Articles | Volume 18, issue 3
https://doi.org/10.5194/cp-18-579-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-579-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Arctic glaciers and ice caps through the Holocene:a circumpolar synthesis of lake-based reconstructions
Laura J. Larocca
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, Northwestern University,
2145 Sheridan Road, Evanston, IL 60208, USA
Yarrow Axford
Department of Earth and Planetary Sciences, Northwestern University,
2145 Sheridan Road, Evanston, IL 60208, USA
Related authors
No articles found.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-26, https://doi.org/10.5194/cp-2024-26, 2024
Revised manuscript under review for CP
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial scale record of landscape and algal productivity from a lake in north Iceland. Along with high-resolution age constraint that covers the last ~12000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
Peter J. K. Puleo and Yarrow Axford
Clim. Past, 19, 1777–1791, https://doi.org/10.5194/cp-19-1777-2023, https://doi.org/10.5194/cp-19-1777-2023, 2023
Short summary
Short summary
We used two lake sediment records at different elevations and landscape evidence to find that a southern Greenland outlet glacier advanced ~ 3700 years ago and then retreated ~ 1600 years ago. This retreat is unlike other nearby outlet glaciers, possibly because of the complex local ice structure or greater sensitivity to snowfall. We also find that the advanced ice surface had an elevation of ~ 670 m a.s.l. (~ 250 m higher than today) from ~ 3700 to 1600 years ago.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Holocene
Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile)
Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
Missing sea level rise in southeastern Greenland during and since the Little Ice Age
Reconstructing burnt area during the Holocene: an Iberian case study
Expression of the “4.2 ka event” in the southern Rocky Mountains, USA
Stalagmite carbon isotopes suggest deglacial increase in soil respiration in western Europe driven by temperature change
Climate-driven desertification and its implications for the ancient Silk Road trade
Diatom-oxygen isotope record from high-altitude Lake Petit (2200 m a.s.l.) in the Mediterranean Alps: shedding light on a climatic pulse at 4.2 ka
Episodic Neoglacial expansion and rapid 20th century retreat of a small ice cap on Baffin Island, Arctic Canada, and modeled temperature change
Climate trends in northern Ontario and Québec from borehole temperature profiles
Interactions between climate change and human activities during the early to mid-Holocene in the eastern Mediterranean basins
Laurentide Ice Sheet basal temperatures during the last glacial cycle as inferred from borehole data
Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, Northern Algeria
Glacier response to North Atlantic climate variability during the Holocene
Climatic variability and human impact during the last 2000 years in western Mesoamerica: evidence of late Classic (AD 600–900) and Little Ice Age drought events
Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives
Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance
Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated, high-elevation cave in the Austrian Alps
Late Glacial–Holocene climatic transition record at the Argentinian Andean piedmont between 33 and 34° S
Holocene changes in African vegetation: tradeoff between climate and water availability
Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy
Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards
A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)
Bunker Cave stalagmites: an archive for central European Holocene climate variability
Temperature variability at Dürres Maar, Germany during the Migration Period and at High Medieval Times, inferred from stable carbon isotopes of Sphagnum cellulose
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
David T. Liefert and Bryan N. Shuman
Clim. Past, 18, 1109–1124, https://doi.org/10.5194/cp-18-1109-2022, https://doi.org/10.5194/cp-18-1109-2022, 2022
Short summary
Short summary
A large drought potentially occurred roughly 4200 years ago, but its impacts and significance are unclear. We find new evidence in carbonate oxygen isotopes from a mountain lake in southeastern Wyoming, southern Rocky Mountains, of an abrupt reduction in effective moisture (precipitation–evaporation) or snowpack from approximately 4200–4000 years ago. The drought's prominence among a growing number of sites in the North American interior suggests it was a regionally substantial climate event.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Guanghui Dong, Leibin Wang, David Dian Zhang, Fengwen Liu, Yifu Cui, Guoqiang Li, Zhilin Shi, and Fahu Chen
Clim. Past, 17, 1395–1407, https://doi.org/10.5194/cp-17-1395-2021, https://doi.org/10.5194/cp-17-1395-2021, 2021
Short summary
Short summary
A compilation of the results of absolute dating and high-resolution paleoclimatic records from the Xishawo site in the Dunhuang area and historical archives reveals that two desertification events occurred at ~ 800–600 BCE and ~ 1450 CE. The later desertification event was consistent with the immediate fall in tribute trade that occurred in ~ 1450 CE, which indicates that climate change played a potentially important role in explaining the decline of the Ancient Silk Road trade.
Rosine Cartier, Florence Sylvestre, Christine Paillès, Corinne Sonzogni, Martine Couapel, Anne Alexandre, Jean-Charles Mazur, Elodie Brisset, Cécile Miramont, and Frédéric Guiter
Clim. Past, 15, 253–263, https://doi.org/10.5194/cp-15-253-2019, https://doi.org/10.5194/cp-15-253-2019, 2019
Short summary
Short summary
A major environmental change, 4200 years ago, was recorded in the lacustrine sediments of Lake Petit (Mediterranean Alps). The regime shift was described by a modification in erosion processes in the watershed and aquatic species in the lake. This study, based on the analysis of the lake water balance by using oxygen isotopes in diatoms, revealed that these environmental responses were due to a rapid change in precipitation regime, lasting ca. 500 years.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Carolyne Pickler, Hugo Beltrami, and Jean-Claude Mareschal
Clim. Past, 12, 2215–2227, https://doi.org/10.5194/cp-12-2215-2016, https://doi.org/10.5194/cp-12-2215-2016, 2016
Short summary
Short summary
The ground surface temperature histories of the past 500 years were reconstructed at 10 sites in northern Ontario and Quebec. The regions experienced a warming of ~1–2 K for the past 150 years, agreeing with borehole reconstructions for southern Ontario and Quebec and proxy data. Permafrost maps locate the sites in a region of discontinuous permafrost but our reconstructions suggest that the potential for permafrost was minimal to absent over the past 500 years.
Jean-Francois Berger, Laurent Lespez, Catherine Kuzucuoğlu, Arthur Glais, Fuad Hourani, Adrien Barra, and Jean Guilaine
Clim. Past, 12, 1847–1877, https://doi.org/10.5194/cp-12-1847-2016, https://doi.org/10.5194/cp-12-1847-2016, 2016
Short summary
Short summary
This paper focuses on early Holocene rapid climate changes in the Mediterranean zone, which are under-represented in continental archives, and on their impact on prehistoric societies from the eastern to central Mediterranean (central Anatolia, Cyprus, NE and NW Greece). Our study demonstrates the reality of hydrogeomorphological responses to early Holocene RCCs in valleys and alluvial fans and lake–marsh systems. We finally question their socio-economic and geographical adaptation capacities.
