

Supplement of

Sea ice and productivity changes over the last glacial cycle in the Adélie Land region, East Antarctica, based on diatom assemblage variability

Lea Pesjak et al.

Correspondence to: Lea Pesjak (lea.pesjak@utas.edu.au)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1 Environmental interpretation of diatom species identified within Tan_44, based on water column and sediment studies from coastal Antarctica to Subantarctic Southern Ocean. The three species types identified by both types of studies include: sea ice associated species (si), open ocean associated species (op), and warmer water associated species (w; Medlin and Priddle 1990). This list includes *Eucampia* index (terminal/ intercalary valve ratio). This list suggests there are some differences in interpretation of species habitat depending on the type of study conducted. Reference notes are: 1) Medlin and Priddle (1990); 2) Ligowski, Godlewski and Lukowski (1992); 3) Garrison and Buck (1989); 4) Kopczyńska, Weber and El-Sayed (1986); 5) Tanimura et al. (1990); 6) Scott and Thomas (2005); 7) Kopczyńska, Fiala and Jeandel (1998); 8) Ligowski (1983); 9) Garrison, Buck and Fryxell (1987); 10) Beans et al. (2008); 11) Fryxell (1991); 12) Moisan and Fryxell (1993); 13) Doucette and Fryxell (1985); 14) Johansen and Fryxell (1985); 15) Smetacek et al. (1992); 20) Armand et al. (2005); 21) Romero et al. (2005); 22) Zielinski and Gersonde (1997); 23) Kaczmarska et al. (1993); 24) Leventer (1992); 25) Taylor, McMinn and Franklin (1997); 26) Crosta et al. (2005); 27) Armand and Zielinski (2011).

		ENIRONMENTA	AL INTERPRETATION
W S	Species/ index	WATER COLUMN AND SEA ICE STUDIES	SEDIMENT SURFACE STUDIES
op si	Actinocyclus actinochilus (Ehrenberg) Simonsen	Sea ice edge; rare in ice; coastal ^{1, 2, 3}	Sea ice >7 months/yr; sea ice edge; along ice shelves ^{19,20}
op w	Azpeitia tabularis	Subantarctic, rare near sea ice	Open ocean, warmer water; north of Polar Front ^{21,22}
op w	Asteromphalus hyalinus Karsten	Coastal, north and south of Polar Front 4,5,6	Open ocean, warmer water; north of Polar Front ²¹
op w	Asteromphalus parvulus Karsten	Coastal; north and south of Polar Front ^{4, 6}	Open ocean, warmer water; north of Polar Front ²¹
do	Chaetoceros bulbosum (Ehrenberg) Heiden	Open ocean; south of Polar Front; rare in ice 7,3	
do	Chaetoceros dichaeta (Ehrenberg)	Open ocean; sea ice; south of Polar Front ^{8, 9, 4, 7}	
do do	Eucampia antarctica (Castracane) Mangin	Open ocean; south of Polar Front; rare in sea ice ^{3,10}	Coastal to Subtropical Front; increases in glacial intervals ^{22,23}
si si	Eucampia index	Higher index indicates Winter stage (Prydz Bay) i.e. more sea ice ¹¹	Sea ice; along ice shelves (Ross Sea) ^{19, 23}
do do	Fragilariopsis kerguelensis	Open ocean; south of Polar Front; rare in sea ice; increases offshore 4,3,7	Open ocean; increases seaward; winter sea ice edge; Polar Front ^{20,22,24}
si si	Fragilariopsis cylindrus	Sea ice; sea ice edge; open ocean; coastal; winter sea ice edge 9,12,2	Sea ice >7 months/yr; coastal ^{20, 22}
si si	Fragilariopsis linearis	Sea ice; ice edge ^{1,12}	Sea ice; along ice shelves ^{19, 20}
si si	Fragilariopsis obliquecostata	Sea ice ³	Sea ice >7 months/ yr; sea ice edge ²⁰
si si	Fragilariopsis sublinearis	Sea ice; sea ice edge ^{1,12}	Sea ice >7 months/ yr ^{19,20}
do do	Rhizosolenia antennata var. antennata	Open ocean ¹	Open ocean; cooler water ²⁷
do do	Rhizosolenia antennata var. semispina	Open ocean ¹	Open ocean; cooler water ²⁷
si si	Stellarima microtrias (Ehrenberg) Hasle & Sims	Sea ice; cold waters ⁶	Sca ice ²⁰
do do	Thalassiosira lentiginosa (Janish) Fryxell	Open ocean; south of the Polar Front ¹⁴	Open ocean; 0-7°C; between winter sea ice edge and Polar Front; coastal ^{26,22,25}
do do	Thalassiosira oliveriana	Open ocean; antarctic and subantarctic ¹	Open ocean; between winter sea ice edge to Polar Front ²⁶
op si	Thalassiosira tumida (Janish) Hasle	Open ocean; ice edge; sea ice; coastal; common south of Polar Front 3,17,18,14	Sea ice >8.5 months/yr ²⁰
do do	Thalassiothrix antarctica	Open ocean; coastal; sea ice edge; south of Polar Front 2,10,8,7	Open ocean; diatom ooze belt ^{19,26}
do do	Thalassiothrix longissima Cleve and Grunow	Open ocean; rare in sea ice ³	Open ocean ²⁶
do do	Trichotoxon reinboldii	Open ocean ¹	Open ocean; cooler water; south of Polar Front ^{26,25}
Μ	interpretation based on water column studies		
N ND	interpretation based on sediment surface studies		
≅. BGEI	sea ice related species		
в гЕ	open ocean; can include sea ice edge		
M	north of Polar Front (warmer)		

