Articles | Volume 18, issue 10
https://doi.org/10.5194/cp-18-2321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The 8.2 ka event in northern Spain: timing, structure and climatic impact from a multi-proxy speleothem record
Hege Kilhavn
CORRESPONDING AUTHOR
EDYTEM, Université de Savoie, CNRS Pôle Montagne, Le Bourget du Lac, 73376, France
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, 3010 Victoria, Australia
Isabelle Couchoud
EDYTEM, Université de Savoie, CNRS Pôle Montagne, Le Bourget du Lac, 73376, France
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, 3010 Victoria, Australia
Russell N. Drysdale
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, 3010 Victoria, Australia
Carlos Rossi
Dept. Petrología y Geoquímica, Facultad de Ciencias
Geológicas, Universidad Complutense, 28040 Madrid, Spain
John Hellstrom
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, 3010 Victoria, Australia
Fabien Arnaud
EDYTEM, Université de Savoie, CNRS Pôle Montagne, Le Bourget du Lac, 73376, France
Henri Wong
Australian Nuclear Science and Technology Organisation, Lucas Heights, 2234 NSW, Australia
Related authors
No articles found.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
Geochronology, 7, 335–355, https://doi.org/10.5194/gchron-7-335-2025, https://doi.org/10.5194/gchron-7-335-2025, 2025
Short summary
Short summary
The uranium–thorium (U–Th) and uranium–lead (U–Pb) radiometric dating methods are both suitable for dating carbonate samples ranging in age from about 400 000 to 650 000 years. Here we test agreement between the two methods by dating speleothems (i.e. secondary cave mineral deposits) that are well-suited to both methods. We demonstrate excellent agreement between them and discuss their relative strengths and weaknesses.
Georgina Falster, Gab Abramowitz, Sanaa Hobeichi, Cath Hughes, Pauline Treble, Nerilie J. Abram, Michael I. Bird, Alexandre Cauquoin, Bronwyn Dixon, Russell Drysdale, Chenhui Jin, Niels Munksgaard, Bernadette Proemse, Jonathan J. Tyler, Martin Werner, and Carol Tadros
EGUsphere, https://doi.org/10.5194/egusphere-2025-2458, https://doi.org/10.5194/egusphere-2025-2458, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a random forest approach to produce estimates of monthly precipitation stable isotope variability from 1962–2023, at high resolution across the entire Australian continent. Comprehensive skill and sensitivity testing shows that our random forest models skilfully predict precipitation isotope values in places and times that observations are not available. We make all outputs publicly available, facilitating use in fields from ecology and hydrology to archaeology and forensic science.
Maddalena Passelergue, Isabelle Couchoud, Russell N. Drysdale, John Hellstrom, Dirk L. Hoffmann, and Alan Greig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2945, https://doi.org/10.5194/egusphere-2025-2945, 2025
Short summary
Short summary
The Holocene is marked at 8.2 ka by a North Atlantic freshening event. We investigate its climatic impact in SW France using high-resolution speleothem multiproxy analysis. While the event is seen in some European records, no clear signal appears in ours. This may reflect either limited regional impact, and/or low speleothem sensitivity to the Atlantic event, possibly masked by Mediterranean influence.
Himadri Saini, David K. Hutchinson, Josephine R. Brown, Russell N. Drysdale, Yanxuan Du, and Laurie Menviel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1990, https://doi.org/10.5194/egusphere-2025-1990, 2025
Short summary
Short summary
This study examines how large ice sheets during the last Ice Age influenced global weather patterns. We found that the presence of these ice sheets affected rainfall patterns in regions like Eurasia and Australia. By altering wind and weather systems, they shifted the position of the tropical rainbelt and impacted the circulation of air in both the Northern and Southern Hemispheres. Our research helps us understand past climate changes and their potential effects on future climate patterns.
Calla N. Gould-Whaley, Russell N. Drysdale, Pauline C. Treble, Jan-Hendrik May, Stacey C. Priestley, John C. Hellstrom, Christopher R. Vardanega, and Clare C. Buswell
Clim. Past, 21, 857–876, https://doi.org/10.5194/cp-21-857-2025, https://doi.org/10.5194/cp-21-857-2025, 2025
Short summary
Short summary
Climate change is causing enhanced aridity across many regions of the globe, leading to increased reliance on groundwater resources. We need to understand how groundwater recharge behaves in arid regions over long timescales; unfortunately, arid landscapes tend to preserve very little evidence of their climatic past. We present evidence to suggest that carbonate formations that grow in groundwater can be used as archives of past groundwater recharge in Australia's arid zone.
