Articles | Volume 19, issue 8
https://doi.org/10.5194/cp-19-1585-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1585-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Missing sea level rise in southeastern Greenland during and since the Little Ice Age
Sarah A. Woodroffe
CORRESPONDING AUTHOR
Department of Geography, Durham University, Lower Mountjoy, South
Road, Durham, DH1 3LE, UK
Leanne M. Wake
Department of Geography and Environmental Sciences, Northumbria
University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
Kristian K. Kjeldsen
Geological Survey of Denmark and Greenland (GEUS), 1350 Copenhagen K, Denmark
Natasha L. M. Barlow
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Antony J. Long
Department of Geography, Durham University, Lower Mountjoy, South
Road, Durham, DH1 3LE, UK
Kurt H. Kjær
GeoGenetics, Globe Institute, University of Copenhagen, 1350
Copenhagen K, Denmark
Related authors
No articles found.
Gregor Luetzenburg, Niels J. Korsgaard, Anna K. Deichmann, Tobias Socher, Karin Gleie, Thomas Scharffenberger, Rasmus P. Meyer, Dominik Fahrner, Eva B. Nielsen, Penelope How, Anders A. Bjørk, Kristian K. Kjeldsen, Andreas P. Ahlstrøm, and Robert S. Fausto
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-415, https://doi.org/10.5194/essd-2025-415, 2025
Preprint under review for ESSD
Short summary
Short summary
We mapped the edge of the Greenland Ice Sheet using recent satellite images to create a detailed outline of its extent in 2022. This helps track how the ice sheet is changing as the climate warms. By carefully combining satellite data and checking results by hand, we created one of the most accurate maps of the ice sheet to date. This map supports research on ice loss and improves predictions of future changes in Greenland’s ice and its effect on the planet.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025, https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and be useful for GIS ice sheet modeling.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Julien Meloche, Benoit Montpetit, Nicolas R. Leroux, Richard Essery, Gabriel Hould Gosselin, and Philip Marsh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1498, https://doi.org/10.5194/egusphere-2025-1498, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The impact of uncertainties in the simulation of snow density and SSA by the snow model Crocus (embedded within the Soil, Vegetation and Snow version 2 land surface model) on the simulation of snow backscatter (13.5 GHz) using the Snow Microwave Radiative Transfer model were quantified. The simulation of SSA was found to be a key model uncertainty. Underestimated SSA values lead to high errors in the simulation of snow backscatter, reduced by implementing a minimum SSA value (8.7 m2 kg-1).
Adrien Damseaux, Heidrun Matthes, Victoria R. Dutch, Leanne Wake, and Nick Rutter
The Cryosphere, 19, 1539–1558, https://doi.org/10.5194/tc-19-1539-2025, https://doi.org/10.5194/tc-19-1539-2025, 2025
Short summary
Short summary
Models often underestimate the role of snow cover in permafrost regions, leading to soil temperatures and permafrost dynamics inaccuracies. Through the use of a snow thermal conductivity scheme better adapted to this region, we mitigated soil temperature biases and permafrost extent overestimation within a land surface model. Our study sheds light on the importance of refining snow-related processes in models to enhance our understanding of permafrost dynamics in the context of climate change.
Penelope How, Dorthe Petersen, Kristian Kjellerup Kjeldsen, Katrine Raundrup, Nanna Bjørnholt Karlsson, Alexandra Messerli, Anja Rutishauser, Jonathan Lee Carrivick, James M. Lea, Robert Schjøtt Fausto, Andreas Peter Ahlstrøm, and Signe Bech Andersen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-18, https://doi.org/10.5194/essd-2025-18, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Ice-marginal lakes around Greenland temporarily store glacial meltwater, affecting sea level rise, glacier dynamics and ecosystems. Our study presents an eight-year inventory (2016–2023) of 2918 lakes, mapping their size, abundance, and surface water temperature. This openly available dataset supports future research on sea level projections, lake-driven glacier melting, and sustainable resource planning, including hydropower development under Greenland's climate commitments.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024, https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Short summary
Parameterisations of Arctic snow processes were implemented into the multi-physics ensemble version of the snow model Crocus (embedded within the Soil, Vegetation, and Snow version 2 land surface model) and evaluated at an Arctic tundra site. Optimal combinations of parameterisations that improved the simulation of density and specific surface area featured modifications that raise wind speeds to increase compaction in surface layers, prevent snowdrift, and increase viscosity in basal layers.