Figure S1 Lithology, structure, grain size, biogenic silica, ice-rafted debris (IRD) counted from sieved sections (grains/g) and from X-radiographs (grains/ 5 cm), and Si/Al (XRF-derived) of core Tan_44. Included in this figure is the facies interpretation and X-radiographs of parts of the core. The facies model is based upon primary lithology identified in core logs (units: olive sandy mud; olive mud; grey mud; and olive grey mud), Si/Al, biogenic silica and IRD results.

S1 Development of the facies model

S1.1 Methods

Tan_44 lithology was described on the voyage (Williams 2013). The X-radiographs were completed at the National Institute of Water and Atmospheric Research (NIWA; Williams 2013).

S1.1.1 Grain Size

Grain size was determined using a Beckman Coulter 13320 laser diffraction particle size analyser. Sampling for grain size was taken at 20 cm resolution down core. A sample size of 0.5 x 0.5 cm was soaked overnight in a mixture of sodium hydrogen carbonate, sodium carbonate (anhydrous) and water. The sediment in solution was then shaken and placed through a sonic bath for 10 second intervals, several times, to disaggregate clay. This sample was poured into the grain size analyser through a 1.8 mm sieve and analysed for 60 seconds, prior to a 3-minute cleaning routine. The grain size statistics were calculated using GradistatV8 software (Blott & Pye 2001), which uses the Folk and Ward method for size distribution and description.

S1.1.2 X-ray fluorescence (XRF) data: Fe, Ti, Fe/Ti, Ba/Ti, Zr/Rb

The XRF methods are explained in the manuscript under section Si/Al.

S1.2 Results

S1.2.1 Lithology

Four lithological units are identified in Tan_44 (Fig. S1), based on visual logs (Williams 2013) and structural features identified in X-radiographs (Fig. S1). Unit 1 is olive sandy mud, comprising olive (2.5Y5/2, 5Y5/3), or grey colour (5Y4/1, 5Y5/1) within 581–493 cm section, and is characterised by a sandy texture, massive structure with dispersed >1 mm sized grains. Unit 2A is olive mud (2.5Y5/2; 5Y4/4) comprising a massive structure, bioturbation, and rare traction structures, i.e., lenses and laminae. Mottling is found at 46–37 cm; 58– 54 cm; 584 cm, 594 cm, and 619 cm. Unit 2 is grey mud, comprising grey (5Y5/1) and olive (2.5Y5/2) colour, within section 147–59 cm and is characterised by a finer texture (than Unit 1). The younger Unit 2 (178–59 cm) contains a massive structure with evident bioturbation within the 147-59 cm section, while the older Unit 2 (493–331 cm) contains laminae and pebble-lined laminae. Gradation is observed at the base of the younger unit (at 178–159 cm), and within the lower unit (at 353–331 cm). Unit 1A is olive-grey mud (2.5Y 5/2) comprising a finer texture (than in Unit 1), with a massive structure and evident bioturbation.

