Articles | Volume 18, issue 2
https://doi.org/10.5194/cp-18-209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition
Nick Thompson
CORRESPONDING AUTHOR
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Ulrich Salzmann
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Adrián López-Quirós
Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade
2, 8000, Aarhus C, Denmark
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de
Granada, Granada, Spain
Peter K. Bijl
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Frida S. Hoem
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Johan Etourneau
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de
Granada, Granada, Spain
Marie-Alexandrine Sicre
Sorbonne Université (UPMC, Univ. Paris 06)-CNRS-IRD-MNHN, LOCEAN
Laboratory, Paris, France
Sabine Roignant
Institut Universitaire Européen de la Mer, Plouzane, France
Emma Hocking
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Michael Amoo
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Carlota Escutia
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de
Granada, Granada, Spain
Related authors
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Youcheng Bai, Marie-Alexandrine Sicre, Jian Ren, Vincent Klein, Haiyan Jin, and Jianfang Chen
Biogeosciences, 21, 689–709, https://doi.org/10.5194/bg-21-689-2024, https://doi.org/10.5194/bg-21-689-2024, 2024
Short summary
Short summary
Algal biomarkers were used to assess sea ice and pelagic algal production across the western Arctic Ocean with changing sea-ice conditions. They show three distinct areas along with a marked latitudinal gradient of sea ice over pelagic algal production in surface sediments that are reflected by the H-Print index. Our data also show that efficient grazing consumption accounted for the dramatic decrease of diatom-derived biomarkers in sediments compared to that of particulate matter.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Liang Su, Jian Ren, Marie-Alexandrine Sicre, Youcheng Bai, Ruoshi Zhao, Xibing Han, Zhongqiao Li, Haiyan Jin, Anatolii S. Astakhov, Xuefa Shi, and Jianfang Chen
Clim. Past, 19, 1305–1320, https://doi.org/10.5194/cp-19-1305-2023, https://doi.org/10.5194/cp-19-1305-2023, 2023
Short summary
Short summary
We reconstructed sea ice and organic carbon composition variabilities based on biomarkers and carbon stable isotopes in the northern Chukchi Sea, western Arctic Ocean, over the past 200 years. Under permanent ice cover, organic carbon was dominated by land sources transported by sea ice and ocean currents, while local primary productivity was suppressed by light limitation. Since ice retreated in 20th century, organic carbon from primary production gradually overtook the terrestrial component.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Florence Sylvestre, Mathieu Schuster, Hendrik Vogel, Moussa Abdheramane, Daniel Ariztegui, Ulrich Salzmann, Antje Schwalb, Nicolas Waldmann, and the ICDP CHADRILL Consortium
Sci. Dril., 24, 71–78, https://doi.org/10.5194/sd-24-71-2018, https://doi.org/10.5194/sd-24-71-2018, 2018
Short summary
Short summary
CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions and the most continuous climatic and environmental record to be compared with hominid migrations across northern Africa and the implications for understanding human evolution.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016, https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Short summary
This work represents the first attempt to decipher the linkages between rapid climate changes and continental Holocene paleohydrology in the NW Mediterranean shallow marine setting. Between 11 and 4 ka cal BP, terrigenous input increased and reached a maximum at 7 ka cal BP, probably as a result of a humid phase. From ca. 4 ka cal BP to the present, enhanced variability in the land-derived material is possibly due to large-scale atmospheric circulation and rainfall patterns in western Europe.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
Alan M. Haywood, Harry J. Dowsett, Aisling M. Dolan, David Rowley, Ayako Abe-Ouchi, Bette Otto-Bliesner, Mark A. Chandler, Stephen J. Hunter, Daniel J. Lunt, Matthew Pound, and Ulrich Salzmann
Clim. Past, 12, 663–675, https://doi.org/10.5194/cp-12-663-2016, https://doi.org/10.5194/cp-12-663-2016, 2016
Short summary
Short summary
Our paper presents the experimental design for the second phase of the Pliocene Model Intercomparison Project (PlioMIP). We outline the way in which climate models should be set up in order to study the Pliocene – a period of global warmth in Earth's history which is relevant for our understanding of future climate change. By conducting a model intercomparison we hope to understand the uncertainty associated with model predictions of a warmer climate.
