Articles | Volume 18, issue 10
https://doi.org/10.5194/cp-18-2381-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2381-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Palynological evidence reveals an arid early Holocene for the northeast Tibetan Plateau
Nannan Wang
Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China
University of the Chinese Academy of Sciences, Beijing 100049, China
Lina Liu
Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China
University of the Chinese Academy of Sciences, Beijing 100049, China
Xiaohuan Hou
Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China
Yanrong Zhang
Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China
Haicheng Wei
Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China
Related authors
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Fang Tian, Weiyu Cao, Xiaohan Liu, Zixin Liu, and Xianyong Cao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-242, https://doi.org/10.5194/essd-2025-242, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We completed a modern pollen dataset obtained from 90 lakes from the Tibetan Plateau (TP), and integrated it with previous modern lacustrine pollen datasets. The comprehensive modern pollen dataset covers the full range of climatic gradients across the TP and all vegetation types. The modern pollen dataset has good predictive power in estimating net primary production and annual precipitation.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Mengna Liao, Kai Li, Yili Jin, Lina Liu, Xianyong Cao, and Jian Ni
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-71, https://doi.org/10.5194/essd-2025-71, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present a modern pollen dataset of 555 pollen count records from 307 sites on the Tibetan Plateau (28–40° N and 75–103° E). Our open-access dataset holds various potential applications in paleoecological and paleoclimatic researches. It offers a scientific foundation for reconstructing changes in climate and vegetation over time and enables the assessment of the reliability of pollen assemblages in representing the dynamics of vegetation cover, functional traits, and plant diversity.
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Qin Yuan, Natasha Barbolini, Catarina Rydin, Dong-Lin Gao, Hai-Cheng Wei, Qi-Shun Fan, Zhan-Jie Qin, Yong-Sheng Du, Jun-Jie Shan, Fa-Shou Shan, and Vivi Vajda
Clim. Past, 16, 2255–2273, https://doi.org/10.5194/cp-16-2255-2020, https://doi.org/10.5194/cp-16-2255-2020, 2020
Short summary
Short summary
Fossil pollen and spores reveal that a strongly seasonal steppe–desert ecosystem existed in the Nangqian Basin, east-central Tibet during the late Eocene (41.2–37.8 Ma). Vegetation was characterized by drought-tolerant shrubs, diverse ferns, and broad-leaved forests. The climate warmed temporarily, then rapidly aridified thereafter due to westward regression of the proto-Paratethys Sea from Eurasia. Sea retreat was a main driver of widespread long-term Asian aridification during the late Eocene.
Cited articles
An, Z., Colman, S. M., Zhou, W., Li, X., Brown, E. T., Jull, A. J. T., Cai,
Y., Huang, Y., Lu, X., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin,
Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z.,
Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F., and Xu, X.: Interplay between
the westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka, Scientific Reports, 2, 619, https://doi.org/10.1038/srep00619, 2012.
Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P.,
Caillon, N., Chappellaz, J., Clausen, H. B., DahlJensen, D., Fischer, H.,
Fluckiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gronvold, K.,
Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J.,
Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M.,
Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H.,
Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn,
D., Schwander, J., Shoji, H., Siggard-Andersen, M. L., Steffensen, J. P.,
Stocker, T., Sveinbjornsdottir, A. E., Svensson, A., Takata, M., Tison, J.
L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White, J. W. C.:
High-resolution record of Northern Hemisphere climate extending into the
last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.
Appleby, P. G.: Chronostratigraphic techniques in recent sediments, in: Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring and Chronological Techniques, edited by: Last, W. M. and Smol, J. P., Kluwer Academic Publishers, Dordrecht, 171–203, ISBN 0-7923-6482-1, 2001.
Birks, H. J. B.: Contributions of Quaternary botany to modern ecology and
biogeography, Plant Ecol. Divers., 12, 189–385,
https://doi.org/10.1080/17550874.2019.1646831, 2019.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian. Anal., 6, 457–474,
https://doi.org/10.1214/ba/1339616472, 2011.