C. Pickler, H. Beltrami, and J.-C. Mareschal
Clim. Past, 12, 115–127, https://doi.org/10.5194/cp-12-115-2016, https://doi.org/10.5194/cp-12-115-2016, 2016
J. Ruan, F. Kherbouche, D. Genty, D. Blamart, H. Cheng, F. Dewilde, S. Hachi, R. L. Edwards, E. Régnier, and J.-L. Michelot
Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, https://doi.org/10.5194/cp-12-1-2016, 2016
N. L. Balascio, W. J. D'Andrea, and R. S. Bradley
Clim. Past, 11, 1587–1598, https://doi.org/10.5194/cp-11-1587-2015, https://doi.org/10.5194/cp-11-1587-2015, 2015
Short summary
Short summary
Sediment cores were collected from a lake that captures runoff from two glaciers in Greenland. Our analysis of the sediments shows that these glaciers were active over the last 9,000 years and advanced and retreated in response to regional climate changes. The data also provide a long-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the range of natural variability.
A. Rodríguez-Ramírez, M. Caballero, P. Roy, B. Ortega, G. Vázquez-Castro, and S. Lozano-García
Clim. Past, 11, 1239–1248, https://doi.org/10.5194/cp-11-1239-2015, https://doi.org/10.5194/cp-11-1239-2015, 2015
Short summary
Short summary
We present results from western Mexico, where very few palaeoclimatic research sites exist. The record has good chronological resolution (ca. 20 years) and clear climatic trends during the last 2ka. The most important signals are: dry conditions during the late Classic (AD 500 to 1000), especially from AD 600 to 800, and low lake levels during the LIA, in two phases that follow Spörer and Maunder solar minima. Drier conditions are related with a lower intensity of the North American monsoon.
S. Albani, N. M. Mahowald, G. Winckler, R. F. Anderson, L. I. Bradtmiller, B. Delmonte, R. François, M. Goman, N. G. Heavens, P. P. Hesse, S. A. Hovan, S. G. Kang, K. E. Kohfeld, H. Lu, V. Maggi, J. A. Mason, P. A. Mayewski, D. McGee, X. Miao, B. L. Otto-Bliesner, A. T. Perry, A. Pourmand, H. M. Roberts, N. Rosenbloom, T. Stevens, and J. Sun
Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, https://doi.org/10.5194/cp-11-869-2015, 2015
Short summary
Short summary
We propose an innovative framework to organize paleodust records, formalized in a publicly accessible database, and discuss the emerging properties of the global dust cycle during the Holocene by integrating our analysis with simulations performed with the Community Earth System Model. We show how the size distribution of dust is intrinsically related to the dust mass accumulation rates and that only considering a consistent size range allows for a consistent analysis of the global dust cycle.
H. Beltrami, G. S. Matharoo, L. Tarasov, V. Rath, and J. E. Smerdon
Clim. Past, 10, 1693–1706, https://doi.org/10.5194/cp-10-1693-2014, https://doi.org/10.5194/cp-10-1693-2014, 2014
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
A. E. Mehl and M. A. Zárate
Clim. Past, 10, 863–875, https://doi.org/10.5194/cp-10-863-2014, https://doi.org/10.5194/cp-10-863-2014, 2014
C. Hély, A.-M. Lézine, and APD contributors
Clim. Past, 10, 681–686, https://doi.org/10.5194/cp-10-681-2014, https://doi.org/10.5194/cp-10-681-2014, 2014
B. Vannière, M. Magny, S. Joannin, A. Simonneau, S. B. Wirth, Y. Hamann, E. Chapron, A. Gilli, M. Desmet, and F. S. Anselmetti
Clim. Past, 9, 1193–1209, https://doi.org/10.5194/cp-9-1193-2013, https://doi.org/10.5194/cp-9-1193-2013, 2013
A. Simonneau, E. Chapron, B. Vannière, S. B. Wirth, A. Gilli, C. Di Giovanni, F. S. Anselmetti, M. Desmet, and M. Magny
Clim. Past, 9, 825–840, https://doi.org/10.5194/cp-9-825-2013, https://doi.org/10.5194/cp-9-825-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
J. Fohlmeister, A. Schröder-Ritzrau, D. Scholz, C. Spötl, D. F. C. Riechelmann, M. Mudelsee, A. Wackerbarth, A. Gerdes, S. Riechelmann, A. Immenhauser, D. K. Richter, and A. Mangini
Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, https://doi.org/10.5194/cp-8-1751-2012, 2012
R. Moschen, N. Kühl, S. Peters, H. Vos, and A. Lücke
Clim. Past, 7, 1011–1026, https://doi.org/10.5194/cp-7-1011-2011, https://doi.org/10.5194/cp-7-1011-2011, 2011
Cited articles
Adamson, K., Lane, T., Carney, M., Bishop, T., and Delaney, C.:
High-resolution proglacial lake records of pre-Little Ice Age glacier
advance, northeast Greenland, Boreas, 48, 535–550, https://doi.org/10.1111/bor.12361, 2019.
Allaart, L., Schomacker, A., Larsen, N. K., Nørmark, E., Rydningen, T. A.,
Farnsworth, W. R., Retelle, M., Brynjólfsson, S., Forwick, M., and
Kjellman, S. E.: Glacial history of the Åsgardfonna Ice Cap, NE
Spitsbergen, since the last glaciation, Quaternary Sci. Rev., 251, 106717,
https://doi.org/10.1016/j.quascirev.2020.106717, 2021.
Anderson, L. S., Geirsdóttir, Á., Flowers, G. E., Wickert, A. D.,
Aðalgeirsdóttir, G., and Thorsteinsson, T.: Controls on the lifespans
of Icelandic ice caps, Earth Planet. Sc. Lett., 527, 115780,
https://doi.org/10.1016/j.epsl.2019.115780, 2019.
Andreev, A. A., Lubinski, D. J., Bobrov, A. A., Ingólfsson, Ó., Forman, S. L., Tarasov, P. E., and Möller, P.: Early Holocene environments on October Revolution Island, Severnaya Zemlya, Arctic Russia, Palaeogeogr. Palaeocl., 267, 21–30, https://doi.org/10.1016/j.palaeo.2008.05.002, 2008.