Johnny Rutherford, Nick Rutter, Leanne Wake, and Alex Cannon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2445, https://doi.org/10.5194/egusphere-2024-2445, 2024
Short summary
Short summary
The Arctic winter is vulnerable to climate warming and ~1700 Gt of carbon stored in high latitude permafrost ecosystems is at risk of degradation in the future due to enhanced microbial activity. Poorly represented cold season processes, such as the simulation of snow thermal conductivity in Land Surface Models (LSMs), causes uncertainty in projected carbon emission simulations. Improved snow conductivity parameterization in CLM5.0 significantly increases predicted winter CO2 emissions to 2100.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411, https://doi.org/10.5194/essd-2023-411, 2023
Preprint withdrawn
Short summary
Short summary
Marine-terminating glaciers can lose mass through frontal ablation, which comprises submarine and surface melting, and iceberg calving. We estimate frontal ablation for 49 marine-terminating glaciers in Greenland by combining existing, satellite derived data and calculating volume change near the glacier front over time. The dataset offers exciting opportunities to study the influence of climate forcings on marine-terminating glaciers in Greenland over multi-decadal timescales.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Andy R. Emery, David M. Hodgson, Natasha L. M. Barlow, Jonathan L. Carrivick, Carol J. Cotterill, Janet C. Richardson, Ruza F. Ivanovic, and Claire L. Mellett
Earth Surf. Dynam., 8, 869–891, https://doi.org/10.5194/esurf-8-869-2020, https://doi.org/10.5194/esurf-8-869-2020, 2020
Short summary
Short summary
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large ice sheet was at Dogger Bank in the North Sea. This ice sheet formed large rivers. After the ice sheet retreated down from the high point of Dogger Bank, the rivers had no water supply and dried out. Increased precipitation during the 15 000 years of land exposure at Dogger Bank formed a new drainage network. This study shows how glaciation and climate changes can control how drainage networks evolve.
Cited articles
Adhikari, S., Ivins, E. R., and Larour, E.: ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change, Geosci. Model Dev., 9, 1087–1109, https://doi.org/10.5194/gmd-9-1087-2016, 2016.
Adhikari, S., Caron, L., Steinberger, B., Reager, J. T., Kjeldsen, K. K.,
Marzeion, B., Larour, E., and Ivins, E. R.: What drives 20th century polar
motion?, Earth Planet. Sc. Lett., 502, 126–132, https://doi.org/10.1016/j.epsl.2018.08.059, 2018.
Adhikari, S., Milne, G. A., Caron, L., Khan, S. A., Kjeldsen, K. K., Nilsson, J., Larour, E., and Ivins, E. R.: Decadal to Centennial Timescale Mantle Viscosity Inferred from Modern Crustal Uplift Rates in Greenland, Geophys. Res. Lett., 48, e2021GL094040,
https://doi.org/10.1029/2021GL094040, 2021.
Allen, J. R. L.: Morphodynamics of Holocene salt marshes: a review sketch
from the Atlantic and Southern North Sea coasts of Europe, Quaternary Sci. Rev., 19, 1155–1231, https://doi.org/10.1016/S0277-3791(99)00034-7, 2000.
Bamber, J. and Riva, R.: The sea level fingerprint of recent ice mass fluxes, The Cryosphere, 4, 621–627, https://doi.org/10.5194/tc-4-621-2010, 2010.