Blaauw, M., Christen, J. A., Aquino Lopez, M. A., Esquivel Vazquez, J.,
Gonzalez V. O. M., Belding, T., Theiler, J., Gough, B., and Karney, C.:
rbacon: age-depth modelling using Bayesian statistics, https://cran.r-project.org/web/packages/rbacon/index.html (last access: 29 March 2022), 2021.
Bryson, R. A.: Airstream climatology of Asia, in: Proceedings of International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology, American Meteorological Society, Boston, MA, 604–617, https://doi.org/10.1007/978-1-935704-19-5_36, 1986.
Cao, X., Herzschuh, U., Telford, R. J., and Ni, J.: A modern pollen–climate
dataset from China and Mongolia: Assessing its potential for climate
reconstruction, Rev. Palaeobot. Palyno., 211, 87–96,
https://doi.org/10.1016/j.revpalbo.2014.08.007, 2014.
Cao, X., Tian, F., Li, K., and Ni, J.: Atlas of pollen and spores for common
plants from the east Tibetan Plateau, National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Paleoenv.tpdc.270735, 2020.
Cao, X., Tian, F., Li, K., Ni, J., Yu, X., Liu, L., and Wang, N.: Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions, Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, 2021.
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., Huang, X.,
Zhao, Y., Sato, T., Birks, H. J. B., Boomer, I., Chen, J., An, C., and
Wünnemann, B.: Holocene moisture evolution in arid central Asia and its
out-of-phase relationship with Asian monsoon history, Quaternary Sci. Rev., 27, 351–364, https://doi.org/10.1016/j.quascirev.2007.10.017, 2008.
Chen, F., Qiang, M., Zhou, A., Xiao, S., Chen, J., and Sun, D.: A 2000-year
dust storm record from Lake Sugan in the dust source area of arid China, J.
Geophys. Res.-Atmos, 118, 2149–2160, https://doi.org/10.1002/jgrd.50140,
2013.
Chen, F., Wu, D., Chen, J., Zhou, A., Yu, J., Shen, J., Wang, S., and Huang,
X.: Holocene moisture and East Asian summer monsoon evolution in the
northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: a
review of conflicting proxies, Quaternary Sci. Rev., 154, 111–129,
https://doi.org/10.1016/j.quascirev.2016.10.021, 2016.
Chen, F., Zhang, J., Liu, J., Cao, X., Hou, J., Zhou, L., Xu, X., Liu, X.,
Wang, M., Wu, D., Huang, L., Zeng, T., Zhang, S., Huang, W., Zhang, X., and
Yang, K.: Climate change, vegetation history, and landscape responses on the
Tibetan Plateau during the Holocene: A comprehensive review, Quaternary Sci. Rev., 243, 106444, https://doi.org/10.1016/j.quascirev.2020.106444, 2020.
Chen, H., Zhu, L., Wang, Y., Ju, J., Ma, Q., and Xu, T.: Paleoclimate
changes over the past 13,000 years recorded by Chibuzhang Co sediments in
the source region of the Yangtze River, China, Palaeogeogr. Palaeocl., 573, 110433, https://doi.org/10.1016/j.palaeo.2021.110433, 2021.
Chen, Z., Ma, H., Cao, G., Zhang, X., Zhou, D., Yao, Y., Tan, H., and Gao,
Z.: Climate-environmental evolution in Gahai Lake area of Qaidam Basin since
Late Last Deglacial Period, Geochimica, 36, 578–584, 2007 (in Chinese with
English abstract).
Cheng, B., Chen, F., and Zhang, J.: Palaeovegetational and
palaeoenvironmental changes since the last deglacial in Gonghe Basin,
northeast Tibetan Plateau, J. Geogr. Sci., 23, 136–146,
https://doi.org/10.1007/s11442-013-0999-5, 2013.
Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M.,
Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J.,
Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T.,
Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A.,
de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S.,
Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate
reconstruction techniques for late Quaternary studies, Earth-Sci. Rev., 210,
103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
Ding, Z. L., Derbyshire, E., Yang, S. L., Sun, J. M., and Liu, T. S.:
Stepwise expansion of desert environment across northern China in the past
3.5 Ma and implications for monsoon evolution, Earth Planet. Sc. Lett.,
237, 45–55, https://doi.org/10.1016/j.epsl.2005.06.036, 2005.