B. Jalali, M.-A. Sicre, M.-A. Bassetti, and N. Kallel
Clim. Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, https://doi.org/10.5194/cp-12-91-2016, 2016
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
M. J. Pound, J. Tindall, S. J. Pickering, A. M. Haywood, H. J. Dowsett, and U. Salzmann
Clim. Past, 10, 167–180, https://doi.org/10.5194/cp-10-167-2014, https://doi.org/10.5194/cp-10-167-2014, 2014
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
S. Desprat, N. Combourieu-Nebout, L. Essallami, M. A. Sicre, I. Dormoy, O. Peyron, G. Siani, V. Bout Roumazeilles, and J. L. Turon
Clim. Past, 9, 767–787, https://doi.org/10.5194/cp-9-767-2013, https://doi.org/10.5194/cp-9-767-2013, 2013
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2
Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum
Climate variability and long-term expansion of peatlands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea)
Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)
Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
U. Kotthoff, D. R. Greenwood, F. M. G. McCarthy, K. Müller-Navarra, S. Prader, and S. P. Hesselbo
Clim. Past, 10, 1523–1539, https://doi.org/10.5194/cp-10-1523-2014, https://doi.org/10.5194/cp-10-1523-2014, 2014
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Cited articles
Anderson, J. B., Warny, S., Askin, R. A., Wellner, J. S., Bohaty, S. M.,
Kirshner, A. E., Livsey, D. N., Simms, A. R., Smith, T. R., Ehrmann, W.,
Lawver, L. A., Barbeau, D., Wise, S. W., Kulhanek, D. K., Weaver, F. M., and
Majewski, W.: Progressive Cenozoic cooling and the demise of Antarctica's
last refugium, P. Natl. Acad. Sci. USA, 108, 11356–11360,
https://doi.org/10.1073/pnas.1014885108, 2011.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher,
M. Q., Anderson, B. E., and Burckle, L. H.: Wind-driven upwelling in the
Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Arias, L. C.: Terrestrial ecosystems on a Greenhouse Earth: Climate and
vegetation in the high southern latitudes during the early Paleogene, PhD
thesis, Faculty of Geosciences and Geography, Johann Wolfgang Goethe
University Frankfurt am Main, Germany, 2015.
Askin, R. A.: Late Cretaceous–early Tertiary Antarctic outcrop evidence for past vegetation and climates, Antarct. Paleoenviron. a Perspect. Glob. Chang. Part One, 56, 61–74, https://doi.org/10.1029/AR056p0061, 1992.
Askin, R. A.: Spores and Pollen from the Mcmurdo Sound Erratics, Antarctica,
in: Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East
Antarctica, 76, edited by: Stilwell, J. D. and Feldmann, R. M., American
Geophysical Union, United States, 161–181,
https://doi.org/10.1029/AR076p0161, 2000.
Askin, R. A. and Raine, J. I.: Oligocene and Early Miocene terrestrial
palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin,
Antarctica, Terra Antart., 7, 493–501, 2000.
Avramidis, P., Iliopoulos, G., Panagiotaras, D., Papoulis, D.,
Lambropoulou, P., Kontopoulos, N., Siavalas, G., and Christanis, K.:
Tracking Mid- to Late Holocene depositional environments by applying
sedimentological, palaeontological and geochemical proxies, Amvrakikos
coastal lagoon sediments, Western Greece, Mediterranean Sea, Quat. Int.,
332, 19–36, https://doi.org/10.1016/j.quaint.2013.09.006, 2014.
Avramidis, P., Nikolaou, K., and Bekiari, V.: Total Organic Carbon and
Total Nitrogen in Sediments and Soils: A Comparison of the Wet Oxidation –
Titration Method with the Combustion-infrared Method, Agric. Agric. Sci.
Proc., 4, 425–430, https://doi.org/10.1016/j.aaspro.2015.03.048, 2015.
Baas, M., Pancost, R., van Geel, B., and Sinninghe Damsté, J. S.: A
comparative study of lipids in Sphagnum species, Org. Geochem., 31,
535–541, https://doi.org/10.1016/S0146-6380(00)00037-1, 2000.
Ballantyne, A. P., Greenwood, D. R., Sinninghe Damsté, J. S., Csank, A.
Z., Eberle, J. J., and Rybczynski, N.: Significantly warmer Arctic surface
temperatures during the Pliocene indicated by multiple independent proxies,
Geology, 38, 603–606, https://doi.org/10.1130/G30815.1, 2010.
Banerjee, S., Bansal, U., Pande, K., and Meena, S. S.: Compositional
variability of glauconites within the Upper Cretaceous Karai Shale
Formation, Cauvery Basin, India: implications for evaluation of
stratigraphic condensation, Sediment. Geol., 331, 12–29,
https://doi.org/10.1016/j.sedgeo.2015.10.012, 2016.
Barker, P. F., Kennett, J. P., and Shipboard Scientific Party: Leg 113, in:
Proceedings of the Ocean Drilling Program Initial Reports of Leg 113,
607–704, https//doi.org/10.29.73/odp.proc.ir.113.1900, 1988.
Barreda, V. D., del Carmen Zamaloa, M., Gandolfo, M. A., Jaramillo, C., and
Wilf, P.: Early Eocene spore and pollen assemblages from the Laguna del
Hunco fossil lake beds, Patagonia, Argentina, Int. J. Plant Sci., 181,
594–615, https://doi.org/10.1086/708386, 2020.
Barreda, V. D., Palazzesi, L., Pujana, R. R., Panti, C., Tapia, M. J.,
Fernández, D. A., and Noetinger, S.: The Gondwanan heritage of the
Eocene–Miocene Patagonian floras, J. South Am. Earth Sci., 107, 103022,
https://doi.org/10.1016/j.jsames.2020.103022, 2021.
Berger, W. H. and Herguera, J. C.: Reading the Sedimentary Record of the
Ocean's Productivity BT – Primary Productivity and Biogeochemical Cycles in
the Sea, edited by: Falkowski, P. G., Woodhead, A. D., and Vivirito, K.,
Springer US, Boston, MA, 455–486,
https://doi.org/10.1007/978-1-4899-0762-2_24, 1992.