Hubert B. Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kévin Di Modica, Gregory Abrams, Marjan A. P. van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen H. J. L. van der Lubbe
Clim. Past, 20, 2741–2758, https://doi.org/10.5194/cp-20-2741-2024, https://doi.org/10.5194/cp-20-2741-2024, 2024
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neanderthal child. In this study, we present new uranium series ages of stalagmites from the archeological sequence that allow more precise dating of the archeological finds. One key result is that the Neanderthal child may be slightly older than previously thought.
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024, https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Short summary
The Paleochrono-1.1 probabilistic dating model allows users to derive a common and optimized chronology for several paleoclimatic sites from various archives (ice cores, speleothems, marine cores, lake cores, etc.). It combines prior sedimentation scenarios with chronological information such as dated horizons, dated intervals, stratigraphic links and (for ice cores) Δdepth observations. Paleochrono-1.1 is available under an open-source license.
Carlo Mologni, Marie Revel, Eric Chaumillon, Emmanuel Malet, Thibault Coulombier, Pierre Sabatier, Pierre Brigode, Gwenael Hervé, Anne-Lise Develle, Laure Schenini, Medhi Messous, Gourguen Davtian, Alain Carré, Delphine Bosch, Natacha Volto, Clément Ménard, Lamya Khalidi, and Fabien Arnaud
Clim. Past, 20, 1837–1860, https://doi.org/10.5194/cp-20-1837-2024, https://doi.org/10.5194/cp-20-1837-2024, 2024
Short summary
Short summary
The reactivity of local to regional hydrosystems to global changes remains understated in East African climate models. By reconstructing a chronicle of seasonal floods and droughts from a lacustrine sedimentary core, this paper highlights the impact of El Niño anomalies in the Awash River valley (Ethiopia). Studying regional hydrosystem feedbacks to global atmospheric anomalies is essential for better comprehending and mitigating the effects of global warming in extreme environments.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Timothy Pollard, Jon Woodhead, John Hellstrom, John Engel, Roger Powell, and Russell Drysdale
Geochronology, 5, 181–196, https://doi.org/10.5194/gchron-5-181-2023, https://doi.org/10.5194/gchron-5-181-2023, 2023
Short summary
Short summary
When using the uranium–lead (U–Pb) radiometric dating method on very young materials (e.g. Quaternary age zircon and carbonate minerals), it is important to accurately account for the production and decay of intermediate
daughterisotopes in the uranium-series decay chain. DQPB is open-source software that allows users to easily perform such calculations for a variety of sample types and produce publication-ready graphical outputs of the resulting age information.
Zuorui Liu, Amy Prendergast, Russell Drysdale, and Jan-Hendrik May
E&G Quaternary Sci. J., 71, 227–241, https://doi.org/10.5194/egqsj-71-227-2022, https://doi.org/10.5194/egqsj-71-227-2022, 2022
Short summary
Short summary
Past studies used two sampling strategies, the "bulk" and "sequential" drilling methods, for stable isotopic analysis of mammoth tooth enamel and paleoenvironmental reconstruction. This study applied both methods to the same enamel ridges of multiple mammoth teeth and compared their respective δ18O values. Offsets were detected between the bulk and average sequential δ18O values. The potential reasons for the offsets and their impacts on cross-method data comparison were discussed.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Matej Lipar, Andrea Martín-Pérez, Jure Tičar, Miha Pavšek, Matej Gabrovec, Mauro Hrvatin, Blaž Komac, Matija Zorn, Nadja Zupan Hajna, Jian-Xin Zhao, Russell N. Drysdale, and Mateja Ferk
The Cryosphere, 15, 17–30, https://doi.org/10.5194/tc-15-17-2021, https://doi.org/10.5194/tc-15-17-2021, 2021
Short summary
Short summary
The U–Th ages of subglacial carbonate deposits from a recently exposed surface previously occupied by the disappearing glacier in the SE European Alps suggest the glacier’s presence throughout the entire Holocene. These thin deposits, formed by regelation, would have been easily eroded if exposed during previous Holocene climatic optima. The age data indicate the glacier’s present unprecedented level of retreat and the potential of subglacial carbonates to act as palaeoclimate proxies.
Cited articles
Ait Brahim, Y., Wassenburg, J. A., Sha, L., Cruz, F. W., Deininger, M., Sifeddine, A., Bouchaou, L., Spötl, C., Edwards, R. L., and Cheng, H.: North Atlantic Ice-Rafting, Ocean and Atmospheric Circulation During the Holocene: Insights From Western Mediterranean Speleothems, Geophys. Res. Lett., 46, 7614–7623, https://doi.org/10.1029/2019GL082405, 2019.
Alley, R. B. and Ágústsdóttir, A. M.: The 8k event: cause and
consequences of a major Holocene abrupt climate change, Quaternary Sci.
Rev., 24, 1123–1149, https://doi.org/10.1016/j.quascirev.2004.12.004, 2005.