Barlow, N. L. M., Shennan, I., Long, A. J., Gehrels, W. R., Saher, M. H.,
Woodroffe, S. A., and Hillier, C.: Salt marshes as late Holocene tide
gauges, Global Planet. Change, 106, 90–110,
https://doi.org/10.1016/j.gloplacha.2013.03.003, 2013.
Bevis, M., Wahr, J., Khan, S. A., Madsen, F. B., Brown, A., Willis, M.,
Kendrick, E., Knudsen, P., Box, J. E., van Dam, T., Caccamise, D. J., Johns,
B., Nylen, T., Abbott, R., White, S., Miner, J., Forsberg, R., Zhou, H.,
Wang, J., Wilson, T., Bromwich, D., and Francis, O.: Bedrock displacements
in Greenland manifest ice mass variations, climate cycles and climate change, P. Natl. Acad. Sci. USA, 109, 11944–11948, https://doi.org/10.1073/pnas.1204664109, 2012.
Bevis, M., Harig, C., Khan, S. A., Brown, A., Simons, F. J., Willis, M.,
Fettweis, X., Broeke, M. R. van den, Madsen, F. B., Kendrick, E., Caccamise,
D. J., van Dam, T., Knudsen, P., and Nylen, T.: Accelerating changes in ice
mass within Greenland, and the ice sheet's sensitivity to atmospheric
forcing, P. Natl. Acad. Sci. USA, 116, 1934–1939,
https://doi.org/10.1073/pnas.1806562116, 2019.
Bindler, R., Renberg, I., Appleby, P. G., Anderson, N. J., and Rose, N. L.:
Mercury Accumulation Rates and Spatial Patterns in Lake Sediments from West
Greenland: A Coast to Ice Margin Transect, Environ. Sci. Technol., 35,
1736–1741, https://doi.org/10.1021/es0002868, 2001.
Bjork, A. A., Kjaer, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K.,
Andresen, C. S., Box, J. E., Larsen, N. K., and Funder, S.: An aerial view
of 80 years of climate-related glacier fluctuations in southeast Greenland,
Nat. Geosci., 5, 427–432, https://doi.org/10.1038/Ngeo1481, 2012.
Briner, J. P., Young, N. E., Thomas, E. K., Stewart, H. A. M., Losee, S., and Truex, S.: Varve and radiocarbon dating support the rapid advance of Jakobshavn Isbræ during the Little Ice Age, Quaternary Sci. Rev., 30,
2476–2486, https://doi.org/10.1016/j.quascirev.2011.05.017, 2011.
Briner, J. P., Cuzzone, J. K., Badgeley, J. A., Young, N. E., Steig, E. J.,
Morlighem, M., Schlegel, N.-J., Hakim, G. J., Schaefer, J. M., Johnson, J.
V., Lesnek, A. J., Thomas, E. K., Allan, E., Bennike, O., Cluett, A. A., Csatho, B., de Vernal, A., Downs, J., Larour, E., and Nowicki, S.: Rate of
mass loss from the Greenland Ice Sheet will exceed Holocene values this
century, Nature, 586, 70–74, https://doi.org/10.1038/s41586-020-2742-6, 2020.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51,
337–360, 2009.
Chao, B. F., Wu, Y. H., and Li, Y. S.: Impact of Artificial Reservoir Water
Impoundment on Global Sea Level, Science, 320, 212–214, https://doi.org/10.1126/science.1154580, 2008.
Chen, G., Zhang, S., Liang, S., and Zhu, J.: Elevation and Volume Changes in
Greenland Ice Sheet From 2010 to 2019 Derived From Altimetry Data, Front.
Earth Sci., 9, 674983, https://doi.org/10.3389/feart.2021.674983, 2021.
Chylek, P., Dubey, M. K., and Lesins, G.: Greenland warming of 1920–1930 and
1995–2005, Geophys. Res. Lett., 33, L11707, https://doi.org/10.1029/2006gl026510, 2006.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker, A.: Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites, Water Resour. Res., 50, 5698–5720, https://doi.org/10.1002/2014WR015595, 2014.