Bi, X., Sheng, G., Liu, X., Li, C., and Fu, J.: Molecular and carbon and
hydrogen isotopic composition of n-alkanes in plant leaf waxes, Org.
Geochem., 36, 1405–1417,
https://doi.org/10.1016/j.orggeochem.2005.06.001, 2005.
Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J., and Sangiorgi, F.: Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal, J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, 2018.
Bingham, E. M., McClymont, E. L., Väliranta, M., Mauquoy, D., Roberts,
Z., Chambers, F. M., Pancost, R. D., and Evershed, R. P.: Conservative
composition of n-alkane biomarkers in Sphagnum species: Implications for
palaeoclimate reconstruction in ombrotrophic peat bogs, Org. Geochem.,
41, 214–220, https://doi.org/10.1016/j.orggeochem.2009.06.010, 2010.
Birks, H. J. B. and Line, J. M.: The use of Rarefaction Analysis for
Estimating Palynological Richness from Quaternary Pollen-Analytical Data, Holocene,
2, 1–10, https://doi.org/10.1177/095968369200200101, 1992.
Bohaty, S. M., Kulhanek, D. K., Wise Jr., S. W., Jemison, K., Warny, S.,
and Sjunneskog, C.: Age Assessment of Eocene–Pliocene Drill Cores Recovered
During the SHALDRIL II Expedition, in: Tectonic, Climatic, and Cryospheric Evolution of the Antarctic Peninsula, 63, edited by: Anderson, J. B. and Wellner, J. S., John Wiley & Sons, https://doi.org/10.1029/2010SP001049, 2013.
Bourbonniere, R. A. and Meyers, P. A.: Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie, Limnol. Oceanogr., 41, 352–359, https://doi.org/10.4319/lo.1996.41.2.0352, 1996.
Bowman, V. C., Francis, J. E., Askin, R. A., Riding, J. B., and Swindles,
G. T.: Latest Cretaceous–earliest Paleogene vegetation and climate change
at the high southern latitudes: palynological evidence from Seymour Island,
Antarctic Peninsula, Palaeogeogr. Palaeoclimatol. Palaeoecol., 408, 26–47,
https://doi.org/10.1016/j.palaeo.2014.04.018, 2014.
Bryden, H. L. and Imawaki, S.: Ocean heat transport, Int. Geophys., 77,
455–474, https://doi.org/10.1016/S0074-6142(01)80134-0, 2001.
Bush, R. T. and McInerney, F. A.: Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA, Org. Geochem., 79, 65–73, https://doi.org/10.1016/j.orggeochem.2014.12.003, 2015.
Bush, R. T. and McInerney, F. A.: Influence of temperature and C4 abundance
on n-alkane chain length distributions across the central USA, Org.
Geochem., 79, 65–73, https://doi.org/10.1016/j.orggeochem.2014.12.003,
2015.
Calvert, S. E. and Pedersen, T. F.: Geochemistry of Recent oxic and anoxic
marine sediments: Implications for the geological record, Mar. Geol.,
113, 67–88, https://doi.org/10.1016/0025-3227(93)90150-T, 1993.
Calvo, E., Pelejero, C., Logan, G. A., and De Deckker, P.: Dust-induced
changes in phytoplankton composition in the Tasman Sea during the last four
glacial cycles, Paleoceanography, 19, PA2020,
https://doi.org/10.1029/2003PA000992, 2004.
Cantrill, D. J.: Early Oligocene Nothofagus from CRP-3, Antarctica:
Implications for the vegetation history, Terra Antart., 8, 401–406,
2001.
Cantrill, D. J. and Poole, I.: The heat is on: Paleogene floras and the
Paleocene–Eocene warm period, in: The Vegetation of Antarctica through Geological time, edited by: Cantril, D. J. and Poole, I., Cambridge
University Press, Cambridge, 308–389, https://doi.org/10.1017/CBO9781139024990.008, 2012a.
Cantrill, D. J. and Poole, I.: After the heat: late Eocene to Pliocene
climatic cooling and modification of the Antarctic vegetation, in: The Vegetation of Antarctica through Geological time, edited by: Cantril, D. J. and Poole, I., Cambridge University Press, Cambridge, 390–457,
https://doi.org/10.1017/CBO9781139024990.009, 2012b.
Carter, A., Riley, T. R., Hillenbrand, C.-D., and Rittner, M.: Widespread
Antarctic glaciation during the Late Eocene, Earth Planet. Sci. Lett., 458,
49–57, https://doi.org/10.1016/j.epsl.2016.10.045, 2017.
Chinnock, R. J. and Bell, G. H.: Gleicheniaceae, flora of Australia, 48, 148–161, 1998.
Clark Jr., R. C. and Blumer, M.: Distribution of n-paraffins in marine
organisms and sediment 1, Limnol. Oceanogr., 12, 79–87,
https://doi.org/10.4319/lo.1967.12.1.0079, 1967.
Clowes, C. D.: Stoveracysta, a new gonyaulacacean dinoflagellate genus from the upper Eocene and lower Oligocene of New Zealand, Palynology, 9, 27–35, https://doi.org/10.1080/01916122.1985.9989286, 1985.
Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B.:
Compound-specific δ13C analyses of leaf lipids from plants with
differing carbon dioxide metabolisms, Org. Geochem., 21, 619–627,
https://doi.org/10.1016/0146-6380(94)90008-6, 1994.
Conran, J. G., Kaulfuss, U., Bannister, J. M., Mildenhall, D. C., and Lee,
D. E.: Davallia (Polypodiales: Davalliaceae) macrofossils from early Miocene
Otago (New Zealand) with in situ spores, Rev. Palaeobot. Palynol., 162,
84–94, https://doi.org/10.1016/j.revpalbo.2010.06.001, 2010.
Conran, J. G., Bannister, J. M., Reichgelt, T., and Lee, D. E.: Epiphyllous
fungi and leaf physiognomy indicate an ever-wet humid mesothermal
(subtropical) climate in the late Eocene of southern New Zealand,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 452, 1–10,
https://doi.org/10.1016/j.palaeo.2016.03.032, 2016.
Cook, P. J. and Marshall, J. F.: Geochemistry of iron and phosphorus-rich
nodules from the east Australian continental shelf, Mar. Geol., 41,
205–221, https://doi.org/10.1016/0025-3227(81)90081-5, 1981.
Cookson, I.: Fossil pollen grains of proteaceous type from Tertiary deposits
in Australia, Aust. J. Biol. Sci., 3, 166–177,
https://doi.org/10.1071/BI9500166, 1950.
Cookson, I. C. and Pike, K. M.: Some dicotyledonous pollen types from
Cainozoic deposits in the Australian region, Aust. J. Bot., 2, 197–219,
https://doi.org/10.1071/BT9540197, 1954.
Correa-Metrio, A., Dechnik, Y., Lozano-García, S., and Caballero, M.:
Detrended correspondence analysis: A useful tool to quantify ecological
changes from fossil data sets, Boletín la Soc. Geológica Mex.,
66, 135–143, 2014.
Cox, M. D.: An idealized model of the world ocean. Part I: The global-scale
water masses, J. Phys. Oceanogr., 19, 1730–1752,
https://doi.org/10.1175/1520-0485(1989)019<1730:AIMOTW>2.0.CO;2, 1989.
Coxall, H. K. and Pearson, P. N.: The Eocene-Oligocene transition, in: Deep time perspectives on climate change: Marrying the signal from computer models and biological proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., Geological Society of London, London, 351–387, https://doi.org/10.1144/TMS002.16, 2007.
Cranwell, P. A.: Chain-length distribution of n-alkanes from lake sediments
in relation to post-glacial environmental change, Freshw. Biol., 3,
259–265, https://doi.org/10.1111/j.1365-2427.1973.tb00921.x, 1973.
Cranwell, P. A., Eglinton, G., and Robinson, N.: Lipids of aquatic
organisms as potential contributors to lacustrine sediments – II, Org.
Geochem., 11, 513–527, https://doi.org/10.1016/0146-6380(87)90007-6, 1987.
DeConto, R., Pollard, D., and Harwood, D.: Sea ice feedback and Cenozoic
evolution of Antarctic climate and ice sheets, Paleoceanography, 22, PA3214,
https://doi.org/10.1029/2006PA001350, 2007.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 421, 245–249,
https://doi.org/10.1038/nature01290, 2003.
de Mahiques, M. M., Hanebuth, T. J. J., Nagai, R. H., Bícego, M. C., Figueira, R. C. L., Sousa, S. H. M., Burone, L., Franco-Fraguas, P., Taniguchi, S., Salaroli, A. B., Dias, G. P., Prates, D. M., and Freitas, M. E. F.: Inorganic and organic geochemical fingerprinting of sediment sources and ocean circulation on a complex continental margin (São Paulo Bight, Brazil), Ocean Sci., 13, 209–222, https://doi.org/10.5194/os-13-209-2017, 2017.
Dettmann, M. E. and Jarzen, D. M.: Pollen of proteaceous-type from latest
Cretaceous sediments, southeastern Australia, Alcheringa, 20, 103–160,
https://doi.org/10.1080/03115519608619193, 1996.
Dettmann, M. E., Pocknall, D. T., Romero, E. J., and del Zamaloa, M. C.:
Nothofagidites Erdtman ex Potonié, 1960; a catalogue of species with
notes on the paleogeographic distribution of Nothofagus (Southern Beech),
New Zeal. Geol. Surv. Paleontol. Bull., 60, 1–79, ISSN 0114–2283, 1990.
Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W.
P., Sluijs, A., Schouten, S., and Pagani, M.: Pronounced zonal heterogeneity
in Eocene southern high-latitude sea surface temperatures, 111,
6582–6587, https://doi.org/10.1073/pnas.1321441111, 2014.
Duncan, B., McKay, R., Bendle, J., Naish, T., Inglis, G. N., Moossen, H.,
Levy, R., Ventura, G. T., Lewis, A., and Chamberlain, B.: Lipid biomarker
distributions in Oligocene and Miocene sediments from the Ross Sea region,
Antarctica: Implications for use of biomarker proxies in
glacially-influenced settings, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
516, 71–89, https://doi.org/10.1016/j.palaeo.2018.11.028, 2019.