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and
Clark, P. U.: Holocene climatic instability: A prominent, widespread event
8200 yr ago, Geology, 25, 483–486, https://doi.org/10.1130/0091-7613(1997)025<0483:Hciapw>2.3.Co;2, 1997.
Ancell, R. and Célis, R.: Termopluviometría de Cantabria durante el periodo 1981–2010, Agencia Estatal de Meteorología (AEMET) 10, 1–20, https://doi.org/10.31978/281-12-014-0, 2013.
Andersen, N., Lauterbach, S., Erlenkeuser, H., Danielopol, D. L., Namiotko,
T., Hüls, M., Belmecheri, S., Dulski, P., Nantke, C., Meyer, H.,
Chapligin, B., von Grafenstein, U., and Brauer, A.: Evidence for
higher-than-average air temperatures after the 8.2 ka event provided by a
Central European δ18O record, Quaternary Sci. Rev., 172, 96–108,
https://doi.org/10.1016/j.quascirev.2017.08.001, 2017.
Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S. P., Baker, A., Boyd, M., Kaushal, N., Ahmad, S. M., Ait Brahim, Y., Arienzo, M., Bajo, P., Braun, K., Burstyn, Y., Chawchai, S., Duan, W., Hatvani, I. G., Hu, J., Kern, Z., Labuhn, I., Lachniet, M., Lechleitner, F. A., Lorrey, A., Pérez-Mejías, C., Pickering, R., Scroxton, N., and SISAL Working Group Members: The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems, Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, 2018.
Baeza, E., Lozano, R. P., and Rossi, C.: Replication and reinsertion of
stalagmites sampled for paleoclimatic purposes, Int. J. Speleology, 47,
137–144, https://doi.org/10.5038/1827-806X.47.2.2183, 2018.
Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Woodhead, J.,
Borsato, A., Zanchetta, G., Wallace, M. W., Regattieri, E., and Haese, R.:
“Cryptic” diagenesis and its implications for speleothem geochronologies,
Quaternary Sci. Rev., 148, 17–28, https://doi.org/10.1016/j.quascirev.2016.06.020, 2016.
Baker, A., Genty, D., Dreybrodt, W., Barnes, W. L., Mockler, N. J., and
Grapes, J.: Testing Theoretically Predicted Stalagmite Growth Rate with
Recent Annually Laminated Samples: Implications for Past Stalagmite
Deposition, Geochim. Cosmochim. Ac., 62, 393–404,
https://doi.org/10.1016/S0016-7037(97)00343-8, 1998.
Baker, A., Hartmann, A., Duan, W., Hankin, S., Comas-Bru, L., Cuthbert, M.
O., Treble, P. C., Banner, J., Genty, D., Baldini, L. M., Bartolomé, M.,
Moreno, A., Pérez-Mejías, C., and Werner, M.: Global analysis
reveals climatic controls on the oxygen isotope composition of cave drip
water, Nat. Commun., 10, 2984, https://doi.org/10.1038/s41467-019-11027-w, 2019.
Baldini, L. M., McDermott, F., Baldini, J. U. L., Arias, P., Cueto, M.,
Fairchild, I. J., Hoffmann, D. L., Mattey, D. P., Müller, W., Nita, D.
C., Ontañón, R., Garciá-Moncó, C., and Richards, D. A.:
Regional temperature, atmospheric circulation, and sea-ice variability
within the Younger Dryas Event constrained using a speleothem from northern
Iberia, Earth Planet. Sc. Lett., 419, 101–110, https://doi.org/10.1016/j.epsl.2015.03.015, 2015.
Baldini, L. M., Baldini, J. U. L., McDermott, F., Arias, P., Cueto, M.,
Fairchild, I. J., Hoffmann, D. L., Mattey, D. P., Müller, W., Nita, D.
C., Ontañón, R., Garciá-Moncó, C., and Richards, D. A.:
North Iberian temperature and rainfall seasonality over the Younger Dryas
and Holocene, Quaternary Sci. Rev., 226, 105998, https://doi.org/10.1016/j.quascirev.2019.105998, 2019.
Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J.
T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D.,
and Gagnon, J. M.: Forcing of the cold event of 8200 years ago by
catastrophic drainage of Laurentide lakes, Nature, 400,
344–348, https://doi.org/10.1038/22504, 1999.
Bartolomé, M., Moreno, A., Sancho, C., Stoll, H. M., Cacho, I.,
Spötl, C., Belmonte, Á., Edwards, R. L., Cheng, H., and Hellstrom,
J. C.: Hydrological change in Southern Europe responding to increasing North
Atlantic overturning during Greenland Stadial 1, P. Natl. Acad. Sci. USA, 112, 6568–6572, https://doi.org/10.1073/pnas.1503990112, 2015.
