Articles | Volume 18, issue 4
Clim. Past, 18, 759–774, 2022
https://doi.org/10.5194/cp-18-759-2022
Clim. Past, 18, 759–774, 2022
https://doi.org/10.5194/cp-18-759-2022
Research article
12 Apr 2022
Research article | 12 Apr 2022

Climate and ocean circulation in the aftermath of a Marinoan snowball Earth

Lennart Ramme and Jochem Marotzke

Related authors

The depth scales of the AMOC on a decadal timescale
Tim Rohrschneider, Johanna Baehr, Veit Lüschow, Dian Putrasahan, and Jochem Marotzke
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-124,https://doi.org/10.5194/os-2020-124, 2021
Revised manuscript accepted for OS
Short summary
Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020,https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model
Marlene Klockmann, Uwe Mikolajewicz, and Jochem Marotzke
Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016,https://doi.org/10.5194/cp-12-1829-2016, 2016
Short summary
Assimilation of sea-ice concentration in a global climate model – physical and statistical aspects
S. Tietsche, D. Notz, J. H. Jungclaus, and J. Marotzke
Ocean Sci., 9, 19–36, https://doi.org/10.5194/os-9-19-2013,https://doi.org/10.5194/os-9-19-2013, 2013

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Pre-Cenozoic
Deep ocean temperatures through time
Paul J. Valdes, Christopher R. Scotese, and Daniel J. Lunt
Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021,https://doi.org/10.5194/cp-17-1483-2021, 2021
Short summary
The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020,https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Paleogeographic controls on the evolution of Late Cretaceous ocean circulation
Jean-Baptiste Ladant, Christopher J. Poulsen, Frédéric Fluteau, Clay R. Tabor, Kenneth G. MacLeod, Ellen E. Martin, Shannon J. Haynes, and Masoud A. Rostami
Clim. Past, 16, 973–1006, https://doi.org/10.5194/cp-16-973-2020,https://doi.org/10.5194/cp-16-973-2020, 2020
Short summary
Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020,https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Diminished greenhouse warming from Archean methane due to solar absorption lines
B. Byrne and C. Goldblatt
Clim. Past, 11, 559–570, https://doi.org/10.5194/cp-11-559-2015,https://doi.org/10.5194/cp-11-559-2015, 2015
Short summary

Cited articles

Abbot, D. S. and Pierrehumbert, R. T.: Mudball: Surface dust and snowball Earth deglaciation, J. Geophys. Res.-Atmos., 115, D03104, https://doi.org/10.1029/2009JD012007, 2010. a
Abbot, D. S., Eisenman, I., and Pierrehumbert, R. T.: The importance of ice vertical resolution for Snowball climate and deglaciation, J. Climate, 23, 6100–6109, https://doi.org/10.1175/2010JCLI3693.1, 2010. a, b
Abbot, D. S., Voigt, A., Branson, M., Pierrehumbert, R. T., Pollard, D., Le Hir, G., and Koll, D. D.: Clouds and snowball Earth deglaciation, Geophys. Res. Lett., 39, L20711, https://doi.org/10.1029/2012GL052861, 2012. a, b, c, d, e
Abbot, D. S., Voigt, A., Li, D., Hir, G. L., Pierrehumbert, R. T., Branson, M., Pollard, D., and B. Koll, D. D.: Robust elements of Snowball Earth atmospheric circulation and oases for life, J. Geophys. Res.-Atmos., 118, 6017–6027, https://doi.org/10.1002/jgrd.50540, 2013. a, b, c
Allen, P. A. and Hoffman, P. F.: Extreme winds and waves in the aftermath of a Neoproterozoic glaciation, Nature, 433, 123–127, https://doi.org/10.1038/nature03176, 2005. a
Download
Short summary
After the Marinoan snowball Earth, the climate warmed rapidly due to enhanced greenhouse conditions, and the freshwater inflow of melting glaciers caused a strong stratification of the ocean. Our climate simulations reveal a potentially only moderate global temperature increase and a break-up of the stratification within just a few thousand years. The findings give insights into the environmental conditions relevant for the geological and biological evolution during that time.