A down core grain size pattern exists, formed by the alternation of coarser grained (sandy silt) and finer grained (silt) sediments (Fig. S1). The sandy silt intervals consist of 1–9 % very fine to fine sand and, 19–27 % very coarse silt. The silt intervals consist of increased medium silt to clay, up to 68 % in the upper core, and up to 86 % in the lower core. The sandy silt intervals coincide with higher Zr/Rb values and Unit 1. The silt intervals coincide with lower Zr/Rb, and Unit 2, Unit 2A and Unit 1A (Fig S1; Fig. S2).

Figure S2 XRF data in Tan_44: Fe/Ti; Fe; Ti; Ba/Ti; Si/Al and Zr/Rb down core values, compared to glacial, interglacial, deglacial and glaciation facies occurrence.

S1.2.3 X-ray fluorescence (XRF) data: Fe, Ti, Fe/Ti, Ba/Ti, Zr/Rb

Fe and Ti are generally parallel down core. Fe values range from $\sim 23,000 - \sim 44,000$ counts per second (cps) and Ti values range from $\sim 6,000-25,000$ cps. Lower Fe values (< 33,000) are found in core sections 30–0 cm, 280–220 and 575–500 cm, which coincide with Unit 1 (Fig. S2). Similarly, lower Ti values occur in Unit 1.

Fe/Ti values range from $\sim 1.3 - \sim 2.0$, with lower values (< 1.5) at 30-0 cm, 285-218 cm, and 580-500 cm, coinciding with Unit 1, and higher values (> 1.5) coinciding with Unit 2 and Unit 2A.

Ba/Ti and Zr/Rb are generally parallel down core, aligned with Si/Al (Fig. S2), except within 255–230 cm (Unit 1) section where Ba/Ti decreases significantly. Ba/Ti values range from 0–0.06, with highest values (0–0.06) associated with Unit 1 and Unit 1A, and lower values (0–0.04) associated with Unit 2 and Unit 2A, and in the 255–230 cm section of Unit 1. Zr/Rb values range from 0.6–1.8, with highest values (> 1) associated with Unit 1 and Unit 1A, and lower values (< 1) associated with Unit 2 and Unit 2A, except in 331–328 cm section of Unit 2A, where slightly higher Zr/Rb values are found.

Table S2 Q mode principal component factor loadings of each principal component (assemblage; PC 1–3).

	PC 1	PC 2	PC 3
Fragilariopsis kerguelensis	0.258	0.081	-0.282
Actinocyclus actinochilus	-0.636	-0.146	0.628
Eucampia antarctica	-0.935	-0.209	0.000
Fragilariopsis group	-0.200	0.904	-0.039
Actinocyclus ingens	-0.074	-0.218	0.801
Thalassiosira tumida	0.179	0.566	0.010
Thalassiosira oestrupii	0.283	-0.007	0.029
Asteromphalus parvulus	0.068	0.669	-0.093
Asteromphalus hyalinus	0.480	0.257	-0.256
Thalassiosira lentiginosa	0.983	0.100	-0.118
Azpeitia tabularis	0.675	-0.296	-0.048
Thalassiosira oliveriana	0.030	0.328	0.525

Table S3 R mode: the main components (PC 1-2) loadings down core.