Duan, R., Wei, H., Hou, G., Gao, J., Du, Y., and Qin, Z.: Modern Pollen
Assemblages in Typical Agro-Pastoral Ecotone in the Eastern Tibetan Plateau
and Its Implications for Anthropogenic Activities, Front. Ecol. Evol., 9,
685942, https://doi.org/10.3389/fevo.2021.685942, 2021.
Duan, Y., Zhao, Y., Wu, Y., He, J., Xu, L., Zhang, X., Ma, L., and Qian, R.:
δD values of n-alkanes in sediments from Gahai Lake, Gannan, China:
implications for sources of organic matter, J. Paleolimnol., 56, 95–107,
https://doi.org/10.1007/s10933-016-9895-1, 2016.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D. X., Cai, Y., Zhang, M.,
Lin, Y., Qing, J., An, Z., and Revenaugh, J.: A high-resolution,
absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave,
China, Earth Planet. Sc. Lett., 233, 71–86,
https://doi.org/10.1016/j.epsl.2005.01.036, 2005.
Fægri, K. and Iversen, J.: Textbook of pollen analysis, Munksgaard,
Copenhagen, 1975.
Folk, R. L. and Ward, W. C.: Brazos River bar: a study in the significance
of grain size parameters, J. Sediment. Petrol., 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957.
Håkanson, L. and Jansson, M.: Principles of Lake Sedimentology,
Springer-Verlag, Berlin, ISBN: 978-3-642-69276-5,978-3-642-69274-1, 1983.
Herzschuh, U.: Reliability of pollen ratios for environmental
reconstructions on the Tibetan Plateau, J. Biogeogr., 34, 1265–1273,
https://doi.org/10.1111/j.1365-2699.2006.01680.x, 2007.
Herzschuh, U., Zhang, C., Mischke, S., Herzschuh, R., Mohammadi, F.,
Mingram, B., Kürschner, H., and Riedel, F.: A late Quaternary lake
record from the Qilian Mountains (NW China), evolution of the primary
production and the water depth reconstructed from macrofossil, pollen,
biomarker and isotope data, Global Planet. Change, 46, 361–379,
https://doi.org/10.1016/j.gloplacha.2004.09.024, 2005.
Herzschuh, U., Kürschner, H., and Mischke, S.: Temperature variability
and vertical vegetation belt shifts during the last yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China), Quaternary Res., 66, 133–146, https://doi.org/10.1016/j.yqres.2006.03.001, 2006.
Herzschuh, U., Kramer, A., Mischke, S., and Zhang, C.: Quantitative climate
and vegetation trends since the late glacial on the northeastern Tibetan
Plateau deduced from Koucha Lake pollen spectra, Quaternary Res., 71, 162–171, https://doi.org/10.1016/j.yqres.2008.09.003, 2009.
Herzschuh, U., Birks, H. J. B., Mischke, S., Zhang, C., and Böhner, J.:
A modern pollen-climate calibration set based on lake sediments from the
Tibetan Plateau and its application to a Late Quaternary pollen record from
the Qilian Mountains, J. Biogeogr., 37, 752–766,
https://doi.org/10.1111/j.1365-2699.2009.02245.x, 2010.
Herzschuh, U., Borkowski, J., Schewe, J., Mischke, S., and Tian, F.:
Moisture advection feedback supports strong early-to-mid Holocene monsoon
climate on the eastern Tibetan Plateau as inferred from a pollen-based
reconstruction, Paleogeogr. Paleocl., 402, 44–54,
https://doi.org/10.1016/j.palaeo.2014.02.022, 2014.
Hill, M. O. and Gauch, H. G.: Detrended correspondence analysis: an
improved ordination technique, Vegetatio, 42, 41–58,
https://doi.org/10.1007/BF00048870, 1980.
Huang, X., Peng, W., Rudaya, N., Grimm, E. C., Chen, X., Cao, X., Zhang, J.,
Pan, X., Liu, S., Chen, C., and Chen, F.: Holocene Vegetation and Climate
Dynamics in the Altai Mountains and Surrounding Areas, Geophys. Res. Lett.,
45, 6628–6636, https://doi.org/10.1029/2018GL078028, 2018.