Dyke, L. M., Hughes, A. L. C., Murray, T., Hiemstra, J. F., Andresen, C. S.,
and Rodés, Á.: Evidence for the asynchronous retreat of large outlet
glaciers in southeast Greenland at the end of the last glaciation, Quaternary
Sci. Rev., 99, 244–259, https://doi.org/10.1016/j.quascirev.2014.06.001, 2014.
Dyke, L. M., Hughes, A. L., Andresen, C. S., Murray, T., Hiemstra, J. F.,
Bjørk, A. A., and Rodés, Á.: The deglaciation of coastal areas of
southeast Greenland, Holocene, 28, 1535–1544, https://doi.org/10.1177/0959683618777067, 2018.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. Inter., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Farrell, W. E. and Clark, J. A.: On Postglacial Sea Level, Geophys. J. R.
Astron. Soc., 46, 647–667, https://doi.org/10.1111/j.1365-246X.1976.tb01252.x, 1976.
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey,
V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.-H.: The
causes of sea-level rise since 1900, Nature, 584, 393–397,
https://doi.org/10.1038/s41586-020-2591-3, 2020.
Funder, S. and Hansen, L.: The Greenland ice sheet – a model for its
culmination and decay during and after the last glacial maximum, Bull. Geol.
Soc. Den., 42, 137–152, 1996.
Funder, S., Kjeldsen, K. K., Kjaer, K. H., and O Cofaigh, C.: The Greenland
Ice Sheet during the last 300,000 years: a review, Dev. Quat. Sci., 15,
699–713, https://doi.org/10.1016/B978-0-444-53447-7.00050-7, 2011.
Hughes, A., Rainsley, E., Murray, T., Fogwill, C., Schnabel, C., and Xu, S.:
Rapid response of Helheim Glacier, southeast Greenland, to early Holocene
climate warming, Geology, 40, 427–430, https://doi.org/10.1130/G32730.1, 2012.
Humphrey, V. and Gudmundsson, L.: GRACE-REC: a reconstruction of climate-driven water storage changes over the last century, Earth Syst. Sci.
Data, 11, 1153–1170, https://doi.org/10.5194/essd-11-1153-2019, 2019.
Ivchenko, V. O., Danilov, S., Sidorenko, D., Schröter, J., Wenzel, M.,
and Aleynik, D. L.: Steric height variability in the Northern Atlantic on
seasonal and interannual scales, J. Geophys. Res., 113, C11007,
https://doi.org/10.1029/2008JC004836, 2008.
Kemp, A., Horton, B., Culver, S., Corbett, D., van de Plassche, O., Gehrels,
W., Douglas, B., and Parnell, A.: Timing and magnitude of recent accelerated
sea-level rise (North Carolina, United States), Geology, 37, 1035–1038,
https://doi.org/10.1130/G30352A.1, 2009.
Kemp, A. C., Kegel, J. J., Culver, S. J., Barber, D. C., Mallinson, D. J.,
Leorri, E., Bernhardt, C. E., Cahill, N., Riggs, S. R., Woodson, A. L.,
Mulligan, R. P., and Horton, B. P.: Extended late Holocene relative
sea-level histories for North Carolina, USA, Quaternary Sci. Rev., 160, 13–30, https://doi.org/10.1016/j.quascirev.2017.01.012, 2017.
Kendall, R. A., Mitrovica, J. X., and Milne, G. A.: On post-glacial sea
level – II. Numerical formulation and comparative results on spherically
symmetric models, Geophys. J. Int., 161, 679–706, https://doi.org/10.1111/j.1365-246X.2005.02553.x, 2005.
Khan, S. A., Aschwanden, A., Bjork, A. A., Wahr, J., Kjeldsen, K. K., and Kjaer, K. H.: Greenland ice sheet mass balance: a review, Rep. Prog. Phys.,
78, 1–26, https://doi.org/10.1088/0034-4885/78/4/046801, 2015.