5 0.961 0.262 20 0.946 0.297 30 0.973 0.222 40 0.964 0.121 50 0.972 0.132 60 0.635 0.682 70 0.119 0.990 80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546	Depth (cm)	PC 1	PC 2
20 0.946 0.297 30 0.973 0.222 40 0.964 0.121 50 0.972 0.132 60 0.635 0.682 70 0.119 0.990 80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546	5	0.961	0.262
30 0.973 0.222 40 0.964 0.121 50 0.972 0.132 60 0.635 0.682 70 0.119 0.990 80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546	20	0.946	0.297
40 0.964 0.121 50 0.972 0.132 60 0.635 0.682 70 0.119 0.990 80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	30	0.973	0.222
50 0.972 0.132 60 0.635 0.682 70 0.119 0.990 80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	40	0.964	0.121
60 0.635 0.682 70 0.119 0.990 80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546	50	0.972	0.132
70 0.119 0.990 80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546	60	0.635	0.682
80 0.185 0.981 90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	70	0.119	0.990
90 0.113 0.988 100 0.157 0.982 110 0.470 0.881 120 0.328 0.943 130 0.566 0.816 140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	80	0.185	0.981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	0.113	0.988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	0.157	0.982
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110	0.470	0.881
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120	0.328	0.943
140 0.506 0.858 150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	130	0.566	0.816
150 0.872 0.481 160 0.760 0.639 170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	140	0.506	0.858
160 0.760 0.639 170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	150	0.872	0.481
170 0.621 0.752 180 0.804 0.546 190 0.797 0.592	160	0.760	0.639
180 0.804 0.546 190 0.797 0.592	170	0.621	0.752
190 0.797 0.592	180	0.804	0.546
170 0.171 0.372	190	0.797	0.592
200 0.803 0.565	200	0.803	0.565
210 0.489 0.741	210	0.489	0.741
0.831 0.329	220	0.831	0.329
230 0.939 0.334	230	0.939	0.334
240 0.867 0.469	240	0.867	0.469
250 0.873 0.477	250	0.873	0.477
260 0.940 0.330	260	0.940	0.330
0.974 0.168	270	0.974	0.168
280 0.662 0.740	280	0.662	0.740
290 0.672 0.735	290	0.672	0.735

Table S4 List of diatom species in Tan_44, including terminal and intercalary valve counts of *Eucampia antarctica*.

DEPTH (cm)	5	20	30	40	50	60	70	80	90	100	110	120	-
Actinocyclus actinochilus	7	12	12	20	9	51	28	15	75	27	39	46	
Actinocyclus ingens	1	1	.2	20	-	45	7	10	4	2	2	4	
Asteromphalus hookeri	5	5	3	6	8		1	3	1	2	1	1	
Asteromphalus hvalinus	2	5	5	5	4		2	5		-		-	
Asteromphalus parvulus	4	3	3	5	3		-	1		3	1	1	
Azpeitia tabularis	14	24	22	31	31				4	1	4	4	
Chaetoceros hulbosum		21	22	10	51						•		
Chaetoceros chriophilus				10									
Chaetoceros adelianum				1									
Chaetoceros dichaeta				1									
Chaetoceros fleruosus													
Coccorrais costata													
Coscinodiscus astaromphalus		2									2		
Coscinodiscus bowat		2		1		1					2		
Coscinodiscus obuvei	1	6		2	5	1							
Coscinodiscus curvatutus	1	0	1	1	5		1		1			1	
Coscinodiscus oculoides			1	1			1		1			1	
Coscinoaiscus raaiaius				1					1				
Eucommis antenetica terminal value	2	12	0	2	7	41	109	42	100	120	50	102	
	3	15	9	3	1	41	108	45	226	120	120	105	
Eucampia antarctica intercatary valve	30	25	13	/	5	01	140	82	220	222	120	127	
	33	38	22	10	12	102	248	125	320	342	1/9	230	
Fragilariopsis kerguelensis	42	8	27	83	8/		4		12	13	6	9	
Fragilariopsis obliquecostata	1								2		3	1	
Fragilariopsis sublinearis	1	1									1	2	
Fragilariopsis linearis													
Fragilariopsis rhombica													
Fragilariopsis cylindrus													
Fragilariopsis curta													
Fragilariopsis vanheurckii													
Fragilariopsis seriata	1												
Fragilariopsis ritscherii									1				
Fragilariopsis barbieri					1								
Fragilariopsis pseudonana					1								
Porosira glacialis	2			1		1	1	2			1		
Porosira pseudodenticulata							2						
Proboscia inermis													
Rhizosolenia antennata var. antennata												1	
Rhizosolenia antennata var. semispina				1				2		1			
Rhizosolenia curvata													
Rhizosolenia polydactyla var. polydactyla													
Rhizosolenia simplex							1						
Rhizosolenia sp.							1	1	1				
Stellarima microtrias	3	2	1	1	0	6	1	0	8	5	7	3	
Thalassiosira gracilis	2	1		1		1	3	1			4		
Thalassiosira lentiginosa	291	307	324	266	319	164	87	53	118	130	157	144	
Thalassiosira oestrupii		2	9	13	12	1	2	2	3	1	3	1	
Thalassiosira oliveriana	25	24	9	6	12	26	9	4	17	15	10	17	
Thalassiosira ritscherii	2				1	1							
Thalassiosira tumida	5	3	4	9	4		1	2	2	3	3	7	
Thalassiosira vulnifica		1						1	1				
Thalassiothrix antarctica		2		11					1				
Thalassiothrix longisima	1				3								
Trichotoxon reinboldii			1	2	1								
Triceratium spp.													
Total counts	444	446	443	482	513	399	399	212	578	545	423	472	