Ji, J., Shen, J., Balsam, W., Chen, J., Liu, L., and Liu, X.: Asian monsoon
oscillations in the northeastern Qinghai–Tibet Plateau since the late glacial
as interpreted from visible reflectance of Qinghai Lake sediments, Earth
Planet. Sc. Lett., 233, 61–70, https://doi.org/10.1016/j.epsl.2005.02.025,
2005.
Juggins, S.: rioja: Analysis of Quaternary Science Data, version 0.9-26, https://CRAN.R-project.org/package=rioja, last access: 28 October 2020.
Kasper, T., Haberzettl, T., Wang, J., Daut, G., Doberschütz, S., Zhu,
L., and Mäusbacher, R.: Hydrological variations on the Central Tibetan
Plateau since the LGM and their teleconnections to inter-regional and
hemispheric climate variations, J. Quaternary Sci., 30, 70–78,
https://doi.org/10.1002/jqs.2759, 2015.
Kramer, A., Herzschuh, U., Mischke, S., and Zhang, C.: Late Glacial
vegetation and climate oscillations on the south-eastern Tibetan Plateau
inferred from the Lake Naleng pollen profile, Quaternary Res., 73, 324–335,
https://doi.org/10.1016/j.yqres.2009.12.003, 2010.
Li, Y., Yu, G., Shen, H., Hu, S., Yao, S., and Yin, G.: Study on lacustrine
sediments responding to climatic precipitation and flood discharge in Lake
Taihu catchment, China, Acta Sediment. Sin., 30, 1099–1105, 2012 (in
Chinese with English abstract).
Liang, W.: Luqu County Annals, Gansu Culture Press, Lanzhou, 2006 (in
Chinese).
Lin, L., Zhang, D., Cao, G., Ouyang, J., Ke, X., Liu, S., Zhang, F., Li, Y.,
and Guo, X.: Responses of soil nutrient traits to grazing intensities in
alpine Kobresia meadows, Acta Ecol. Sin., 36, 4664–4671, 2016 (in Chinese
with English abstract).
Liu, X., Herzschuh, U., Shen, J., Jiang, Q., and Xiao, X.: Holocene
environmental and climatic changes inferred from Wulungu Lake in northern
Xinjiang, China, Quaternary Res., 70, 412–425, https://doi.org/10.1016/j.yqres.2008.06.00, 2008.
Liu, X., Lai Z., Madsen, D., and Zeng, F.: Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai–Tibetan Plateau, J.
Quaternary Sci., 30, 245–257, https://doi.org/10.1002/jqs.2777, 2015.
Liu, X., Vandenberghe, J., An, Z., Li, Y., Jin, Z., Dong, J., and Sun, Y.:
Grain size of Lake Qinghai sediments: implications for riverine input and
Holocene monsoon variability, Palaeogeogr. Palaeocl., 449, 41–51, https://doi.org/10.1016/j.palaeo.2016.02.005, 2016.
Lu, H., Wang, S., Shen, C., Yang, X., Tong, G., and Liao, G.: Spatial
pattern of modern Abies and Picea pollen in the Qinghai-Xizang Plateau, Quaternary Sci., 24, 39–49, 2004 (in Chinese with English abstract).
Lu, H., Wu, N., Liu, K.-B., Zhu, L., Yang, X., Yao, T., Wang, L., Li, Q.,
Liu, X., Shen, C., Li, X., Tong, G., and Jiang, H.: Modern pollen
distributions in Qinghai-Tibetan Plateau and the development of transfer
functions for reconstructing Holocene environmental changes, Quaternary Sci. Rev., 30, 947–966, https://doi.org/10.1016/j.quascirev.2011.01.008, 2011.
Ma, Q., Zhu, L., Lu, X., Wang, Y., Guo, Y., Wang, J., Ju, J., Peng, P., and
Tang, L.: Modern pollen assemblages from surface lake sediments and their
environmental implications on the southwestern Tibetan Plateau, Boreas, 46,
242–253, https://doi.org/10.1111/bor.12201, 2017.