Benson, A., Hoffmann, D. L., Daura, J., Sanz, M., Rodrigues, F., Souto, P.,
and Zilhão, J.: A speleothem record from Portugal reveals phases of
increased winter precipitation in western Iberia during the Holocene,
Holocene, 31, 1339–1350, https://doi.org/10.1177/09596836211011666, 2021.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar
Influence on North Atlantic Climate During the Holocene, Science, 294,
2130–2136, https://doi.org/10.1126/science.1065680, 2001.
Borsato, A., Johnston, V. E., Frisia, S., Miorandi, R., and Corradini, F.:
Temperature and altitudinal influence on karst dripwater chemistry:
Implications for regional-scale palaeoclimate reconstructions from
speleothems, Geochim. Cosmochim. Ac., 177, 275–297,
https://doi.org/10.1016/j.gca.2015.11.043, 2016.
Brauer, A., Endres, C., and Negendank, J. F. W.: Lateglacial calendar year
chronology based on annually laminated sediments from Lake Meerfelder Maar,
Germany, Quatern. Int., 61, 17–25, https://doi.org/10.1016/S1040-6182(99)00014-2, 1999.
Brouard, E., Roy, M., Godbout, P.-M., and Veillette, J. J.: A framework for
the timing of the final meltwater outbursts from glacial Lake
Agassiz-Ojibway, Quaternary Sci. Rev., 274, 107269,
https://doi.org/10.1016/j.quascirev.2021.107269, 2021.
Carlson, A. E. and Clark, P. U.: Ice sheet sources of sea level rise and
freshwater discharge during the last deglaciation, Rev. Geophys., 50, RG4007,
https://doi.org/10.1029/2011RG000371, 2012.
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y.,
Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X.,
and Calvin Alexander, E.: Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Sc. Lett., 371–372, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Comas-Bru, L., Harrison, S. P., Werner, M., Rehfeld, K., Scroxton, N., Veiga-Pires, C., and SISAL working group members: Evaluating model outputs using integrated global speleothem records of climate change since the last glacial, Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, 2019.
Comas-Bru, L., Atsawawaranunt, K., Harrison, S., and SISAL working group members: SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group) database version 2.0, University of Reading [data set], https://doi.org/10.17864/1947.256, 2020.
Corrick, E. C., Drysdale, R. N., Hellstrom, J. C., Capron, E., Rasmussen, S.
O., Zhang, X., Fleitmann, D., Couchoud, I., and Wolff, E.: Synchronous
timing of abrupt climate changes during the last glacial period, Science,
369, 963–969, https://doi.org/10.1126/science.aay5538, 2020.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Denton, G. H. and Karlén, W.: Holocene Climatic Variations – Their
Pattern and Possible Cause, Quaternary Res., 3, 155–205,
https://doi.org/10.1016/0033-5894(73)90040-9, 1973.
Denton, G. H., Alley, R. B., Comer, G. C., and Broecker, W. S.: The role of
seasonality in abrupt climate change, Quaternary Sci. Rev., 24, 1159–1182,
https://doi.org/10.1016/j.quascirev.2004.12.002, 2005.
de Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio
calibration method for the accurate determination of Mg Ca and Sr Ca of marine carbonates by ICP-AES, Geochem. Geophy. Geosy., 3, 2001GC000169, https://doi.org/10.1029/2001GC000169, 2002.
Domínguez-Villar, D., Wang, X., Cheng, H., Martín-Chivelet, J.,
and Lawrence, E. R.: A high-resolution late Holocene speleothem
record from Kaite Cave, northern Spain: δ18O variability and
possible causes, Quatern. Int., 187, 40–51,
https://doi.org/10.1016/j.quaint.2007.06.010, 2008.
Domínguez-Villar, D., Fairchild, I. J., Baker, A., Wang, X., Edwards,
R. L., and Cheng, H.: Oxygen isotope precipitation anomaly in the North
Atlantic region during the 8.2 ka event, Geology, 37, 1095–1098,
https://doi.org/10.1130/G30393A.1, 2009.
Domínguez-Villar, D., Wang, X., Krklec, K., Cheng, H., and Edwards, R.
L.: The control of the tropical North Atlantic on Holocene millennial
climate oscillations, Geology, 45, 303–306,
https://doi.org/10.1130/G38573.1, 2017.
Dreybrodt, W. and Scholz, D.: Climatic dependence of stable carbon and
oxygen isotope signals recorded in speleothems: From soil water to
speleothem calcite, Geochim. Cosmochim. Ac., 75, 734–752,
https://doi.org/10.1016/j.gca.2010.11.002, 2011.
Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett,
M., Cartwright, I., and Piccini, L.: Late Holocene drought responsible for
the collapse of Old World civilizations is recorded in an Italian cave
flowstone, Geology, 34, 101–104, https://doi.org/10.1130/G22103.1, 2006.