DEPTH (cm)	130	140	150	160	170	180	190	200	210	220	230	240
Actinocyclus actinochilus	46	37	26	29	32	17	24	35	29	20	19	31
Actinocyclus ingens	2	1	1							1		1
Asteromphalus hookeri	2	6	1	8	7	1		2			3	1
Asteromphalus hyalinus		3	16	7	11	1	7	4	3	1	4	9
Asteromphalus parvulus	4	4	1	6	10	6		10	2	2	6	6
Azpeitia tabularis	5		1	3			1	5	4	3	9	4
Chaetoceros bulbosum					4	1						1
Chaetoceros chriophilus					1			1				
Chaetoceros adelianum												
Chaetoceros dichaeta		2						20				
Chaetoceros flexuosus		-		2			1	4				
Cocconeis costata				2			1					2
Coscinodiscus asteromphalus						1					1	1
Coscinodiscus houvet						1					1	1
Coscinodiscus curvatulus				2	2	1	1	1				2
Coscinodiscus oculoidas		3		2	1	3	1	1	1			2
Coscinodiscus oculotues		5			1	5			1			
Coscinodiscus radiatus										1		
Coscinoaiscus marginatus	12	50	20	10	25	0	22	20	25	1	11	17
Eucampia antarctica terminal valve	42	38	20	19	35	8	22	20	35	14	11	1/
Eucampia antarctica intercalary valve	102	111	65	104	125	/3	92	/3	163	32	34	/9
Eucampia antarctica	144	169	85	123	160	81	114	93	198	46	45	96
Fragilariopsis kerguelensis	11		24	35	58	46	23	42	126	92	15	8
Fragilariopsis obliquecostata	2	1		26	28	31	31	32	7	6	3	5
Fragilariopsis sublinearis	2							1	3			
Fragilariopsis linearis										3		
Fragilariopsis rhombica										2	1	
Fragilariopsis cylindrus												
Fragilariopsis curta												
Fragilariopsis vanheurckii												
Fragilariopsis seriata												
Fragilariopsis ritscherii												
Fragilariopsis barbieri												
Fragilariopsis pseudonana												
Porosira glacialis	1	1	1		1			2				
Porosira pseudodenticulata												
Proboscia inermis								1				
Rhizosolenia antennata var. antennata				1	2			1	2	1	1	
Rhizosolenia antennata var. semispina	3	5	3	5	6	4	7	7	2	2	1	2
Rhizosolenia curvata		1										
Rhizosolenia polydactyla var. polydactyla					1						1	
Rhizosolenia simplex					1							
Rhizosolenia sp.		2										
Stellarima microtrias	5	2	3	3	6	5	6	3	0	0	0	1
Thalassiosira gracilis	2	-	3	-		-	÷		•	-	1	4
Thalassiosira lentiginosa	162	164	284	227	194	180	249	202	179	165	293	325
Thalassiosira cestrunii	6	8	201	8	3	3	6	202	4	3	3	14
Thalassiosira oliveriana	10	11	16	9	16	11	23	26	22	5	19	47
Thalassiosira vitscherii	10	11	10	,	10	11	1	4	1	5	1	+ /
Thalassiosina tumida	7	1	2	12	11	5	10	12	2	2	10	22
Thalassiosira vulnifica	/	1	5	12	11	5	10	12	5	5	10	23
Thalassiostra vanajica				1					1			
Thalassiothrix longising												
Third stores with a di												
Tricouoxon reindolali												
Triceratium spp	41.4	421	468	507	555	207	504	510	507	250	426	592
1 ota1 counts	414	421	468	507	222	39/	504	510	38/	330	450	383