Ma, Q., Zhu, L., Lü, X., Wang, J., Ju, J., Kasper, T., Daut, G., and
Haberzettl, T.: Late glacial and Holocene vegetation and climate variations
at Lake Tangra Yumco, central Tibetan Plateau, Global Planet. Change, 174,
16–25, https://doi.org/10.1016/j.gloplacha.2019.01.004, 2019.
Ma, Y., Liu, K.-B., Feng, Z., Sang, Y., Wang, W., and Sun, A.: A survey of
modern pollen and vegetation along a south–north transect in Mongolia, J.
Biogeogr., 35, 1512–1532, https://doi.org/10.1111/j.1365-2699.2007.01871.x, 2008.
Meyers, P. A.: Applications of organic geochemistry to paleolimnological
reconstructions: a summary of examples from the Laurentian Great Lakes, Org.
Geochem., 34, 261–289, https://doi.org/10.1016/S0146-6380(02)00168-7, 2003.
Meyers, P. A. and Ishiwatari, R.: Lacustrine organic geochemistry – an
overview of indicators of organic matter sources and diagenesis in lake
sediments, Org. Geochem., 20, 867–900,
https://doi.org/10.1016/0146-6380(93)90100-P, 1993.
Miehe, G., Miehe, S., Böhner, J., Kaiser, K., Hensen, I., Madsen, D.,
Liu, J., and Opgenoorth, L.: How old is the human footprint in the world's
largest alpine ecosystem? A review of multiproxy records from the Tibetan
Plateau from the ecologists' viewpoint, Quaternary Sci. Rev., 86, 190–209,
https://doi.org/10.1016/j.quascirev.2013.12.004, 2014.
Mykleby, P. M., Snyder, P. K., and Twine, T. E.: Quantifying the trade-off
between carbon sequestration and albedo in midlatitude and high-latitude
North American forests, Geophys. Res. Lett., 44, 2493–2501,
https://doi.org/10.1002/2016gl071459, 2017.
Nychka, D., Furrer, R., Paige, J., and Sain, S.: fields: Tools for spatial
data, version 12.3, GitHub [code], https://github.com/dnychka/fieldsRPackage, last access: 17 May 2021.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology
Package, version 2.5-4, https://cran.r-project.org/web/packages/vegan/index.html (last access: June 2020), 2019.
Opitz, S., Wünnemann, B., Aichner, B., Dietze, E., Hartmann, K.,
Herzschuh, U., IJmker, J., Lehmkuhl, F., Li, S., Mischke, S., Plotzki, A.,
Stauch, G., and Diekmann, B.: Late Glacial and Holocene development of Lake
Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological
analysis, Palaeogeogr. Palaeocl., 337, 159–176,
https://doi.org/10.1016/j.palaeo.2012.04.013, 2012.
Ota, Y., Kawahata, H., Sato, T., and Seto, K.: Flooding history of Lake
Nakaumi, western Japan, inferred from sediment records spanning the past 700
years, J. Quaternary Sci., 32, 1063–1074, https://doi.org/10.1002/jqs.2982,
2017.
Peng, Y., Xiao, J., Nakamura, T., Liu, B., and Inouchi, Y.: Holocene East
Asian monsoonal precipitation pattern revealed by grain-size distribution of
core sediments of Daihai Lake in Inner Mongolia of north-central China,
Earth Planet. Sc. Lett., 233, 467–479,
https://doi.org/10.1016/j.epsl.2005.02.022, 2005.
Prentice, I. C.: Multidimensional scaling as a research tool in Quaternary
palynology: a review of theory and methods, Rev. Palaeobot. Palyno., 31,
71–104, https://doi.org/10.1016/0034-6667(80)90023-8, 1980.
Qiang, M., Song, L., Chen, F., Li, M., Liu, X., and Wang, Q.: A 16-ka
lake-level record inferred from macrofossils in a sediment core from
Genggahai Lake, northeastern Qinghai-Tibetan Plateau (China), J. Paleolimnol., 49, 575–590, https://doi.org/10.1007/s10933-012-9660-z, 2013.
Qiang, M., Liu, Y., Jin, Y., Song, L., Huang, X., and Chen, F.: Holocene
record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan
plateau, China, Geophys. Res. Lett., 41, 589–595,
https://doi.org/10.1002/2013GL058806, 2014.