Drysdale, R., Couchoud, I., Zanchetta, G., Isola, I., Regattieri, E.,
Hellstrom, J., Govin, A., Tzedakis, P. C., Ireland, T., Corrick, E., Greig,
A., Wong, H., Piccini, L., Holden, P., and Woodhead, J.: Magnesium in
subaqueous speleothems as a potential palaeotemperature proxy, Nat. Commun.,
11, 5027, https://doi.org/10.1038/s41467-020-18083-7, 2020.
Drysdale, R. N., Zanchetta, G., Hellstrom, J. C., Fallick, A. E., and
Cartwright, I.: Stalagmite evidence for the precise timing of North Atlantic
cold events during the early last glacial, Geology, 35, 77–80,
https://doi.org/10.1130/G23161A.1, 2007.
Ellison, C. R. W., Chapman, M. R., and Hall, I. R.: Surface and Deep Ocean
Interactions During the Cold Climate Event 8200 Years Ago, Science, 312,
1929–1932, https://doi.org/10.1126/science.1127213, 2006.
Fairchild, I. J. and Baker, A.: Speleothem Science, John Wiley & Sons,
Ltd, Chicherster, UK, ISBN 978-1-4443-6106-3, 2012.
Fairchild, I. J. and Treble, P. C.: Trace elements in speleothems as
recorders of environmental change, Quaternary Sci. Rev., 28, 449–468,
https://doi.org/10.1016/j.quascirev.2008.11.007, 2009.
Fairchild, I. J., Borsato, A., Tooth, A. F., Frisia, S., Hawkesworth, C. J.,
Huang, Y., McDermott, F., and Spiro, B.: Controls on trace element (Sr–Mg)
compositions of carbonate cave waters: implications for speleothem climatic
records, Chem. Geol., 166, 255–269,
https://doi.org/10.1016/S0009-2541(99)00216-8, 2000.
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C.,
Mattey, D., McDermott, F., and Edinburgh Ion Microprobe Facility: Modification and preservation of
environmental signals in speleothems, Earth-Sci. Rev., 75, 105–153,
https://doi.org/10.1016/j.earscirev.2005.08.003, 2006.
Fairchild, I. J., Spötl, C., Frisia, S., Borsato, A., Susini, J., Wynn,
P. M., and Cauzid, J.: Petrology and geochemistry of annually laminated
stalagmites from an Alpine cave (Obir, Austria): Seasonal cave physiology,
Geol. Soc. Spec. Pub., London, 336, 295–321,
https://doi.org/10.1144/SP336.16, 2010.
Fletcher, W. J., Debret, M., and Goñi, M. F. S.: Mid-Holocene emergence
of a low-frequency millennial oscillation in western Mediterranean climate:
Implications for past dynamics of the North Atlantic atmospheric westerlies,
Holocene, 23, 153–166, https://doi.org/10.1177/0959683612460783, 2012.
Frisia, S., Borsato, A., Preto, N., and McDermott, F.: Late Holocene annual
growth in three Alpine stalagmites records the influence of solar activity
and the North Atlantic Oscillation on winter climate, Earth Planet. Sc.
Lett., 216, 411–424, https://doi.org/10.1016/S0012-821X(03)00515-6, 2003.
García-Escárzaga, A., Gutiérrez-Zugasti, I., Marín-Arroyo,
A. B., Fernandes, R., Núñez de la Fuente, S., Cuenca-Solana, D.,
Iriarte, E., Simões, C., Martín-Chivelet, J., González-Morales,
M. R., and Roberts, P.: Human forager response to abrupt climate change at
8.2 ka on the Atlantic coast of Europe, Sci. Rep., 12, 6481,
https://doi.org/10.1038/s41598-022-10135-w, 2022.
Genty, D., Baker, A., and Vokal, B.: Intra- and inter-annual growth rate of
modern stalagmites, Chem. Geol., 176, 191–212,
https://doi.org/10.1016/S0009-2541(00)00399-5, 2001.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and
Van-Exter, S.: Precise dating of Dansgaard–Oeschger climate oscillations in
western Europe from stalagmite data, Nature, 421, 833–837,
https://doi.org/10.1038/nature01391, 2003.
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M.,
Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., and Bourges, F.: Timing
and dynamics of the last deglaciation from European and North African
δ13C stalagmite profiles – comparison with Chinese and South
Hemisphere stalagmites, Quaternary Sci. Rev., 25, 2118–2142,
https://doi.org/10.1016/j.quascirev.2006.01.030, 2006.
Godbout, P.-M., Roy, M., and Veillette, J. J.: High-resolution varve
sequences record one major late-glacial ice readvance and two drainage
events in the eastern Lake Agassiz-Ojibway basin, Quaternary Sci. Rev., 223,
105942, https://doi.org/10.1016/j.quascirev.2019.105942, 2019.