Khan, S. A., Sasgen, I., Bevis, M., van Dam, T., Bamber, J. L., Wahr, J.,
Willis, M., Kjaer, K. H., Wouters, B., Helm, V., Csatho, B., Fleming, K.,
Bjork, A. A., Aschwanden, A., Knudsen, P., and Munneke, P. K.: Geodetic
measurements reveal similarities between post-Last Glacial Maximum and
present-day mass loss from the Greenland ice sheet, Sci. Adv., 2, e1600931, https://doi.org/10.1126/sciadv.1600931, 2016.
Khan, S. A., Bjørk, A. A., Bamber, J. L., Morlighem, M., Bevis, M.,
Kjær, K. H., Mouginot, J., Løkkegaard, A., Holland, D. M., Aschwanden, A., Zhang, B., Helm, V., Korsgaard, N. J., Colgan, W., Larsen, N. K., Liu, L., Hansen, K., Barletta, V., Dahl-Jensen, T. S., Søndergaard, A. S., Csatho, B. M., Sasgen, I., Box, J., and Schenk, T.: Centennial response of Greenland's three largest outlet glaciers, Nat. Commun., 11, 5718, https://doi.org/10.1038/s41467-020-19580-5, 2020.
Kjær, K. H., Bjørk, A. A., Kjeldsen, K. K., Hansen, E. S., Andresen,
C. S., Siggaard-Andersen, M.-L., Khan, S. A., Søndergaard, A. S., Colgan,
W., Schomacker, A., Woodroffe, S., Funder, S., Rouillard, A., Jensen, J. F.,
and Larsen, N. K.: Glacier response to the Little Ice Age during the
Neoglacial cooling in Greenland, Earth-Sci. Rev., 227, 103984,
https://doi.org/10.1016/j.earscirev.2022.103984, 2022.
Kjeldsen, K., Korsgaard, N., Bjork, A., Khan, S., Box, J., Funder, S., Larsen, N., Bamber, J., Colgan, W., van den Broeke, M., Siggaard-Andersen,
M., Nuth, C., Schomacker, A., Andresen, C., Willerslev, E., and Kjaer, K.:
Spatial and temporal distribution of mass loss from the Greenland Ice Sheet
since AD 1900, Nature, 528, 396–400, https://doi.org/10.1038/nature16183, 2015.
Kjeldsen, K. K., Weinrebe, R. W., Bendtsen, J., Bjørk, A. A., and Kjær, K. H.: Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland, Earth Syst. Sci. Data, 9, 589–600,
https://doi.org/10.5194/essd-9-589-2017, 2017.
Lecavalier, B., Milne, G. A., Simpson, M. J. R., Wake, L. M., Huybrechts,
P., Tarasov, L., Kjeldsen, K. K., Funder, S. V., Long, A. J., Woodroffe, S.
A., Dyke, A., and Larsen, N. K.: A model of Greenland ice sheet deglaciation
based on observations of relative sea-level and ice extent, Quaternary Sci. Rev., 102, 54–84, https://doi.org/10.1016/j.quascirev.2014.07.018, 2014.
Lepping, O. and Daniëls, F. J. A.: Phytosociology of Beach and Salt
Marsh Vegetation in Northern West Greenland, Polarforschung, 76, 95–108,
2007.
Levy, L. B., Larsen, N. K., Knudsen, M. F., Egholm, D. L., Bjørk, A. A.,
Kjeldsen, K. K., Kelly, M. A., Howley, J. A., Olsen, J., Tikhomirov, D.,
Zimmerman, S. R. H., and Kjær, K. H.: Multi-phased deglaciation of south
and southeast Greenland controlled by climate and topographic setting, Quaternary Sci. Rev., 242, 106454, https://doi.org/10.1016/j.quascirev.2020.106454, 2020.
Lindeberg, C., Bindler, R., Renberg, I., Emteryd, O., Karlsson, E., and
Anderson, N. J.: Natural Fluctuations of Mercury and Lead in Greenland Lake
Sediments, Environ. Sci. Technol., 40, 90–95, https://doi.org/10.1021/es051223y, 2006.