Axford, Y., Lasher, G. E., Kelly, M. A., Osterberg, E. C., Landis, J.,
Schellinger, G. C., Pfeiffer, A., Thompson, E., and Francis, D. R.: Holocene
temperature history of northwest Greenland–With new ice cap constraints and
chironomid assemblages from Deltasø, Quaternary Sci. Rev., 215, 160–172,
https://doi.org/10.1016/j.quascirev.2019.05.011, 2019.
Axford, Y., de Vernal, A. and Osterberg, E.C.: Past Warmth and Its Impacts
During the Holocene Thermal Maximum in Greenland, Annu. Rev. Earth Pl. Sc., 49, 279–307, https://doi.org/10.1146/annurev-earth-081420-063858, 2021.
Bakke, J., Dahl, S. O., Paasche, Ø., Løvlie, R., and Nesje, A.: Glacier
fluctuations, equilibrium–line altitudes and palaeoclimate in Lyngen,
northern Norway, during the Lateglacial and Holocene, The Holocene, 15,
518–540, https://doi.org/10.1191/0959683605hl815rp, 2005a.
Bakke, J., Dahl, S. O., and Nesje, A.: Lateglacial and early Holocene
palaeoclimatic reconstruction based on glacier fluctuations and
equilibrium-line altitudes at northern Folgefonna, Hardanger, western
Norway, J. Quaternary Sci., 20, 179–198, https://doi.org/10.1002/jqs.893, 2005b.
Bakke, J., Lie, Ø., Nesje, A., Dahl, S. O., and Paasche, Ø.: Utilizing
physical sediment variability in glacier–fed lakes for continuous glacier
reconstructions during the Holocene, northern Folgefonna, western Norway,
The Holocene, 15, 161–176, https://doi.org/10.1191/0959683605hl797rp, 2005c.
Bakke, J., Dahl, S. O., Paasche, Ø., Simonsen, J. R., Kvisvik, B., Bakke,
K., and Nesje, A.: A complete record of Holocene glacier variability at
Austre Okstindbreen, northern Norway: an integrated approach, Quaternary
Sci. Rev., 29, 1246–1262, https://doi.org/10.1016/j.quascirev.2010.02.012, 2010.
Bakke, J., Trachsel, M., Kvisvik, B.C., Nesje, A., and Lyså, A.:
Numerical analyses of a multi–proxy data set from a distal glacier–fed
lake, Sørsendalsvatn, western Norway, Quaternary Sci. Rev., 73, 182–195,
https://doi.org/10.1016/j.quascirev.2013.05.003, 2013.
Balascio, N. L., D'Andrea, W. J., and Bradley, R. S.: Glacier response to North Atlantic climate variability during the Holocene, Clim. Past, 11, 1587–1598, https://doi.org/10.5194/cp-11-1587-2015, 2015.
Barclay, D. J., Wiles, G. C., and Calkin, P. E.: Holocene glacier fluctuations in Alaska, Quaternary Sci. Rev., 28, 2034–2048,
https://doi.org/10.1016/j.quascirev.2009.01.016, 2009.
Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K., Andresen, C. S., Box, J. E., Larsen, N. K., and Funder, S.: An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland, Nat. Geosci., 5, 427–432, https://doi.org/10.1038/ngeo1481, 2012.
Björnsson, H. and Pálsson, F.: Icelandic glaciers, Jökull, 58,
365–386, 2008.
Black, J. L.: Holocene climate change in south-central Iceland: A
multi-proxy lacustrine record from glacial lake Hvítárvatn,
doctoral dissertation, University of Colorado at Boulder, https://www.proquest.com/openview/c9950fc5a86a9485bace6918798628e1/1?pq-origsite=gscholar&cbl=18750 (last access: 15 July 2021), 2008.
Braithwaite, R. J. and Müller, F.: On the parameterization of glacier
equilibrium line altitude, IAHS-AISH P., 126, 263–271, 1980.
Briner, J. P., Davis, P. T., and Miller, G. H.: Latest Pleistocene and Holocene glaciation of Baffin Island, Arctic Canada: key patterns and chronologies, Quaternary Sci. Rev., 28, 2075–2087,
https://doi.org/10.1016/j.quascirev.2008.09.017, 2009.
Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de
Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K., and
Jennings, A.: Holocene climate change in Arctic Canada and Greenland, Quaternary Sci. Rev., 147, 340–364, https://doi.org/10.1016/j.quascirev.2016.02.010, 2016.
Calkin, P. E.: Holocene glaciation of Alaska (and adjoining Yukon Territory,
Canada), Quaternary Sci. Rev., 7, 159–184, https://doi.org/10.1016/0277-3791(88)90004-2, 1988.
Cappelen, J.: The observed climate of Greenland, 1958–99 – with
climatological standard normals, 1961–90, Danish Meteorological Institute,
2001.
Cappelen, J.: Greenland – DMI Historical Climate Data Collection 1784–2019,
Danish Meteorological Institute, 2020.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., and
Shongwe, M.: Long–term climate change: projections, commitments and
irreversibility, in: Climate Change 2013–The Physical Science Basis:
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Alexander Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, ISBN (Print) 9781107057991, 9781107661820, 2013.
Dahl, S. O. and Nesje, A.: Holocene glacier fluctuations at
Hardangerjøkulen, central-southern Norway: a high-resolution composite
chronology from lacustrine and terrestrial deposits, The Holocene, 4,
269–277, https://doi.org/10.1177/095968369400400306, 1994.
Dahl, S. O. and Nesje, A.: A new approach to calculating Holocene winter
precipitation by combining glacier equilibrium–ine altitudes and pine-tree limits: a case stud from Hardangerjokulen, central southern Norway, The Holocene, 6, 381–398, https://doi.org/10.1177/095968369600600401, 1996.
Dahl, S. O., Bakke, J., Lie, Ø., and Nesje, A.: Reconstruction of former
glacier equilibrium–line altitudes based on proglacial sites: an evaluation
of approaches and selection of sites, Quaternary Sci. Rev., 22, 275–287,
https://doi.org/10.1016/S0277-3791(02)00135-X, 2003.
Daigle, T. A. and Kaufman, D. S.: Holocene climate inferred from glacier
extent, lake sediment and tree rings at Goat Lake, Kenai Mountains, Alaska,
USA, J. Quaternary Sci., 24, 33–45, https://doi.org/10.1002/jqs.1166, 2009.