Eagles, G. and Jokat, W.: Tectonic reconstructions for paleobathymetry in
Drake Passage, Tectonophysics, 611, 28–50, https://doi.org/10.1016/j.tecto.2013.11.021,
2014.
Eagles, G. and Livermore, R. A.: Opening history of Powell Basin, Antarctic
Peninsula, Mar. Geol., 185, 195–205,
https://doi.org/10.1016/S0025-3227(02)00191-3, 2002.
Eglinton, G. and Hamilton, R. J.: The distribu tion of alkanes. Chemical Plant Taxonomy, edited by: Swain, T., 187–217, https://doi.org/10.1016/B978-0-12-395540-1.X5001-5, 1963.
Eiserhardt, W. L., Svenning, J.-C., Kissling, W. D., and Balslev, H.:
Geographical ecology of the palms (Arecaceae): determinants of diversity and
distributions across spatial scales, Ann. Bot., 108, 1391–1416,
https://doi.org/10.1093/aob/mcr146, 2011.
El Frihmat, Y., Hebbeln, D., Jaaidi, E. L. B., and Mhammdi, N.:
Reconstruction of productivity signal and deep-water conditions in Moroccan
Atlantic margin (∼35∘ N) from the last glacial to
the Holocene, Springerplus, 4, 69,
https://doi.org/10.1186/s40064-015-0853-6, 2015.
Elliot, D. H.: Tectonic setting and evolution of the James Ross Basin,
northern Antarctic Peninsula, in: Geology and Paleontology of Seymour
Island, Antarctic Peninsula, edited by: Feldmann, R. M. and Woodburne, M.
O., Geological Society of America, Memoir no. 16, Boulder, Colorado,
541–555, 1988.
Enright, N. J. and Hill, R. S. (Eds.): Ecology of the southern conifers,
Melbourne University Press, Carlton, Australia, ISBN 978-1560986171, 1995.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37,
4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G.: An n-alkane proxy
for the sedimentary input of submerged/floating freshwater aquatic
macrophytes, Org. Geochem., 31, 745–749,
https://doi.org/10.1016/S0146-6380(00)00081-4, 2000.
Francis, J. E. and Hill, R. S.: Fossil plants from the Pliocene Sirius
Group, Transantarctic Mountains; evidence for climate from growth rings and
fossil leaves, Palaios, 11, 389–396, https://doi.org/10.2307/3515248,
1996.
Freudenthal, T., Meggers, H., Henderiks, J., Kuhlmann, H., Moreno, A., and
Wefer, G.: Upwelling intensity and filament activity off Morocco during the
last 250,000 years, Deep-Sea Res. Pt. II, 49,
3655–3674, https://doi.org/10.1016/S0967-0645(02)00101-7, 2002.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M.,
Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico,
F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the
Eocene–Oligocene boundary climate transition, Science, 352, 76–80, https://doi.org/10.1126/science.aab0669, 2016.
Gallagher, S. J., Wagstaff, B. E., Baird, J. G., Wallace, M. W., and Li, C.
L.: Southern high latitude climate variability in the Late Cretaceous
greenhouse world, Global Planet. Change, 60, 351–364,
https://doi.org/10.1016/j.gloplacha.2007.04.001, 2008.
GBIF: GBIF Occurrence Download, GBIF [data set], available at:
https://doi.org/10.15468/dl.te8pxs, 2021.
Gersonde, R. and Burckle, L. H.: Neogene Diatom biostratigraphy of ODP Leg 113,
Weddell Sea Antarctic Ocean, in: Proceeding of the Ocean Drilling Program, Scientific Results, edited by: Barker, P. F., Kennett J. P., and Shipboard Scientific Party, 113, 761–789, https://doi.org/10.2973/odp.proc.sr.113.126.1990, 1990.
Griener, K. W. and Warny, S.: Nothofagus pollen grain size as a proxy for
long-term climate change: An applied study on Eocene, Oligocene, and Miocene
sediments from Antarctica, Rev. Palaeobot. Palynol., 221, 138–143,
https://doi.org/10.1016/j.revpalbo.2015.06.003, 2015.
Grimalt, J. and Albaigés, J.: Sources and occurrence of C12–C22 n-alkane
distributions with even carbon-number preference in sedimentary
environments, Geochim. Cosmochim. Acta, 51, 1379–1384,
https://doi.org/10.1016/0016-7037(87)90322-X, 1987.
Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically
constrained cluster analysis by the method of incremental sum of squares,
Comput. Geosci., 13, 13–35,
https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
Han, J. and Calvin, M.: Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments, P. Natl. Acad. Sci. USA, 64, 436–443, https://doi.org/10.1073/pnas.64.2.436, 1969.
Harbert, R. S. and Nixon, K. C.: Climate reconstruction analysis using
coexistence likelihood estimation (CRACLE): A method for the estimation of
climate using vegetation, Am. J. Bot., 102, 1277–1289,
https://doi.org/10.3732/ajb.1400500, 2015.
Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., and Hijmans, M. R. J.: Package “dismo”, CRAN [code], available at: https://cran.r-project.org/web/packages/dismo/index.html (last access: 12 January 2022), 2021.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Houben, A. J. P., Bijl, P. K., Guerstein, G. R., Sluijs, A., and Brinkhuis, H.: Malvinia escutiana, a new biostratigraphically important Oligocene dinoflagellate cyst from the Southern Ocean, Rev. Palaeobot. Palynol., 165, 175–182, https://doi.org/10.1016/j.revpalbo.2011.03.002, 2011.
Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S.,
Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T.,
Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., and Brinkhuis, H.:
Reorganization of Southern Ocean Plankton Ecosystem at the Onset of
Antarctic Glaciation, Science, 340, 341–344,
https://doi.org/10.1126/science.1223646, 2013.
Houben, A. J. P., Bijl, P. K., Sluijs, A., Schouten, S., and Brinkhuis, H.:
Late Eocene Southern Ocean Cooling and Invigoration of Circulation
Preconditioned Antarctica for Full-Scale Glaciation, Geochemistry, Geophys.
Geosystems, 20, 2214–2234, https://doi.org/10.1029/2019GC008182, 2019.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., and Moody, R. M.: Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica, GSA Bull., 120, 659–678, https://doi.org/10.1130/B26269.1, 2008.
Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson,
R. B., and Moody, R. M.: Eocene climate record of a high southern latitude
continental shelf: Seymour Island, Antarctica, GSA Bull., 120,
659–678, https://doi.org/10.1130/B26269.1, 2008.
Jahn, B., Donner, B., Müller, P. J., Röhl, U., Schneider, R. R., and
Wefer, G.: Pleistocene variations in dust input and marine productivity in
the northern Benguela Current: Evidence of evolution of global
glacial–interglacial cycles, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
193, 515–533, https://doi.org/10.1016/S0031-0182(03)00264-5, 2003.
Jalali, B., Sicre, M.-A., Kallel, N., Azuara, J., Combourieu-Nebout, N.,
Bassetti, M.-A., and Klein, V.: High-resolution Holocene climate and
hydrological variability from two major Mediterranean deltas (Nile and
Rhone), Holocene, 27, 1158–1168,
https://doi.org/10.1177/0959683616683258, 2017.
Jalali, B., Sicre, M.-A., Klein, V., Schmidt, S., Maselli, V., Lirer, F.,
Bassetti, M.-A., Toucanne, S., Jorry, S. J., Insinga, D. D., Petrosino, P.,
and Châles, F.: Deltaic and Coastal Sediments as Recorders of
Mediterranean Regional Climate and Human Impact Over the Past Three
Millennia, Paleoceanogr. Paleoclimatology, 33, 579–593,
https://doi.org/10.1029/2017PA003298, 2018.
Jeng, W.-L.: Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments, Mar. Chem., 102, 242–251, https://doi.org/10.1016/j.marchem.2006.05.001, 2006.
Juggins, S.: Rioja: analysis of Quaternary science data, CRAN [code], R package version
(0.9–15.1), available at: https://cran.r-project.org/web/packages/rioja/index.html (last access: 12 January 2022), 2020.
Kennedy, E. M.: Late Cretaceous and Paleocene terrestrial climates of New
Zealand: leaf fossil evidence from South Island assemblages, New Zeal. J.
Geol. Geophys., 46, 295–306,
https://doi.org/10.1080/00288306.2003.9515010, 2003.
Kennedy, E. M., Arens, N. C., Reichgelt, T., Spicer, R. A., Spicer, T. E.
V, Stranks, L., and Yang, J.: Deriving temperature estimates from Southern
Hemisphere leaves, Palaeogeogr. Palaeoclimatol. Palaeoecol., 412, 80–90,
https://doi.org/10.1016/j.palaeo.2014.07.015, 2014.
Kershaw, A. P.: Australasia, in: Vegetation History, edited by: Huntley, B.
and Webb, T., Kluwer Academic Publisher, Dordrecht, the Netherlands,
237–306, 1988.
Kershaw, P. and Wagstaff, B.: The Southern Conifer Family Araucariaceae:
History, Status, and Value for Paleoenvironmental Reconstruction, Annu. Rev.
Ecol. Syst., 32, 397–414,
https://doi.org/10.1146/annurev.ecolsys.32.081501.114059, 2001.
King, E. C. and Barker, P. F.: The margins of the South Orkney
microcontinent, J. Geol. Soc. London., 145, 317–331,
https://doi.org/10.1144/gsjgs.145.2.0317, 1988.
Kirshner, A. E. and Anderson, J. B.: Cenozoic glacial history of the northern Antarctic Peninsula: a micromorphological investigation of quartz sand grains, Tectonic, Clim. Cryospheric Evol. Antarct. Penins., 63, 153–165, 2011.
Klages, J. P., Salzmann, U., Bickert, T., Hillenbrand, C.-D., Gohl, K.,
Kuhn, G., Bohaty, S. M., Titschack, J., Müller, J., and Frederichs, T.:
Temperate rainforests near the South Pole during peak Cretaceous warmth,
Nature, 580, 81–86, https://doi.org/10.1038/s41586-020-2148-5, 2020.