González-Sampériz, P., Utrilla, P., Mazo, C., Valero-Garcés, B.,
Sopena, M. C., Morellón, M., Sebastián, M., Moreno, A., and
Martínez-Bea, M.: Patterns of human occupation during the early
Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka
climatic event, Quaternary Res., 71, 121–132, https://doi.org/10.1016/j.yqres.2008.10.006, 2009.
Gregoire, L. J., Payne, A. J., and Valdes, P. J.: Deglacial rapid sea level
rises caused by ice-sheet saddle collapses, Nature, 487, 219–222,
https://doi.org/10.1038/nature11257, 2012.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B.,
Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner,
L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55 000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68,
2020.
Hellstrom, J.: U–Th dating of speleothems with high initial 230Th using
stratigraphical constraint, Quat. Geochronol., 1, 289–295,
https://doi.org/10.1016/j.quageo.2007.01.004, 2006.
Hellstrom, J. C.: Rapid and accurate U Th dating using parallel ion-counting multi-collector ICP-MS, J. Anal. Atom. Spectrom., 18, 1346–1351, https://doi.org/10.1039/B308781F, 2003.
Hendy, C. H.: The isotopic geochemistry of speleothems – I. The calculation
of the effects of different modes of formation on the isotopic composition
of speleothems and their applicability as palaeoclimatic indicators, Geochim.
Cosmochim. Ac., 35, 801–824, https://doi.org/10.1016/0016-7037(71)90127-X, 1971.
Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Weaver, A. J.: Absence
of deep-water formation in the Labrador Sea during the last interglacial
period, Nature, 410, 1073–1077, https://doi.org/10.1029/2007GL030396, 2001.
Hillaire-Marcel, C., de Vernal, A., and Piper, D. J. W.: Lake Agassiz Final
drainage event in the northwest North Atlantic, Geophys. Res. Lett., 34, L15601, https://doi.org/10.1029/2007GL030396, 2007.
Huang, Y., Fairchild, I. J., Borsato, A., Frisia, S., Cassidy, N. J.,
McDermott, F., and Hawkesworth, C. J.: Seasonal variations in Sr, Mg and P
in modern speleothems (Grotta di Ernesto, Italy), Chem. Geol., 175, 429–448,
https://doi.org/10.1016/S0009-2541(00)00337-5, 2001.
Jennings, A., Andrews, J., Pearce, C., Wilson, L., and Ólfasdótttir,
S.: Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for
freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet
into the subpolar gyre, Quaternary Sci. Rev., 107, 62–80,
https://doi.org/10.1016/j.quascirev.2014.10.022, 2015.
Katz, A.: The interaction of magnesium with calcite during crystal growth at
25–90 ∘C and one atmosphere, Geochim. Cosmochim. Ac., 37,
1563–1586, https://doi.org/10.1016/0016-7037(73)90091-4, 1973.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Lachniet, M. S.: Climatic and environmental controls on speleothem
oxygen-isotope values, Quaternary Sci. Rev., 28, 412–432,
https://doi.org/10.1016/j.quascirev.2008.10.021, 2009.
Lajeunesse, P. and St-Onge, G.: The subglacial origin of the Lake
Agassiz–Ojibway final outburst flood, Nat. Geosci., 1, 184–188,
https://doi.org/10.1038/ngeo130, 2008.
Li, Y.-X., Törnqvist, T. E., Nevitt, J. M., and Kohl, B.: Synchronizing
a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years
ago, Earth Planet. Sc. Lett., 315–316, 41–50,
https://doi.org/10.1016/j.epsl.2011.05.034, 2012.
Lochte, A. A., Repschläger, J., Kienast, M., Garbe-Schönberg, D.,
Andersen, N., Hamann, C., and Schneider, R.: Labrador Sea freshening at 8.5 ka BP caused by Hudson Bay Ice Saddle collapse, Nat. Commun., 10, 586,
https://doi.org/10.1038/s41467-019-08408-6, 2019.
Ludwig, K.: User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel, Berkeley, CA, Berkeley Geochronological Center Special Publication No. 5, 2012.
Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C., and
Haywood, A. M.: The 8.2 ka cooling event caused by Laurentide ice saddle
collapse, Earth Planet. Sc. Lett., 473, 205–214,
https://doi.org/10.1016/j.epsl.2017.06.011, 2017.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K.
A., David Meeker, L., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren,
K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.
R., and Steig, E. J.: Holocene climate variability, Quaternary Res., 62,
243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
McDermott, F.: Palaeo-climate reconstruction from stable isotope variations
in speleothems: a review, Quaternary Sci. Rev., 23, 901–918,
https://doi.org/10.1016/j.quascirev.2003.06.021, 2004.