Davis, P. T., Menounos, B., and Osborn, G.: Holocene and latest Pleistocene
alpine glacier fluctuations: a global perspective, Quaternary Sci. Rev., 28,
2021–2033, https://doi.org/10.1016/j.quascirev.2009.05.020, 2009.
de Wet, G. A., Balascio, N. L., D'Andrea, W. J., Bakke, J., Bradley, R. S., and Perren, B.: Holocene glacier activity reconstructed from proglacial lake
Gjøavatnet on Amsterdamøya, NW Svalbard, Quaternary Sci. Rev., 183,
188–203, https://doi.org/10.1016/j.quascirev.2017.03.018, 2018.
Einarsson, M. Á.: Climate of Iceland, World Survey of Climatology, 15,
673–697, 1984.
ESWG – Ecological Stratification Working Group: A national ecological
framework for Canada, Agriculture and Agri-Food Canada, Ottawa,
Ontario/Hull, Quebec, Canada, 1995.
Farnsworth, W. R., Ingólfsson, Ó., Alexanderson, H., Allaart, L.,
Forwick, M., Noormets, R., Retelle, M., and Schomacker, A.: Holocene glacial
history of Svalbard: Status, perspectives and challenges, Earth-Sci. Rev., 208, 103249, https://doi.org/10.1016/j.earscirev.2020.103249, 2020.
Fisher, D., Zheng, J., Burgess, D., Zdanowicz, C., Kinnard, C., Sharp, M.,
and Bourgeois, J.: Recent melt rates of Canadian arctic ice caps are the
highest in four millennia, Global Planet. Change, 84, 3–7,
https://doi.org/10.1016/j.gloplacha.2011.06.005, 2012.
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and
Skaugen, T. E.: Temperature and precipitation development at Svalbard
1900–2100, Adv. Meteorol., 2011, 893790, https://doi.org/10.1155/2011/893790, 2011.
Geirsdóttir, Á., Miller, G. H., Axford, Y., and Ólafsdóttir,
S.: Holocene and latest Pleistocene climate and glacier fluctuations in
Iceland, Quaternary Sci. Rev., 28, 2107–2118,
https://doi.org/10.1016/j.quascirev.2009.03.013, 2009.
Geirsdóttir, Á., Miller, G. H., Larsen, D. J., and Ólafsdóttir, S.: Abrupt Holocene climate transitions in the northern North Atlantic region recorded by synchronized lacustrine records in Iceland, Quaternary Sci. Rev., 70, 48–62, https://doi.org/10.1016/j.quascirev.2013.03.010, 2013.
Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019.
Gross, G., Kerschner, H., and Patzelt, G.: Methodische Untersuchungen
über die schneegrenze in alpinen gletschergebieten, Zeitschrift für Gletscherkunde und Glazialgeologie, 12, 223–251, 1976.
Haflidason, H., Zweidorff, J. L., Baumer, M., Gyllencreutz, R., Svendsen, J. I., Gladysh, V., and Logvina, E.: The lastglacial and Holocene
seismostratigraphy and sediment distribution of Lake Bolshoye Shchuchye,
polar ural mountains, arctic Russia, Boreas, 48, 452–469,
https://doi.org/10.1111/bor.12387, 2019.
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., AB, S., and
Sorteberg, A.: Climate in Svalbard 2100 – A knowledge base for climate
adaptation, NCCS Report 1/2019, Norwegian Centre for Climate Services, Oslo, https://www.miljodirektoratet.no/globalassets/publikasjoner/M1242/M1242.pdf (last access: 15 July 2021), 2019.
Harning, D. J., Geirsdóttir, Á., Miller, G. H., and Zalzal, K.: Early
Holocene deglaciation of Drangajökull, Vestfirðir,
Iceland, Quaternary Sci. Rev., 153, 192–198, https://doi.org/10.1016/j.quascirev.2016.09.030, 2016a.
Harning, D. J., Geirsdóttir, Á., Miller, G. H., and Anderson, L.:
Episodic expansion of Drangajökull, Vestfirðir, Iceland, over the
last 3 ka culminating in its maximum dimension during the Little Ice Age,
Quaternary Sci. Rev., 152, 118–131, https://doi.org/10.1016/j.quascirev.2016.10.001, 2016b.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E., Ramsey, C.B., Grootes, P. M., Hughen, K. A., Kromer, B., and Reimer,
P. J.: Marine20 – The marine radiocarbon age calibration curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hoffman, J. S., Carlson, A. E., Winsor, K., Klinkhammer, G. P., LeGrande, A. N., Andrews, J. T., and Strasser, J. C.: Linking the 8.2 ka event and its
freshwater forcing in the Labrador Sea, Geophys. Res. Lett., 39, L18703,
https://doi.org/10.1029/2012GL053047, 2012.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, 2021.
Huntington, H. P., Carey, M., Apok, C., Forbes, B. C., Fox, S., Holm, L. K.,
Ivanova, A., Jaypoody, J., Noongwook, G., and Stammler, F.: Climate change in
context: putting people first in the Arctic, Reg. Environ. Change, 19, 1217–1223, 2019.
Jennings, A., Andrews, J., Pearce, C., Wilson, L., and Ólfasdótttir,
S.: Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for
freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet
into the subpolar gyre, Quaternary Sci. Rev., 107, 62–80,
https://doi.org/10.1016/j.quascirev.2014.10.022, 2015.
Kaplan, M. R. and Wolfe, A. P.: Spatial and temporal variability of Holocene
temperature in the North Atlantic region, Quaternary Res., 65, 223–231,
https://doi.org/10.1016/j.yqres.2005.08.020, 2006.
Karlén, W.: Lacustrine sediments and tree–limit variations as
indicators of Holocene climatic fluctuations in Lappland, northern
Sweden, Geogr. Ann. A, 58, 1–34, https://doi.org/10.1080/04353676.1976.11879921, 1976.
Karlén, W.: Lacustrine sediment studies: A technique to obtain a
continous record of Holocene glacier variations, Geogr. Ann. A, 63, 273–281,
https://doi.org/10.1080/04353676.1981.11880042, 1981.
Karlén, W. and Matthews, J. A.: Reconstructing Holocene glacier
variations from glacial lake sediments: studies from Nordvestlandet and
Jostedalsbreen–Jotunheimen, southern Norway, Geogr. Ann. A, 74, 327–348, https://doi.org/10.1080/04353676.1992.11880374, 1992.