Kolattukudy, P. E., Croteau, R., and Buckner, J. S.: Biochemistry of plant waxes,
in: Chemistry and Biochemistry of Natural Waxes, edited by: Durig, J. R.
and Kolattukudy, P. E., Elsevier Scientific Publishing Company, California, USA, 289–347,
1976.
Kühl, N., Gebhardt, C., Litt, T., and Hense, A.: Probability Density
Functions as Botanical-Climatological Transfer Functions for Climate
Reconstruction, Quat. Res., 58, 381–392,
https://doi.org/10.1006/qres.2002.2380, 2002.
Larcher, W. and Winter, A.: Frost suceptibility of palms: experimental data
and their interpretation, Principes, 25, 143–155, 1981.
Lauretano, V., Kennedy-Asser, A. T., Korasidis, V. A., Wallace, M. W.,
Valdes, P. J., Lunt, D. J., Pancost, R. D., and Naafs, B. D. A.: Eocene to
Oligocene terrestrial Southern Hemisphere cooling caused by declining
pCO2, Nat. Geosci., 14, 659–664, https://doi.org/10.1038/s41561-021-00788-z, 2021.
Lawver, L. A. and Gahagan, L. M.: Opening of Drake Passage and its impact
on Cenozoic ocean circulation, in: Tectonic Boundary Conditions for Climate
Reconstructions, edited by: Crowley, T. J. and Burke, K. C., Oxford Univ.
Press, New York, USA, 212–223, 1998.
Lepp, A. P.: Geochemical and Sedimentological Analysis of Marine Sediments
from ODP Site 696 and Implications for the Onset of Antarctic Glaciation, MS thesis, Montclair State University, Montclair, New Jersey, USA, 2018.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming,
S. R., Johnson, J. V, Leng, M. J., Machlus, M. L., Newton, A. E., Raine, J.
I., Willenbring, J. K., Williams, M., and Wolfe, A. P.: Mid-Miocene cooling
and the extinction of tundra in continental Antarctica, P. Natl. Acad.
Sci. USA, 105, 10676–10680, https://doi.org/10.1073/pnas.0802501105, 2008.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H.,
Shah, S. R., Leckie, R. M., and Pearson, A.: Global Cooling During the
Eocene–Oligocene Climate Transition, Science, 323, 1187–1190,
https://doi.org/10.1126/science.1166368, 2009.
Livermore, R., Hillenbrand, C., Meredith, M., and Eagles, G.: Drake Passage
and Cenozoic climate: an open and shut case?, Geochem. Geophy.
Geosy., 8, Q01005, https://doi.org/10.1029/2005GC001224, 2007.
López-Quirós, A., Escutia, C., Sánchez-Navas, A., Nieto, F.,
Garcia-Casco, A., Martín-Algarra, A., Evangelinos, D., and Salabarnada,
A.: Glaucony authigenesis, maturity and alteration in the Weddell Sea: An
indicator of paleoenvironmental conditions before the onset of Antarctic
glaciation, Sci. Rep., 9, 13580,
https://doi.org/10.1038/s41598-019-50107-1, 2019.
López-Quirós, A., Sánchez-Navas, A., Nieto, F., and Escutia, C.:
New insights into the nature of glauconite, Am. Mineral., 105,
674–686, 2020.
López-Quirós, A., Escutia, C., Etourneau, J., Rodríguez-Tovar,
F. J., Roignant, S., Lobo, F. J., Thompson, N., Bijl, P. K., Bohoyo, F., and
Salzmann, U.: Eocene–Oligocene paleoenvironmental changes in the South
Orkney Microcontinent (Antarctica) linked to the opening of Powell Basin,
Global Planet. Change, 204, 103581,
https://doi.org/10.1016/j.gloplacha.2021.103581, 2021.
Luo, Q., Zhong, N., Zhu, L., Wang, Y., Qin, J., Qi, L., Zhang, Y., and Ma,
Y.: Correlation of burial organic carbon and paleoproductivity in the
Mesoproterozoic Hongshuizhuang Formation, northern North China, Chinese Sci.
Bull., 58, 1299–1309, 2013.
Lusk, C. H., Jorgensen, M. A., and Bellingham, P. J.: A conifer–angiosperm
divergence in the growth vs. shade tolerance trade-off underlies the
dynamics of a New Zealand warm-temperate rain forest, J. Ecol., 103,
479–488, https://doi.org/10.1111/1365-2745.12368, 2015.
Lyle, M., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., and
Brooksforce, K.: The record of Late Pleistocene biogenic sedimentation in
the eastern tropical Pacific Ocean, Paleoceanography, 3, 39–59,
https://doi.org/10.1029/PA003i001p00039, 1988.
Macphail, M. and Cantrill, D. J.: Age and implications of the Forest Bed,
Falkland Islands, southwest Atlantic Ocean: Evidence from fossil pollen and
spores, Palaeogeogr. Palaeoclimatol. Palaeoecol., 240, 602–629,
https://doi.org/10.1016/j.palaeo.2006.03.010, 2006.
Macphail, M. and Truswell, E.: Palynology of Site 1166, Prydz Bay, East Antarctica, in: Proceedings of the Ocean Drilling Program, Scientific Results volume 188, edited by: Cooper, A. K., O’Brien, P. E., and Richter, C., https://doi.org/10.2973/odp.proc.sr.188.013.2004 2004.