Qin, F.: Modern pollen assemblages of the surface lake sediments from the
steppe and desert zones of the Tibetan Plateau, Sci. China Earth Sci., 64,
425–439, https://doi.org/10.1007/s11430-020-9693-y, 2021.
R Core Team: R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, https://www.r-project.org/ (last access: 23 June 2022), 2021.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., Van Der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Shen, C., Liu, K., Tang, L., and Overpeck, J.: Modern pollen rain in the
Tibetan Plateau, Front. Earth Sci., 9, 732441,
https://doi.org/10.3389/feart.2021.732441, 2021.
Shen, J., Liu, X. Q., Wang, S. M., and Matsumoto, R.: Palaeoclimatic changes
in the Qinghai Lake area during the last 18,000 years, Quatern. Int., 136, 131–140, https://doi.org/10.1016/j.quaint.2004.11.014, 2005.
Sun, X., Zhao, Y., and Li, Q.: Holocene peatland development and vegetation
changes in the Zoige Basin, eastern Tibetan Plateau, Sci. China Earth Sci.,
47, 1097–1109, https://doi.org/10.1007/s11430-017-9086-5, 2017.
Tang, L., Mao, L., Shu, J., Li, C., Shen, C., and Zhou, Z.: An Illustrated
Handbook of Quaternary Pollen and Spores in China, Science Press, Beijing, 1–621, ISBN: 978-7-03-050568-2, 2017.
ter Braak, C. J. F. and Prentice, I. C.: A theory of gradient analysis,
Adv. Ecol. Res., 18, 271–317, https://doi.org/10.1016/S0065-2504(08)60183-X, 1988.
ter Braak, C. J. F. and Verdonschot, P. F. M.: Canonical correspondence
analysis and related multivariate methods in aquatic ecology, Aquat. Sci.,
57, 255–289, https://doi.org/10.1007/BF00877430, 1995.
Wang, F., Qian, N., Zhang, Y., and Yang, H.: Pollen Flora of China, Science
Press, Beijing, 1–461, 1995 (in Chinese).
Wang, H., Hu, Y., Zhang, X., Lv, F., Ma, X., W, D., Chen, F., Zhou, A., Hou,
J., and Chen, J.: A 17 ka multi-proxy paleoclimatic record on the northeastern Tibetan Plateau: implications for the northernmost boundary of the Asian summer monsoon during the Holocene, Int. J. Climatol., 42, 191–201, https://doi.org/10.1002/joc.7239, 2021.
Wang, N., Liu, L., Zhang, Y., and Cao, X.: A modern pollen data set for the
forest–meadow–steppe ecotone from the Tibetan Plateau and its potential
use in past vegetation reconstruction, Boreas, 51, 847–858, https://doi.org/10.1111/bor.12589, 2022.
Wang, X., Yi, S., Lu, H., Vandenberghe, J., and Han, Z.: Aeolian process and
climatic changes in loess recorded from the NTP: response to global
temperature forcing since 30 ka, Paleoceanography, 30, 612–620,
https://doi.org/10.1002/2014PA002731, 2015.
Wang, Y., Herzschuh, U., Shumilovskikh, L. S., Mischke, S., Birks, H. J. B., Wischnewski, J., Böhner, J., Schlütz, F., Lehmkuhl, F., Diekmann, B., Wünnemann, B., and Zhang, C.: Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes, Clim. Past, 10, 21–39, https://doi.org/10.5194/cp-10-21-2014, 2014.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y, Shen, C.-C., and Dorale, J. A.: A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China Science, 294, 2345–2348,
https://doi.org/1126/science.1064618, 2001.
Wei, H., Yuan, Q., Xu, Q., Qin, Z., Wang, L., Fan, Q., and Shan, F.:
Assessing the impact of human activities on surface pollen assemblages in
Qinghai Lake Basin, China, J. Quaternary Sci., 33, 702–712,
https://doi.org/10.1002/jqs.3046, 2018.
Wischnewski, J., Mischke, S., Wang, Y., and Herzschuh, U.: Reconstructing
climate variability on the northeastern Tibetan Plateau since the last
Lateglacial – a multi proxy, dual-site approach comparing terrestrial and
aquatic signals, Quaternary Sci. Rev., 30, 82–97,
https://doi.org/10.1016/j.quascirev.2010.10.001, 2011.