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P. S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a multi-method reconstruction approach, Scientific Data, 7, 1–13, 2020.
Kaufman, D. S. and Manley, W. F.: Pleistocene maximum and Late Wisconsinan
glacier extents across Alaska, USA, Developments in Quaternary Sciences, 2,
9–27, https://doi.org/10.1016/S1571-0866(04)80182-9, 2004.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., and Dyke, A. S.: Holocene thermal maximum in the western Arctic (0–180∘ W), Quaternary Sci. Rev., 23, 529–560,
https://doi.org/10.1016/j.quascirev.2003.09.007, 2004.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T., Vinther, B. M., and Lakes, A.: Recent warming reverses long-term Arctic
cooling, Science, 325, 1236–1239, 2009.
Kaufman, D. S., Axford, Y. L., Henderson, A. C. G., McKay, N. P., Oswald, W. W., Saenger, C., Anderson, R. S., Bailey, H. L., Clegg, B., Gajewski, K.,
Hu, F. S., Jones, M. C., Massa, C., Routson, C. C., Werner, A., Wooller, M. J., and Yu, Z.: Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence, Quaternary Sci. Rev., 147, 312–339, 2016.
Kelly, M. A. and Lowell, T. V.: Fluctuations of local glaciers in Greenland
during latest Pleistocene and Holocene time, Quaternary Sci. Rev., 28,
2088–2106, https://doi.org/10.1016/j.quascirev.2008.12.008, 2009.
Knudsen, N. T., Nørnberg, P., Yde, J. C., Hasholt, B., and Heinemeier, J.:
Recent marginal changes of the Mittivakkat Glacier, Southeast Greenland and
the discovery of remains of reindeer (Rangifer tarandus), polar bear (Ursus maritimus) and peaty material, Geogr. Tidsskr.-Den., 108, 137–142, https://doi.org/10.1080/00167223.2008.10649579, 2008.
Koerner, R. M.: Mass balance of glaciers in the Queen Elizabeth Islands,
Nunavut, Canada, Ann. Glaciol., 42, 417–423, https://doi.org/10.3189/172756405781813122, 2005.
LaBrecque, T. S. and Kaufman, D. S.: Holocene glacier fluctuations inferred
from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska, Quaternary
Res., 85, 34–43, https://doi.org/10.1016/j.yqres.2015.11.004, 2016.
Larocca, L.: Holocene lake-based Arctic glacier and ice cap records, NSF Arctic Data Center [data set], https://doi.org/10.18739/A22805070, 2021.
Larocca, L. J., Axford, Y., Bjørk, A. A., Lasher, G. E., and Brooks, J. P.: Local glaciers record delayed peak Holocene warmth in south Greenland, Quaternary Sci. Rev., 241, 106421, https://doi.org/10.1016/j.quascirev.2020.106421, 2020a.
Larocca, L. J., Axford, Y., Woodroffe, S. A., Lasher, G. E., and Gawin, B.:
Holocene glacier and ice cap fluctuations in southwest Greenland inferred
from two lake records, Quaternary Sci. Rev., 246, 106529,
https://doi.org/10.1016/j.quascirev.2020.106529, 2020b.
Larsen, D. J., Miller, G. H., Geirsdóttir, Á., and Ólafsdóttir, S.: Non–linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland, Quaternary Sci. Rev., 39, 14–25, https://doi.org/10.1016/j.quascirev.2012.02.006, 2012.
Larsen, N. K., Strunk, A., Levy, L. B., Olsen, J., Bjørk, A., Lauridsen,
T. L., Jeppesen, E., and Davidson, T. A.: Strong altitudinal control on the
response of local glaciers to Holocene climate change in southwest Greenland, Quaternary Sci. Rev., 168, 69–78, https://doi.org/10.1016/j.quascirev.2017.05.008, 2017.
Larsen, N. K., Levy, L. B., Strunk, A., Søndergaard, A. S., Olsen, J., and
Lauridsen, T. L.: Local ice caps in finderup land, north Greenland, survived
the Holocene thermal maximum, Boreas, 48, 551–562, https://doi.org/10.1111/bor.12384, 2019.
Larsen, N. K., Siggaard-Andersen, M. L., Bjørk, A. A., Kjeldsen, K. K.,
Ruter, A., Korsgaard, N. J., and Kjær, K. H.: Holocene ice margin
variations of the Greenland Ice Sheet and local glaciers around Sermilik
Fjord, southeast Greenland, Quatern. Int., 607, 10–21,
https://doi.org/10.1016/j.quaint.2021.06.001, 2021a.
Larsen, N. K., Søndergaard, A. S., Levy, L. B., Laursen, C. H., Bjørk,
A. A., Kjeldsen, K. K., Funder, S., Strunk, A., Olsen, J., and Kjær, K. H.: Cosmogenic nuclide inheritance in Little Ice Age moraines – A case study from Greenland, Quat. Geochronol., 65, 101200, https://doi.org/10.1016/j.quageo.2021.101200, 2021b.
Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L.,
Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke,
A. S.: High Arctic Holocene temperature record from the Agassiz ice cap and
Greenland ice sheet evolution, P. Natl. Acad. Sci. USA, 114, 5952–5957,
https://doi.org/10.1073/pnas.1616287114, 2017.
Lemmen, D. S., Gilbert, R., Smol, J. P., and Hall, R. I.: Holocene sedimentation in glacial Tasikutaaq Lake, Baffin Island, Can. J. Earth Sci., 25, 810–823, https://doi.org/10.1139/e88-080, 1988.
Leonard, E. M.: Glaciological and climatic controls on lake sedimentation,
Canadian Rocky Mountains, Zeitschrift für Gletscherkunde und
Glazialgeologie, 21, 35–42, 1985.
Leonard, E. M.: Use of lacustrine sedimentary sequences as indicators of
Holocene glacial history, Banff National Park, Alberta, Canada, Quaternary
Res., 26, 218–231, https://doi.org/10.1016/0033-5894(86)90106-7, 1986.
Levy, L. B., Kaufman, D. S., and Werner, A.: Holocene glacier fluctuations,
Waskey Lake, northeastern Ahklun Mountains, southwestern Alaska, The
Holocene, 14, 185–193, https://doi.org/10.1191/0959683604hl675rp, 2004.