DEPTH (cm)	250	260	270	280	290	300	310	320	330	340	350
Actinocyclus actinochilus	15	34	3	31	37	5	9	1	1		
Actinocyclus ingens	1			13	7		12				
Asteromphalus hookeri	7	3	1	4	3		2				
Asteromphalus hvalinus	10	5	9	1	1		2				
Asteromphalus parvulus	2	1	3		1						
Azpeitia tabularis	20	27		2			1				
Chaetoceros hulbosum	20			-			-				
Chaetoceros chriophilus											
Chaetoceros adelianum											
Chaetoceros dichaeta											
Chaetoceros fleruosus											
Cocconeis costata	1										
Coscinadiscus astaromnhalus	1	1		1			1				
Coscinodiscus bowat		1		1			1				
Coscinodiscus cumatulus	1	Q	1	1						1	1
Coscinodiscus curvatutus	1	0	1	1	2					1	1
Coscinoaiscus ocuioides	1			1	2						
Coscinoaiscus raatatus				1	2		2			1	
Coscinoaiscus marginaius		7	2		2	0	2	1		1	2
Eucampia antarctica terminal valve	07	/	2	107	21	9	4	1	2		2
Eucampia antarctica intercalary valve	87	71	11	137	118	37	61	3	2	1	2
Eucampia antarctica	8/	78	13	137	139	46	65	4	2	1	4
Fragilariopsis kerguelensis	9	63	74	28	8		10				
Fragilariopsis obliquecostata			1	3	4						
Fragilariopsis sublinearis				6	2						
Fragilariopsis linearis		2		2							
Fragilariopsis rhombica											
Fragilariopsis cylindrus			3		5						
Fragilariopsis curta							1				
Fragilariopsis vanheurckii							1				
Fragilariopsis seriata											
Fragilariopsis ritscherii											
Fragilariopsis barbieri											
Fragilariopsis pseudonana											
Porosira glacialis				1							
Porosira pseudodenticulata											
Proboscia inermis		1									
Rhizosolenia antennata var. antennata											
Rhizosolenia antennata var. semispina				2	2		1				
Rhizosolenia curvata											
Rhizosolenia polydactyla var. polydactyla											
Rhizosolenia simplex				2	2	2					
Rhizosolenia sp.											
Stellarima microtrias	2	5	16	5	2	2	1	0	0	0	0
Thalassiosira gracilis	2	1			3	1					
Thalassiosira lentiginosa	292	481	358	191	208	28	122	5	11	1	2
Thalassiosira oestrupii	2	7	3	4	2	2	3		1		
Thalassiosira oliveriana	10	3	1	18	10	2	9	0	1	5	0
Thalassiosira ritscherii	10	5	-	1	1	-	2	Ŭ		5	°
Thalassiosira tunida	11	10		1	1	1	2				
Thalassiosira vulnifica	11	10			7	1	7				
Thalassiothrix antarctica		3									
Thalassiothrix longising		3									
Triahotovon vainholdii		5									
Tricoratium spp		1			1						1
Total counts	472	727	186	151	1	80	249	10	16	0	1 Q
Total Coulits	4/3	131	400	434	440	07	∠40	10	10	7	0

References

Armand, L K., Crosta, X., Romero, O. and Pichon, J. J.: The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 1-2, 93-126, doi:10.1016/j.palaeo.2005.02.015, 2005.

Armand, L.K. and Zielinski, U.: Diatom species of the genus Rhizosolenia from Southern Ocean sediments: distribution and taxonomic notes. *Diatom Research*, 16, 2, 259-294, https://doi.org/10.1080/0269249X.2001.9705520, 2011.

Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth surface processes and Landforms, 26, 11, 1237-1248, DOI: 10.1002/esp.261, 2001.

Bodungen, B. V., Smetacek, V. S., Tilzer, M. M. and Zeitzschel, B.: Primary production and sedimentation during spring in the Antarctic Peninsula region, Deep Sea Research Part A. Oceanographic Research Papers, 33, 2, 177-194, 1986.

Crosta, X., Romero, O., Armand, L. K. and Pichon, J. J.: The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 1-2, 66-92, doi: 10.1016/j.palaeo.2005.03.028, 2005.

Doucette, G. J. and Fryxell, G. A.: Thalassiosira antarctica (Bacillariophyceae): Vegetative and resting stage ultrastructure of an ice-related marine diatom, Polar Biology, 4, 2, 107-112, 1985.

Fryxell, G.: Comparison of winter and summer growth stages of the diatom Eucampia antarctica from the Kerguelen Plateau and south of the Antarctic convergence zone, Proc. ODP. Sci. Results, 119, 675-685, 1991.

