doi.org/10.25959/100.00047523, 2022.
Pesjak, L., McMinn, A., Chase, Z., and Bostock, H.: Relative abundance of diatom species, biogenic silica and Si/Al over last ∼140 kyr, from the East Antarctic continental margin, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.946549, 2022.
Pichon, J. J., Bareille, G., Labracherie, M., Labeyrie, L. D., Baudrimont, A., and Turon, J. L.: Quantification of the biogenic silica dissolution in
Southern Ocean sediments, Quatern. Res., 37, 361–378, 1992.
Post, A., Galton-Fenzi, B., Riddle, M., Herraiz-Borreguero, L., O'Brien, P.,
Hemer, M., McMinn, A., Rasch, D., and Craven, M.: Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica, Cont. Shelf Res., 74, 77–87, 2014.
Presti, M., Barbara, L., Denis, D., Schmidt, S., De Santis, L., and Crosta,
X.: Sediment delivery and depositional patterns off Adélie Land (East
Antarctica) in relation to late Quaternary climatic cycles, Mar. Geol.,
284, 96–113, 2011.
Pritchard, H., Ligtenberg, S. R., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 484, 502–505, 2012.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice
sheets, Nature, 461, 971–975, 2009.
Pudsey, C. J.: Late Quaternary changes in Antarctic Bottom Water velocity
inferred from sediment grain size in the northern Weddell Sea, Mar. Geol., 107, 9–33, 1992.
Pudsey, C. J. and Camerlenghi, A.: 'Glacial–interglacial deposition on a
sediment drift on the Pacific margin of the Antarctic Peninsula, Antarct.
Sci., 10, 286–308, 1998.
Quilty, P. G., Kerry, K. R., and Marchant, H. J.: A seasonally recurrent
patch of Antarctic planktonic diatoms, Search (Sydney), 16, 1–2, 1985.
Reimer, P.J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., and Grootes, P. M.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Rembauville, M., Blain, S., Armand, L., Quéguiner, B., and Salter, I.: Export fluxes in a naturally iron-fertilized area of the Southern Ocean – Part 2: Importance of diatom resting spores and faecal pellets for export, Biogeosciences, 12, 3171–3195, https://doi.org/10.5194/bg-12-3171-2015, 2015.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, 2019.
Romero, O. E., Armand, L. K., Crosta, X., and Pichon, J. J.: The biogeography
of major diatom taxa in Southern Ocean surface sediments: 3. Tropical/Subtropical species, Palaeogeogr., Palaeocl. Palaeoecol., 223, 49–65, 2005.
Rothwell, R. G. and Croudace, I. W. (Eds.): Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us?, in: Micro-XRF Studies of Sediment Cores, Springer, Dordrecht, the Netherlands, 25–102, https://doi.org/10.1007/978-94-017-9849-5_2, 2015.
Salabarnada, A., Escutia, C., Röhl, U., Nelson, C. H., McKay, R., Jiménez-Espejo, F. J., Bijl, P. K., Hartman, J. D., Strother, S. L., Salzmann, U., Evangelinos, D., López-Quirós, A., Flores, J. A., Sangiorgi, F., Ikehara, M., and Brinkhuis, H.: Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation, Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, 2018.
Schrader, H., Swanberg, I. L., Burckle, L. H, and Grønlien, L.: Diatoms in recent Atlantic (20∘ S to 70∘ N latitude) sediments: abundance patterns and what they mean, in: Twelwth International Diatom Symposium, 30 August–5 September 1992, Renesse, the Netherlands, 129–135, 1993.
Scott, F. J. and Thomas, D. P.: Diatoms, Antarctic marine protists, edited by: Scott, F. J. and Marchant, H. J., Australian Biological Resources Study/ Australian Antarctic Division, Canberra, Australia, 13–201, 2005.
Shemesh, A., Burckle, L., and Froelich, P.: Dissolution and preservation of
Antarctic diatoms and the effect on sediment thanatocoenoses, Quatern. Res., 31, 288–308, 1989.
Shi, G. R.: Multivariate data analysis in palaeoecology and palaeobiogeography – a review, Palaeogeogr. Palaeocl. Palaeoecol. 105, 199–234, 1993.
Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., van Wijk, E., Aoki, S., Tamura, T., and Williams, G. D.: Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water, Sci. Adv., 4, eaap9467, https://doi.org/10.1126/sciadv.aap9467, 2018.
Smith, J. A., Hillenbrand, C. D., Pudsey, C. J., Allen, C. S., and Graham, A.