Levy, L. B., Kelly, M. A., Lowell, T. V., Hall, B. L., Hempel, L. A., Honsaker, W. M., Lusas, A. R., Howley, J. A., and Axford, Y. L.: Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin, Quaternary Sci. Rev., 92, 357–368, https://doi.org/10.1016/j.quascirev.2013.06.024, 2014.
Lie, Ø., Dahl, S. O., Nesje, A., Matthews, J. A., and Sandvold, S.: Holocene fluctuations of a polythermal glacier in high-alpine eastern Jotunheimen, central-southern Norway, Quaternary Sci. Rev., 23, 1925–1945,
https://doi.org/10.1016/j.quascirev.2004.03.012, 2004.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L.,
Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The
Holocene temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014.
Lochte, A. A., Repschläger, J., Kienast, M., Garbe–Schönberg, D.,
Andersen, N., Hamann, C., and Schneider, R.: Labrador Sea freshening at 8.5 ka BP caused by Hudson Bay Ice Saddle collapse, Nat. Commun., 10, 586, https://doi.org/10.1038/s41467-019-08408-6, 2019.
Lowell, T. V., Hall, B. L., Kelly, M. A., Bennike, O., Lusas, A. R., Honsaker, W., Smith, C. A., Levy, L. B., Travis, S., and Denton, G. H.: Late Holocene expansion of Istorvet ice cap, Liverpool Land, east Greenland, Quaternary Sci. Rev., 63, 128–140, https://doi.org/10.1016/j.quascirev.2012.11.012,
2013.
Lubinski, D. J., Forman, S. L., and Miller, G. H.: Holocene glacier and climate fluctuations on Franz Josef Land, Arctic Russia, 80∘ N, Quaternary Sci. Rev., 18, 85–108, https://doi.org/10.1016/S0277-3791(97)00105-4, 1999.
Matthews, J. A. and Karlén, W.: Asynchronous neoglaciation and Holocene
climatic change reconstructed from Norwegian glaciolacustrine sedimentary
sequences, Geology, 20, 991–994, https://doi.org/10.1130/0091-7613(1992)020<0991:ANAHCC>2.3.CO;2, 1992.
Matthews, J. A., Dahl, S. O., Nesje, A., Berrisford, M. S., and Andersson, C.: Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores, Quaternary Sci. Rev., 19, 1625–1647, https://doi.org/10.1016/S0277-3791(00)00008-1, 2000.
McKay, N. P. and Kaufman, D. S.: Holocene climate and glacier variability at
Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska, J.
Paleolimnol., 41, 143–159, 2009.
McKay, N.P., Kaufman, D. S., Routson, C. C., Erb, M. P., and Zander, P. D.: The onset and rate of Holocene Neoglacial cooling in the Arctic, Geophys. Res. Lett., 45, 12487–12496, https://doi.org/10.1029/2018GL079773, 2018.
Medford, A. K., Hall, B. L., Lowell, T. V., Kelly, M. A., Levy, L. B., Wilcox, P. S., and Axford, Y.: Holocene glacial history of Renland Ice Cap, East Greenland, reconstructed from lake sediments, Quaternary Sci. Rev., 258,
106883, https://doi.org/10.1016/j.quascirev.2021.106883, 2021.
Miller, G. H., Wolfe, A. P., Briner, J. P., Sauer, P. E., and Nesje, A.: Holocene glaciation and climate evolution of Baffin Island, Arctic Canada, Quaternary Sci. Rev., 24, 1703–1721, https://doi.org/10.1016/j.quascirev.2004.06.021,
2005.
Miller, G. H., Brigham–Grette, J., Alley, R. B., Anderson, L., Bauch, H. A.,
Douglas, M. S. V., Edwards, M. E., Elias, S. A., Finney, B. P., Fitzpatrick, J. J., and Funder, S. V.: Temperature and precipitation history of the
Arctic, Quaternary Sci. Rev., 29, 1679–1715, https://doi.org/10.1016/j.quascirev.2010.03.001, 2010.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., and Anderson, C.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Miller, G. H., Lehman, S. J., Refsnider, K. A., Southon, J. R., and Zhong, Y.: Unprecedented recent summer warmth in Arctic Canada, Geophys. Res. Lett., 40, 5745–5751, https://doi.org/10.1002/2013GL057188, 2013.
Miller, G. H., Landvik, J. Y., Lehman, S. J., and Southon, J. R.: Episodic
Neoglacial snowline descent and glacier expansion on Svalbard reconstructed
from the 14C ages of ice-entombed plants, Quaternary Sci. Rev., 155,
67–78, https://doi.org/10.1016/j.quascirev.2016.10.023, 2017.
Mitchell, J. F., Grahame, N. S., and Needham, K. J.: Climate simulations for
9000 years before present: Seasonal variations and effect of the Laurentide
ice sheet, J. Geophys. Res., 93, 8283–8303, https://doi.org/10.1029/JD093iD07p08283, 1988.
Moore, J. J., Hughen, K. A., Miller, G. H., and Overpeck, J. T.: Little Ice Age recorded in summer temperature reconstruction from vared sediments of Donard Lake, Baffin Island, Canada, J. Paleolimnol., 25, 503–517, 2001.
Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J., and Jansen, E.: Sea surface temperatures and ice rafting in the Holocene North Atlantic: climate influences on northern Europe and Greenland, Quaternary Sci. Rev., 23, 2113–2126, https://doi.org/10.1016/j.quascirev.2004.08.003, 2004.
Nesje, A.: Latest Pleistocene and Holocene alpine glacier fluctuations in
Scandinavia, Quaternary Sci. Rev., 28, 2119–2136, https://doi.org/10.1016/j.quascirev.2008.12.016, 2009.
Nesje, A., Dahl, S. O., Løvlie, R., and Sulebak, J. R.: Holocene glacier
activity at the southwestern part of Hardangerjøkulen, central–southern
Norway: evidence from lacustrine sediments, The Holocene, 4, 377–382,
https://doi.org/10.1177/095968369400400405, 1994.
Nesje, A., Dahl, S. O., and Løvlie, R.: Late Holocene glaciers and
avalanche activity in the Ålfotbreen area, western Norway: evidence from
a lacustrine sedimentary record, Norsk Geol. Tidsskr., 75, 120–126, 1995.
Nesje, A., Dahl, S. O., Andersson, C., and Matthews, J. A.: The lacustrine
sedimentary sequence in Sygneskardvatnet, western Norway: a continuous,
high–resolution record of the Jostedalsbreen ice cap during the
Holocene, Quaternary Sci. Rev., 19, 1047–1065,
https://doi.org/10.1016/S0277-3791(99)00090-6, 2000.