Garrison, D. L., Buck, K. R, and Fryxell, G. A.: Algal assemblages in Antarctic pack ice and in ice-edge plankton 1, Journal of Phycology, 23, 4, 564-572, 1987.

Garrison, D.L. and Buck, K.R.: The biota of Antarctic pack ice in the Weddell Sea and Antarctic Peninsula regions. *Polar biology*, 10 (3), 211-219, 1989.

Ishikawa, A., Washiyama, N., Tanimura, A. and Fukuchi, M.: Variation in the diatom community under fast ice near Syowa Station, Antarctica, during the austral summer of 1997/98, Polar bioscience, 14, 10-23, 2001.

Kaczmarska, I., Barbrick, N., Ehrman, J. and Cant, G.: Eucampia Index as an indicator of the Late Pleistocene oscillations of the winter sea-ice extent at the ODP Leg 119 Site 745B at the Kerguelen Plateau, Twelfth International Diatom Symposium, Renesse, The Netherlands, 30 August–5 September 1992, 103-112, 1993.

Kopczyńska, E. E, Weber, L, and El-Sayed, S.: Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean, Polar Biology, 6, 3, 161-169, 1986.

Kopczyńska, E. E., Fiala, M. and Jeandel, C.: Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Islands, Southern Ocean, Polar Biology, 20, 5, 342-351, 1998.

Johansen, J. R. and Fryxell, G. A.: The genus Thalassiosira (Bacillariophyceae): studies on species occurring south of the Antarctic Convergence Zone, Phycologia, 24, 2, 155-179, 1985.

Leventer, A.: Modern distribution of diatoms in sediments from the George V Coast, Antarctica, Marine Micropaleontology, 19, 4, 315-332, 1992.

Ligowski, R.: Phytoplankton of the Olaf Prydz Bay (Indian Ocean, East Antarctica) in February 1969', Polish Polar Research, 4, 1-4, 21-32, 1983.

Ligowski, R., Godlewski, M., and Lukowski, A.: Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell Sea pack ice, in: Proceedings of the NIPR Symposium on 100 Polar Biology, 5, Japan, March 1992, 9-20, 1992.

Medlin, L. K. and Priddle, J. (Eds): Polar marine diatoms, the British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, UK, 214 pp, ISBN 0856651400, 1990. Moisan, T. and Fryxell, G.: The distribution of Antarctic diatoms in the Weddell Sea during austral winter, Botanica Marina, 36, 6, 489-498, 1993.

Pichon, J. J., Bareille, G., Labracherie, M., Labeyrie, L. D., Baudrimont, A. and Turon, J. L.: Quantification of the biogenic silica dissolution in Southern Ocean sediments. Quaternary Research, 37, 3, 361-378, 1992.

Romero, O. E., Armand, L. K., Crosta, X. and Pichon, J. J.: The biogeography of major diatom taxa in Southern Ocean surface sediments: 3. Tropical/Subtropical species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 1-2, 49-65, doi:10.1016/j.palaeo.205.03.027, 2005.

Scott, F. J. and Thomas, D. P.: Diatoms, Antarctic marine protists, editors: Scott, F. J. and Marchant, H. J., Australian Biological Resources Study/ Australian Antarctic Division, Canberra, Australia, 13–201, 2005.

Smetacek, V., Scharek, R., Gordon, L. I., Eicken, H., Fahrbach, E., Rohardt, G. and Moore, S.: Early spring phytoplankton blooms in ice platelet layers of the southern Weddell Sea, Antarctica, Deep Sea Research Part A. Oceanographic Research Papers, 39, 2, 153-168, 1992.

Smith, W. O. and Nelson, D. M.: Importance of ice edge phytoplankton production in the Southern Ocean, BioScience, 36, 4, 251-257, 1986.

Taylor, F., McMinn, A., and Franklin, D.: Distribution of diatoms in surface sediments of Prydz Bay, Antarctica, Marine Micropaleontology, 32,3-4, 209-229, 1997.

Williams, M.: *RV Tangaroa* Voyage Report Tan1302- Mertz Polynya Voyage 1 February to 14 March 2013, *NIWA, Wellington, New Zealand*, 19-33, 80, 2013.

Zielinski, U. and Gersonde, R.: Diatom distribution in Southern Ocean surface sediments (Atlantic sector): Implications for paleoenvironmental reconstructions, Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 3-4, 213-250, 1997.