Xiao, J., Fan, J., Zhou, L., Zhai, D., Wen, R., and Qin, X.: A model for
linking grain-size component to lake level status of a modern clastic lake,
J. Asian Earth Sci., 69, 149–158,
https://doi.org/10.1016/j.jseaes.2012.07.003, 2013.
Xu, D., Lu, H., Wu, N., Liu, Z., Li, T., Shen, C., and Wang, L.:
Asynchronous marine-terrestrial signals of the last deglacial warming in
East Asia associated with low- and high-latitude climate changes, P. Natl. Acad. Sci. USA., 110, 9657–9662, https://doi.org/10.1073/pnas.1300025110, 2013.
Xu, Q., Li, Y., Yang, X., and Zheng, Z.: Quantitative relationship between
pollen and vegetation in northern China, Sci. China Ser. D, 50, 582–599, https://doi.org/10.1007/s11430-007-2044-y, 2007.
Yan, D. and Wünnemann, B.: Late Quaternary water depth changes in Hala
Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and
sediment properties in multiple sediment records, Quaternary Sci. Rev., 95,
95–114, https://doi.org/10.1016/j.quascirev.2014.04.030, 2014.
Yu, G., Tang, L., Yang, X., Ke, X., and Harrison, S. P.: Modern Pollen
Samples from Alpine Vegetation on the Tibetan Plateau, Global Ecol. Biogeogr., 10, 503–519, https://doi.org/10.1046/j.1466-822x.2001.00258.x,
2001.
Yuan, J., Jiang, X., Huang, W., and Wang, G: Effects of grazing intensity
and grazing season on plant species diversity in alpine meadow, Acta Pratac.
Sin., 13, 16–21, 2004 (in Chinese with English abstract).
Zhao, Y., Yu, Z., and Zhao, W.: Holocene vegetation and climate histories in
the eastern Tibetan Plateau: controls by insolation-driven temperature or
monsoon-derived precipitation changes?, Quaternary Sci. Rev., 30, 1173–1184,
https://doi.org/10.1016/j.quascirev.2011.02.006, 2011.
Zhao, Y., Liu, Y., Guo, Z., Fang, K., Li, Q., and Cao, X.: Abrupt vegetation
shifts caused by gradual climate changes in central Asia during the
Holocene, Science China Earth Sciences, 60, 1317–1327,
https://doi.org/10.1007/s11430-017-9047-7, 2017.
Zhou, J., Wu, J., and Zeng, H.: Extreme flood events over the past 300 years
inferred from lake sedimentary grain sizes in the Altay Mountains,
northwestern China, Chinese Geogr. Sci., 28, 773–783,
https://doi.org/10.1007/s11769-018-0968-0, 2018.
Zhou, W., Yu, S., Burr, G. S., Kukla, G. J., Jull, A. J. T., Xian, F., Xiao,
J., Colman, S. M., Yu, H., Liu, H., Liu, Z., and Kong, X.: Postglacial
changes in the Asian summer monsoon system: A pollen record from the eastern
margin of the Tibetan Plateau, Boreas, 39, 528–539,
https://doi.org/10.1111/j.1502-3885.2010.00150.x, 2010.
Zhu, L., Lü, X., Wang, J., Peng, P., Kasper, T., Daut, G., Haberzettl,
T., Frenzel, P., Li, Q., Yang, R., Schwalb, A., and Mäusbacher, R.:
Climate change on the Tibetan Plateau in response to shifting atmospheric
circulation since the LGM, Scientific Reports, 5, 13318,
https://doi.org/10.1038/srep13318, 2015.
Short summary
We reconstructed the vegetation and climate change since the last 14.2 ka BP from a fossil pollen record together with multiple proxies (grain size, contents of total organic carbon and total nitrogen) on the northeast Tibetan Plateau. The results reveal that an arid climate occurs in the early Holocene and the vegetation could be disturbed by human activities to some extent after ca. 0.24 ka BP (1710 CE).
We reconstructed the vegetation and climate change since the last 14.2 ka BP from a fossil...