Nesje, A., Matthews, J. A., Dahl, S. O., Berrisford, M. S., and Andersson, C.: Holocene glacier fluctuations of Flatebreen and winter-precipitation
changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine sediment records, The Holocene, 11, 267–280,
https://doi.org/10.1191/095968301669980885, 2001.
Nesje, A., Bjune, A. E., Bakke, J., Dahl, S. O., Lie, Ø., and Birks, H. J. B.: Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway,
with particular reference to the 8200 cal. yr BP event, The Holocene, 16,
717–729, https://doi.org/10.1191/0959683606hl954rp, 2006.
Nesje, A., Bakke, J., Dahl, S. O., Lie, Ø., and Matthews, J. A.: Norwegian
mountain glaciers in the past, present and future, Global Planet. Change, 60, 10–27, https://doi.org/10.1016/j.gloplacha.2006.08.004, 2008.
Oerlemans, J.: Extracting a climate signal from 169 glacier records, Science, 308, 675–677, 2005.
Oien, R. P., Spagnolo, M., Rea, B. R., Barr, I. D., and Bingham, R. G.: Climatic controls on the equilibrium–line altitudes of Scandinavian cirque
glaciers, Geomorphology, 352, 106986, https://doi.org/10.1016/j.geomorph.2019.106986, 2020.
Ólafsson, H., Furger, M., and Brümmer, B.: The weather and climate of Iceland, Meteorol. Z., 16, 5–8, https://doi.org/10.1127/0941-2948/2007/0185, 2007.
IPCC: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Reisinger, A., IPCC, Geneva, Switzerland, 104 pp., 2007.
Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., and Ribolini, A.: A GIS tool for automatic calculation of glacier equilibrium-line altitudes, Comput. Geosci., 82, 55–62, https://doi.org/10.1016/j.cageo.2015.05.005, 2015.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington,
M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Ramaswamy, V., Boucher, O., Haigh, J., Hauglustine, D., Haywood, J., Myhre,
G., Nakajima, T., Shi, G., and Solomon, S.: Radiative forcing of climate
change, Chapter 6, in: Climate Change, 349–416, https://www.ipcc.ch/site/assets/uploads/2018/03/TAR-06.pdf (last access: 15 July 2021), 2001.
Radić, V. and Hock, R.: Regionally differentiated contribution of
mountain glaciers and ice caps to future sea-level rise, Nat. Geosci., 4,
91–94, 2011.
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley,
J. G.: Regional and global projections of twenty–first century glacier mass
changes in response to climate scenarios from global climate models, Clim.
Dynam., 42, 37–58, 2014.
Raup, B., Kääb, A., Kargel, J. S., Bishop, M. P., Hamilton, G., Lee,
E., Paul, F., Rau, F., Soltesz, D., Khalsa, S. J. S., and Beedle, M.: Remote
sensing and GIS technology in the Global Land Ice Measurements from Space
(GLIMS) project, Comput. Geosci., 33, 104–125, https://doi.org/10.1016/j.cageo.2006.05.015, 2007.
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., and Grootes, P. M.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., and Fichefet, T.: The spatial and temporal complexity of the Holocene thermal
maximum, Nat. Geosci., 2, 411–414, 2009.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines, Version 6.0, Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, Digital Media [data set], https://doi.org/10.7265/N5-RGI-60, 2017.
Rosqvist, G., Jonsson, C., Yam, R., Karlén, W., and Shemesh, A.: Diatom
oxygen isotopes in pro-glacial lake sediments from northern Sweden: a 5000
year record of atmospheric circulation, Quaternary Sci. Rev., 23, 851–859,
https://doi.org/10.1016/j.quascirev.2003.06.009, 2004.
Røthe, T. O., Bakke, J., Vasskog, K., Gjerde, M., D'Andrea, W. J., and
Bradley, R. S.: Arctic Holocene glacier fluctuations reconstructed from lake
sediments at Mitrahalvøya, Spitsbergen, Quaternary Sci. Rev., 109,
111–125, https://doi.org/10.1016/j.quascirev.2014.11.017, 2015.
Røthe, T. O., Bakke, J., Støren, E. W., and Bradley, R. S.: Reconstructing Holocene glacier and climate fluctuations from lake sediments in Vårfluesjøen, northern Spitsbergen, Front. Earth Sci., 6, 91,
https://doi.org/10.3389/feart.2018.00091, 2018.
Shakesby, R. A., Smith, J. G., Matthews, J. A., Winkler, S., Dresser, P. Q.,
Bakke, J., Dahl, S. O., Lie, Ø., and Nesje, A.: Reconstruction of Holocene
glacier history from distal sources: glaciofluvial stream–bank mires and a
glaciolacustrine sediment core near Sota Sæter, Breheimen, southern
Norway, The Holocene, 17, 729–745, https://doi.org/10.1177/0959683607080514, 2007.
Schomacker, A., Brynjólfsson, S., Andreassen, J. M., Gudmundsdóttir,
E. R., Olsen, J., Odgaard, B. V., Håkansson, L., Ingólfsson, Ó.,
and Larsen, N. K.: The Drangajökull ice cap, northwest Iceland, persisted
into the early-mid Holocene, Quaternary Sci. Rev., 148, 68–84,
https://doi.org/10.1016/j.quascirev.2016.07.007, 2016.
Schweinsberg, A. D., Briner, J. P., Miller, G. H., Bennike, O., and Thomas,
E. K.: Local glaciation in West Greenland linked to North Atlantic Ocean
circulation during the Holocene, Geology, 45, 195–198,
https://doi.org/10.1130/G38114.1, 2017.
Schweinsberg, A. D., Briner, J. P., Miller, G. H., Lifton, N. A., Bennike, O., and Graham, B. L.: Holocene mountain glacier history in the Sukkertoppen
Iskappe area, southwest Greenland, Quaternary Sci. Rev., 197, 142–161,
https://doi.org/10.1016/j.quascirev.2018.06.014, 2018.
Schweinsberg, A. D., Briner, J. P., Licciardi, J. M., Bennike, O., Lifton,
N. A., Graham, B. L., Young, N. E., Schaefer, J. M., and Zimmerman, S. H.:
Multiple independent records of local glacier variability on Nuussuaq, West
Greenland, during the Holocene, Quaternary Sci. Rev., 215, 253–271,
https://doi.org/10.1016/j.quascirev.2019.05.007, 2019.