Morellón, M., Aranbarri, J., Moreno, A., Gonzáalez-Sampériz, P.,
and Valero-Garcés, B. L.: Early Holocene humidity patterns in the
Iberian Peninsula reconstructed from lake, pollen and speleothem records,
Quaternary Sci. Rev., 181, 1–18, https://doi.org/10.1016/j.quascirev.2017.11.016, 2018.
Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I.,
Valero-Garcés, B., Ito, E., and Edwards, R. L.: A speleothem record of
glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian
Peninsula, Global Planet. Change, 71, 218–231,
https://doi.org/10.1016/j.gloplacha.2009.10.002, 2010.
Moreno, A., Pérez-Mejías, C., Bartolomé, M., Sancho, C., Cacho,
I., Stoll, H., Delgado-Huertas, A., Hellstrom, J. C., Edwards, R. L., and
Cheng, H.: New speleothem data from Molinos and Ejulve caves reveal Holocene
hydrological variability in northeast Iberia, Quaternary Res., 88, 1–11,
https://doi.org/10.1017/qua.2017.39, 2017.
Moreno, A., Iglesias, M., Azorin-Molina, C., Pérez-Mejías, C., Bartolomé, M., Sancho, C., Stoll, H., Cacho, I., Frigola, J., Osácar, C., Muñoz, A., Delgado-Huertas, A., Bladé, I., and Vimeux, F.: Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales, Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, 2021.
Morrill, C., Anderson, D. M., Bauer, B. A., Buckner, R., Gille, E. P., Gross, W. S., Hartman, M., and Shah, A.: Proxy benchmarks for intercomparison of 8.2 ka simulations, Clim. Past, 9, 423–432, https://doi.org/10.5194/cp-9-423-2013, 2013.
NOAA: Paleoclimatology Data, National Centers for Environmental Information, https://www.ncei.noaa.gov/access/paleo-search/, last access: 20 February 2022.
NOAA National Geophysical Data Center: ETOPO1 1 Arc-Minute Global Relief
Model, NOOA National Centers for Environmental Information, https://www.ngdc.noaa.gov/ (last access: 24 February 2022), 2009.
North Grip Ice Core Project Members: High-resolution record of Northern
Hemisphere climate extending into the last interglacial period, Nature, 431,
147–151, https://doi.org/10.1038/nature02805, 2004.
Parker, S. E. and Harrison, S. P.: The timing, duration and magnitude of
the 8.2 ka event in global speleothem records, Sci. Rep., 12, 10542, https://doi.org/10.1038/s41598-022-14684-y, 2022.
Pèlachs, A., Julià, R., Pérez-Obiol, R., Soriano, J. M., Bal,
M.-C., Cunill, R., and Catalan, J.: Potential influence of Bond events on
mid-Holocene climate and vegetation in southern Pyrenees as assessed from
Burg lake LOI and pollen records, Holocene, 21, 95–104,
https://doi.org/10.1177/0959683610386820, 2011.
Pérez-Sanz, A., González-Sampériz, P., Moreno, A.,
Valero-Garcés, B., Gil-Romera, G., Rieradevall, M., Tarrats, P.,
Lasheras-Álvarez, L., Morellón, M., Belmonte, A., Sancho, C.,
Sevilla-Callejo, M., and Navas, A.: Holocene climate variability, vegetation
dynamics and fire regime in the central Pyrenees: the Basa de la Mora
sequence (NE Spain), Quaternary Sci. Rev., 73, 149–169,
https://doi.org/10.1016/j.quascirev.2013.05.010, 2013.
PNOA© Instituto Geográfico Nacional: PNOA – Plan Nacional de
Ortofotographía Aérea, Spanish Geographical Institute,
https://pnoa.ign.es/ (last access: 2 February 2022), 2014.
Railsback, L. B., Liang, F., Romaní, J. R. V., Grandal-d'Anglade, A.,
Rodríguez, M. V., Fidalgo, L. S., Mosquera, D. F., Cheng, H., and
Edwards, R. L.: Petrographic and isotopic evidence for Holocene long-term
climate change and shorter-term environmental shifts from a stalagmite from
the Serra do Courel of northwestern Spain, and implications for climatic
history across Europe and the Mediterranean, Palaeogeogr. Palaeocl., 305, 172–184, https://doi.org/10.1016/j.palaeo.2011.02.030, 2011.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer,
H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Renssen, H., Goosse, H., Fichefet, T., and Campin, J.-M.: The 8.2 kyr BP
event simulated by a Global Atmosphere – Sea-Ice–Ocean Model, Geophys.
Res. Lett., 28, 1567–1570, https://doi.org/10.1029/2000GL012602, 2001.