G.: The presence of polynyas in the Weddell Sea during the Last Glacial
Period with implications for the reconstruction of sea-ice limits and ice
sheet history, Earth Planet. Sc. Lett., 296, 287–298, 2010.
Spellerberg, I. F. and Fedor, P. J.: A tribute to Claude Shannon
(1916–2001) and a plea for more rigorous use of species richness, species
diversity and the `Shannon–Wiener' Index, Global Ecol. Biogeogr., 12, 177–179, 2003.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data,
Radiocarbon, 19, 355–363, 1977.
Taylor, F. and McMinn, A.: Evidence from diatoms for Holocene climate
fluctuation along the East Antarctic margin, Holocene, 11, 455–466, 2001.
Taylor, F., McMinn, A., and Franklin, D.: Distribution of diatoms in surface
sediments of Prydz Bay, Antarctica, Mar. Micropaleontol., 32, 209–229, 1997.
Tooze, S., Halpin, J. A., Noble, T. L., Chase, Z., O'Brien, P. E., and Armand, L.: Scratching the surface: A marine sediment provenance record from the continental slope of central Wilkes Land, East Antarctica, Geochem. Geophy. Geosy., 21, e2020GC009156, https://doi.org/10.1029/2020GC009156, 2020.
Torricella, F., Melis, R., Malinverno, E., Fontolan, G., Bussi, M., Capotondi, L., Del Carlo, P., Di Roberto, A., Geniram, A., Kuhn, G., and Khim, B. K.: Environmental and Oceanographic Conditions at the Continental
Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the
Last Glacial Maximum, Geosciences, 11, 155, https://doi.org/10.3390/geosciences11040155, 2021.
Truesdale, R. S. and Kellogg, T. B.: Ross Sea diatoms: modern assemblage
distributions and their relationship to ecologic, oceanographic, and
sedimentary conditions, Marine Micropaleontology, 4, 13-31, 1979.
Warnock, J. P. and Scherer, R. P.: Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages, Cont. Shelf Res., 102, 1–8, 2015.
Williams, G., Bindoff, N., Marsland, S., and Rintoul, S.: Formation and
export of dense shelf water from the Adélie Depression, East Antarctica,
J. Geophys. Res.-Oceans, 113, C04039, https://doi.org/10.1029/2007JC004346, 2008.
Williams, G., Aoki, S., Jacobs, S., Rintoul, S., Tamura, T., and Bindoff, N.:
Antarctic bottom water from the Adélie and George V Land coast, East
Antarctica (140–149∘ E), J. Geophys. Res.-Oceans, 115, C04027, https://doi.org/10.1029/2009JC005812, 2010.
Williams, M.: RV Tangaroa Voyage Report Tan1302 – Mertz Polynya Voyage 1 February to 14 March 2013, NIWA, Wellington, New Zealand, 19–33, 2013.
Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., Mazumder, A., Riesselman, C. R., Jimenez-Espejo, F. J., and Escutia, C.: Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials, Nature, 561, 383–386, https://doi.org/10.1038/s41586-018-0501-8, 2018.
Wu, L., Wang, R., Xiao, W., Ge, S., Chen, Z., and Krijgsman, W.: Productivity-climate coupling recorded in Pleistocene sediments off Prydz
Bay (East Antarctica), Palaeogeogr. Palaeocl. Palaeoecol., 485, 260–270, 2017.
Zielinski, U. and Gersonde, R.: Diatom distribution in Southern Ocean surface sediments (Atlantic sector): Implications for paleoenvironmental reconstructions, Palaeogeogr. Palaeocl. Palaeoecol., 129, 213–250, 1997.
Zielinski, U. and Gersonde, R.: Plio–Pleistocene diatom biostratigraphy
from ODP Leg 177, Atlantic sector of the Southern Ocean, Mar. Micropaleontol., 45, 225–268, 2002.
Short summary
This study uses diatom assemblages, biogenic silica and Si/Al data over the last 140 kyr from core TAN1302-44 (64°54' S, 144°32' E) to define glacial-to-interglacial paleoenvironments near Antarctica with respect to sea ice duration and ocean circulation. It has found that the sea ice season increased gradually during the last glacial, reaching a maximum before decreasing at the end of MIS 2. Following this, Circumpolar Deep Water increased relative to other times prior to ice sheet retreat.
This study uses diatom assemblages, biogenic silica and Si/Al data over the last 140 kyr from...