Seierstad, J., Nesje, A., Dahl, S. O., and Simonsen, J. R.: Holocene glacier
fluctuations of Grovabreen and Holocene snow-avalanche activity
reconstructed from lake sediments in Grningstlsvatnet, western Norway, The
Holocene, 12, 211–222, https://doi.org/10.1191/0959683602hl536rp, 2002.
Sejrup, H. P., Seppä, H., McKay, N. P., Kaufman, D. S., Geirsdóttir, Á., de Vernal, A., Renssen, H., Husum, K., Jennings, A., and Andrews, J. T.: North Atlantic-Fennoscandian Holocene climate trends and mechanisms, Quaternary Sci. Rev., 147, 365–378, https://doi.org/10.1016/j.quascirev.2016.06.005, 2016.
Snowball, I. and Sandgren, P.: Lake sediment studies of Holocene glacial
activity in the Kårsa valley, northern Sweden: contrasts in interpretation, The Holocene, 6, 367–372, https://doi.org/10.1177/095968369600600312, 1996.
Snyder, J. A., Werner, A., and Miller, G. H.: Holocene cirque glacier activity in western Spitsbergen, Svalbard: sediment records from proglacial
Linnévatnet, The Holocene, 10, 555–563, https://doi.org/10.1191/095968300667351697, 2000.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev., 111, 9–34, https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Solomina, O., Ivanov, M., and Bradwell, T.: Lichenometric studies on moraines
in the Polar Urals, Geogr. Ann. A, 92, 81–99, https://doi.org/10.1111/j.1468-0459.2010.00379.x, 2010.
Striberger, J., Björck, S., Holmgren, S., and Hamerlík, L.: The
sediments of Lake Lögurinn – A unique proxy record of Holocene glacial
meltwater variability in eastern Iceland, Quaternary Sci. Rev., 38, 76–88,
https://doi.org/10.1016/j.quascirev.2012.02.001, 2012.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 8.2 [WWW program], http://calib.org/ (last access: 15 July 2021), 2021.
Svendsen, J. I. and Mangerud, J.: Holocene glacial and climatic variations on
Spitsbergen, Svalbard, The Holocene, 7, 45–57, https://doi.org/10.1177/095968369700700105, 1997.
Svendsen, J. I., Færseth, L. M. B., Gyllencreutz, R., Haflidason, H.,
Henriksen, M., Hovland, M. N., Lohne, Ø. S., Mangerud, J., Nazarov, D.,
Regnéll, C., and Schaefer, J. M.: Glacial and environmental changes over
the last 60 000 years in the Polar Ural Mountains, Arctic Russia, inferred
from a high-resolution lake record and other observations from adjacent
areas, Boreas, 48, 407–431, https://doi.org/10.1111/bor.12356, 2019.
Thomas, E. K., Szymanski, J., and Briner, J. P.: Holocene alpine glaciation
inferred from lacustrine sediments on northeastern Baffin Island, Arctic
Canada, J. Quaternary Sci., 25, 146–161, https://doi.org/10.1002/jqs.1286, 2010.
Thomas, E. K., Briner, J. P., Ryan-Henry, J. J., and Huang, Y.: A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea, Geophys. Res. Lett., 43, 5302–5308, https://doi.org/10.1002/2016GL068513, 2016.
Thomas, E. K., Castañeda, I. S., McKay, N. P., Briner, J. P., Salacup, J. M., Nguyen, K. Q., and Schweinsberg, A. D.: A wetter Arctic coincident with
hemispheric warming 8,000 years ago, Geophys. Res. Lett., 45, 10637–10647, https://doi.org/10.1029/2018GL079517, 2018.
van der Bilt, W. G., Bakke, J., Vasskog, K., D'Andrea, W. J., Bradley, R. S.,
and Ólafsdóttir, S.: Reconstruction of glacier variability from lake
sediments reveals dynamic Holocene climate in Svalbard, Quaternary Sci.
Rev., 126, 201–218, https://doi.org/10.1016/j.quascirev.2015.09.003, 2015.
van der Bilt, W. G., Rea, B., Spagnolo, M., Roerdink, D. L., Jørgensen,
S. L., and Bakke, J.: Novel sedimentological fingerprints link shifting
depositional processes to Holocene climate transitions in East Greenland, Global Planet. Change, 164, 52–64, https://doi.org/10.1016/j.gloplacha.2018.03.007, 2018.
Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F., and Birks, H. J. B.: A new approach for reconstructing glacier variability based on lake sediments
recording input from more than one glacier, Quaternary Res., 77, 192–204,
https://doi.org/10.1016/j.yqres.2011.10.001, 2012.
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T.: Observations: Cryosphere, Chapter 4, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 317–382, 2013.
Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen,
S. J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen, K. K., and Blunier, T.: Holocene thinning of the Greenland ice sheet, Nature, 461, 385–388, 2009.
Wittmeier, H. E., Bakke, J., Vasskog, K., and Trachsel, M.: Reconstructing
Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using
multi-proxy fingerprinting of distal glacier-fed lake sediments, Quaternary Sci. Rev., 114, 78–99, https://doi.org/10.1016/j.quascirev.2015.02.007, 2015.
Zander, P. D., Kaufman, D. S., Kuehn, S. C., Wallace, K. L., and Anderson, R. S.: Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska, J. Quaternary Sci., 28, 761–771, https://doi.org/10.1002/jqs.2671, 2013.
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance
observations: a review of the worldwide monitoring network, Ann. Glaciol., 50, 101–111, https://doi.org/10.3189/172756409787769591, 2009.
Zhong, Y., Jahn, A., Miller, G. H., and Geirsdottir, A.: Asymmetric Cooling of the Atlantic and Pacific Arctic During the Past Two Millennia: A Dual
Observation-Modeling Study, Geophys. Res. Lett., 45, 12497–12505, https://doi.org/10.1029/2018GL079447, 2018.
Short summary
This paper synthesizes 66 records of glacier variations over the Holocene from lake archives across seven Arctic regions. We find that summers only moderately warmer than today drove major environmental change across the Arctic in the early Holocene, including the widespread loss of glaciers. In comparison, future projections of Arctic temperature change far exceed estimated early Holocene values in most locations, portending the eventual loss of most of the Arctic's small glaciers.
This paper synthesizes 66 records of glacier variations over the Holocene from lake archives...