Rodríguez-Arévalo, J., Diáz-Teijeiro, M. F., and Castaño, S.: Modelling and mapping oxygen-18 isotope composition of precipitation in Spain for hydrologic and climatic applications, in: Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies (IAEA), Proceedings of an International Symposium, Monaco, 27 March–1 April 2011, 171–177, ISBN 978-92-0-135610-9, 2011.
Rohling, E. J. and Pälike, H.: Centennial-scale climate cooling with a
sudden cold event around 8200 years ago, Nature, 434, 975–979,
https://doi.org/10.1038/nature03421, 2005.
Rossi, C. and Lozano, R. P.: Hydrochemical controls on aragonite versus
calcite precipitation in cave dripwaters, Geochim. Cosmochim. Ac., 192,
70–96, https://doi.org/10.1016/j.gca.2016.07.021, 2016.
Rossi, C., Bajo, P., Lozano, R. P., and Hellstrom, J.: Younger Dryas to
Early Holocene paleoclimate in Cantabria (N Spain): Constraints from
speleothem Mg, annual fluorescence banding and stable isotope records,
Quaternary Sci. Rev., 192, 71–85,
https://doi.org/10.1016/j.quascirev.2018.05.025, 2018.
Ruan, J. M.: Characterization of Holocene climate variability in the west of
Europe and Mediterranean basin using high-resolution stalagmite records,
PhD thesis, Sciences mécaniques et énergétiques, matériaux
et géosciences & Météorologie, océanographie physique de
l'environnement, L'Université Paris-Sud, Gif-Sur-Yvette, France, 2016SACLS223, https://www.sudoc.fr/195732987 (last access: 5 March 2022), 2016.
Smith, A. C., Wynn, P. M., Barker, P. A., Leng, M. J., Noble, S. R., and
Tych, W.: North Atlantic forcing of moisture delivery to Europe throughout
the Holocene, Sci. Rep., 6, 24745, https://doi.org/10.1038/srep24745, 2016.
Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S.
J., Arrowsmith, C., White, J. W. C., Vaughn, B., and Popp, T.: The 8.2 ka
event from Greenland ice cores, Quaternary Sci. Rev., 26, 70–81, https://doi.org/10.1016/j.quascirev.2006.07.017, 2007.
Tindall, J. C. and Valdes, P. J.: Modeling the 8.2 ka event using a coupled
atmosphere–ocean GCM, Global Planet. Change, 79, 312–321,
https://doi.org/10.1016/j.gloplacha.2011.02.004, 2011.
Törnqvist, T. E. and Hijma, M. P.: Links between early Holocene
ice-sheet decay, sea-level rise and abrupt climate change, Nat. Geosci., 5,
601–606, https://doi.org/10.1038/ngeo1536, 2012.
Tremaine, D. M. and Froelich, P. N.: Speleothem trace element signatures: A
hydrologic geochemical study of modern cave dripwaters and farmed calcite,
Geochim. Cosmochim. Ac., 121, 522–545, https://doi.org/10.1016/j.gca.2013.07.026, 2013.
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom,
J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B.,
Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.:
Enhanced climate instability in the North Atlantic and southern Europe
during the Last Interglacial, Nat. Commun., 9, 4235, https://doi.org/10.1038/s41467-018-06683-3, 2018.
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen,
S. J.: A Mid-European Decadal Isotope-Climate Record from 15 500 to 5000
Years B.P., Science, 284, 1654–1657, https://doi.org/10.1126/science.284.5420.1654, 1999.
Weiss, H., Courty, M.-A., Wetterstrom, W., Guichard, F., Senior, L., Meadow,
R., and Curnow, A.: The Genesis and Collapse of Third Millennium North
Mesopotamian Civilization, Science, 261, 995–1004,
https://doi.org/10.1126/science.261.5124.995, 1993.
Wiersma, A. P. and Renssen, H.: Model–data comparison for the 8.2kaBP
event: confirmation of a forcing mechanism by catastrophic drainage of
Laurentide Lakes, Quaternary Sci. Rev., 25, 63–88,
https://doi.org/10.1016/j.quascirev.2005.07.009, 2006.
Zielhofer, C., Köhler, A., Mischke, S., Benkaddour, A., Mikdad, A., and Fletcher, W. J.: Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events, Clim. Past, 15, 463–475, https://doi.org/10.5194/cp-15-463-2019, 2019.
Short summary
The analysis of stable carbon and oxygen isotopic ratios, trace element ratios, and growth rate from a Spanish speleothem provides quantitative information on past hydrological conditions during the early Holocene in south-western Europe. Our data show that the cave site experienced increased effective recharge during the 8.2 ka event. Additionally, the oxygen isotopes indicate a change in the isotopic composition of the moisture source, associated with the meltwater flux to the North Atlantic.
The analysis of stable carbon and oxygen isotopic ratios, trace element ratios, and growth rate...