Long, A. J., Woodroffe, S. A., Milne, G. A., Bryant, C. L., and Wake, L. M.:
Relative sea-level change in West Greenland during the last millennium,
Quaternary Sci. Rev., 29, 367–383, 2010.
Long, A. J., Woodroffe, S. A., Milne, G. A., Bryant, C. L., Simpson, M. J.
R., and Wake, L. M.: Relative sea-level change in Greenland during the last
700 yrs and ice sheet response to the Little Ice Age, Earth Planet. Sc. Lett., 315, 76–85, https://doi.org/10.1016/j.epsl.2011.06.027, 2012.
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012, 2012.
Marzeion, B., Leclercq, P. W., Cogley, J. G., and Jarosch, A. H.: Brief
Communication: Global reconstructions of glacier mass change during the 20th century are consistent, The Cryosphere, 9, 2399–2404,
https://doi.org/10.5194/tc-9-2399-2015, 2015.
McDougall, T. J. and Barker, P. M.: GGetting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
Cambridge University Press, 203–320, https://doi.org/10.1017/9781009157964.005, 2019.
Mitrovica, J. X. and Milne, G. A.: On post-glacial sea level: I. General
theory, Geophys. J. Int., 154, 253–267, https://doi.org/10.1046/j.1365-246X.2003.01942.x, 2003.
Mitrovica, J. X., Tamisiea, M. E., Davis, J. L., and Milne, G. A.: Recent mass balance of polar ice sheets inferred from patterns of global sea-level
change, Nature, 409, 1026–1029, https://doi.org/10.1038/35059054, 2001.
Moon, T., Joughin, I., Smith, B., and Howat, I.: 21st-Century Evolution of
Greenland Outlet Glacier Velocities, Science, 336, 576–578,
https://doi.org/10.1126/science.1219985, 2012.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Pérez-Rodríguez, M., Silva-Sánchez, N., Kylander, M. E., Bindler, R., Mighall, T. M., Schofield, J. E., Edwards, K. J., and Martínez Cortizas, A.: Industrial-era lead and mercury contamination in
southern Greenland implicates North American sources, Sci. Total Environ.,
613–614, 919–930, https://doi.org/10.1016/j.scitotenv.2017.09.041, 2018.
Pritchard, H., Arthern, R., Vaughan, D., and Edwards, L.: Extensive dynamic
thinning on the margins of the Greenland and Antarctic ice sheets, Nature,
461, 971–975, https://doi.org/10.1038/nature08471, 2009.
Ramsey, C. B. and Lee, S.: Recent and Planned Developments of the Program
OxCal, Radiocarbon, 55, 720–730, https://doi.org/10.1017/S0033822200057878, 2013.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Plicht, J. van der, Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Richter, A., Rysgaard, S., Dietrich, R., Mortensen, J., and Petersen, D.:
Coastal tides in West Greenland derived from tide gauge records, Ocean Dynam., 61, 39–49, https://doi.org/10.1007/s10236-010-0341-z, 2011.
Saenko, O. A., Yang, D., and Myers, P. G.: Response of the North Atlantic
dynamic sea level and circulation to Greenland meltwater and climate change
in an eddy-permitting ocean model, Clim. Dynam., 49, 2895–2910,
https://doi.org/10.1007/s00382-016-3495-7, 2017.
Shotyk, W., Goodsite, M. E., Roos-Barraclough, F., Frei, R., Heinemeier, J.,
Asmund, G., Lohse, C., and Hansen, T. S.: Anthropogenic contributions to
atmospheric Hg, Pb and As accumulation recorded by peat cores from southern
Greenland and Denmark dated using the 14C “bomb pulse curve”, Geochim.
Cosmochim. Ac., 67, 3991–4011, https://doi.org/10.1016/S0016-7037(03)00409-5, 2003.
Spada, G. and Melini, D.: SELEN4; (SELEN version 4.0): a Fortran program for
solving the gravitationally and topographically self-consistent sea-level
equation in glacial isostatic adjustment modeling, Geosci. Model Dev., 12,
5055–5075, https://doi.org/10.5194/gmd-12-5055-2019, 2019.
The IMBIE Team: Mass balance of the Greenland Ice Sheet from 1992 to 2018,
Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020.
van Dam, T., Francis, O., Wahr, J., Khan, S. A., Bevis, M., and van den
Broeke, M. R.: Using GPS and absolute gravity observations to separate the
effects of present-day and Pleistocene ice-mass changes in South East Greenland, Earth Planet. Sc. Lett., 459, 127–135,
https://doi.org/10.1016/j.epsl.2016.11.014, 2017.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de
Berg, W., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning
Recent Greenland Mass Loss, Science, 326, 984–986, https://doi.org/10.1126/science.1178176, 2009.
Vogt, T.: Late-Quaternary Oscillations of Level in Southeast Greenland,
Dybwad, Oslo, 44 pp., https://brage.npolar.no/npolar-xmlui/bitstream/handle/11250/173810/Skrifter060.pdf?sequence=1&isAllowed=y (last access: 16 September 2022), 1933.
Wada, Y., Lo, M.-H., Yeh, P. J.-F., Reager, J. T., Famiglietti, J. S., Wu,
R.-J., and Tseng, Y.-H.: Fate of water pumped from underground and contributions to sea-level rise, Nat. Clim. Change, 6, 777–780,
https://doi.org/10.1038/nclimate3001, 2016.
Wangner, D. J., Sicre, M., Kjeldsen, K. K., Jaeger, J. M., Bjørk, A. A.,
Vermassen, F., Sha, L., Kjær, K. H., Klein, V., and Andresen, C. S.: Sea
Surface Temperature Variability on the SE-Greenland Shelf (1796–2013 CE)
and Its Influence on Thrym Glacier in Nørre Skjoldungesund, Paleoceanogr.
Paleoclimatology, 35, e2019PA003692, https://doi.org/10.1029/2019PA003692, 2020.
WCRP: WCRP Grand Challenge on Regional Sea-level Change and Coastal Impacts, World Climate Research Programme, https://www.wcrp-climate.org/gc-sea-level#:~:text=The%20overarching%20goal%20of%20this%20WCRP%20research%20effort%2C,are%20of%20increasing%20benefit%20for%20coastal%20zone%20management (last access: 4 October 2022), 2015.
Wood, K. R. and Overland, J. E.: Early 20th century Arctic warming in retrospect, Int. J. Climatol., 30, 1269–1279, https://doi.org/10.1002/joc.1973, 2010.
Woodroffe, S. A. and Long, A. J.: Salt marshes as archives of recent relative sea-level change in West Greenland, Quaternary Sci. Rev., 28, 1750–1761, 2009.
Woodroffe, S. A. and Long, A. J.: Reconstructing recent relative sea-level
changes in West Greenland: local diatom-based transfer functions are
superior to regional models, Quatern. Int., 221, 91–103, 2010.
Woodroffe, S. A., Wake, L. M., Kjeldsen, K. K., Barlow, N. L. M., Long, A. J., and Kjaer, K. H.: Missing sea-level rise in southeast Greenland during and since the Little Ice Age, Zenodo [code], https://doi.org/10.5281/zenodo.8154596, 2023a.
Woodroffe, S., Wake, L., Kjeldsen, K. K., Barlow, N., Long, A. J., and Kjær, K. H.: Diatom data from “Missing sea-level rise in southeast Greenland during and since the Little Ice Age”, published in Climate of the Past, 2023, figshare [data set], https://doi.org/10.6084/m9.figshare.23762385.v2, 2023b.
Zheng, J.: Archives of total mercury reconstructed with ice and snow from
Greenland and the Canadian High Arctic, Sci. Total Environ., 509–510,
133–144, https://doi.org/10.1016/j.scitotenv.2014.05.078, 2015.
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and...