Maldonado, A., Bohoyo, F., Galindo-Zaldívar, J., Hernández-Molina, F. J., Lobo, F. J., Lodolo, E., Martos, Y. M., Pérez, L. F., Schreider, A. A., and Somoza, L.: A model of oceanic development by ridge jumping: opening of the Scotia Sea, Global Planet. Change, 123, 152–173, https://doi.org/10.1016/j.gloplacha.2014.06.010, 2014.
Martinson, D. G.: Antarctic circumpolar current's role in the Antarctic ice
system: An overview, Palaeogeogr. Palaeoclimatol. Palaeoecol., 335, 71–74,
https://doi.org/10.1016/j.palaeo.2011.04.007, 2012.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic,
paleolimnologic, and paleoclimatic processes, Org. Geochem., 27,
213–250, https://doi.org/10.1016/S0146-6380(97)00049-1, 1997.
Meyers, P. A. and Ishiwatari, R.: Lacustrine organic geochemistry – an
overview of indicators of organic matter sources and diagenesis in lake
sediments, Org. Geochem., 20, 867–900,
https://doi.org/10.1016/0146-6380(93)90100-P, 1993.
Mohr, B. A. R.: Eocene and Oligocene sporomorphs and dinoflagellate cysts
from Leg 113 drill sites, Weddell Sea, Antarctica, in: Proceeding of the Ocean Drilling Program, Scientific Results, edited by: Barker, P. F., Kennett, J. P., and Shipboard Scientific Party, 595–612, https://doi.org/10.2973/odp.proc.sr.113.140.1990, 1990.
Moossen, H., Bendle, J., Seki, O., Quillmann, U., and Kawamura, K.: North
Atlantic Holocene climate evolution recorded by high-resolution terrestrial
and marine biomarker records, Quaternary Sci. Rev., 129, 111–127,
https://doi.org/10.1016/j.quascirev.2015.10.013, 2015.
Morris, E. K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.
S., Meiners, T., Müller, C., Obermaier, E., Prati, D., Socher, S. A.,
Sonnemann, I., Wäschke, N., Wubet, T., Wurst, S., and Rillig, M. C.:
Choosing and using diversity indices: insights for ecological applications
from the German Biodiversity Exploratories, Ecol. Evol., 4, 3514–3524,
https://doi.org/10.1002/ece3.1155, 2014.
Müller, P. J.: CN ratios in Pacific deep-sea sediments: Effect of
inorganic ammonium and organic nitrogen compounds sorbed by clays, Geochim. Cosmochim. Ac., 41,
765–776, https://doi.org/10.1016/0016-7037(77)90047-3, 1977.
Nichols, J. E., Booth, R. K., Jackson, S. T., Pendall, E. G., and Huang,
Y.: Paleohydrologic reconstruction based on n-alkane distributions in
ombrotrophic peat, Org. Geochem., 37, 1505–1513,
https://doi.org/10.1016/j.orggeochem.2006.06.020, 2006.
Nott, C. J., Xie, S., Avsejs, L. A., Maddy, D., Chambers, F. M., and
Evershed, R. P.: n-Alkane distributions in ombrotrophic mires as indicators
of vegetation change related to climatic variation, Org. Geochem., 31,
231–235, https://doi.org/10.1016/S0146-6380(99)00153-9, 2000.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,
O'hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner,
H.: Package “vegan”, Community ecology package, version 2.5–7, CRAN [code], available at: https://cran.r-project.org/web/packages/vegan/index.html (last access: 12 January 2022),
2020.
Pancost, R. D., Baas, M., van Geel, B., and Sinninghe Damsté, J. S.:
Biomarkers as proxies for plant inputs to peats: an example from a
sub-boreal ombrotrophic bog, Org. Geochem., 33, 675–690,
https://doi.org/10.1016/S0146-6380(02)00048-7, 2002.
Perdue, E. M. and Koprivnjak, J.-F.: Using the ratio to estimate
terrigenous inputs of organic matter to aquatic environments, Estuar. Coast.
Shelf Sci., 73, 65–72, https://doi.org/10.1016/j.ecss.2006.12.021,
2007.
Poole, A. L.: Southern beeches, Science Information Publishing Centre, DSIR
information series no. 162, Wellington, New Zealand, 1987.
Poole, I., Hunt, R. J., and Cantrill, D. J.: A Fossil Wood Flora from King
George Island: Ecological Implications for an Antarctic Eocene Vegetation,
Ann. Bot., 88, 33–54, https://doi.org/10.1006/anbo.2001.1425, 2001.
Poole, I., Mennega, A. M. W., and Cantrill, D. J.: Valdivian ecosystems in
the Late Cretaceous and Early Tertiary of Antarctica: further evidence from
myrtaceous and eucryphiaceous fossil wood, Rev. Palaeobot. Palynol., 124,
9–27, https://doi.org/10.1016/S0034-6667(02)00244-0, 2003.
Pound, M. J. and Salzmann, U.: Heterogeneity in global vegetation and
terrestrial climate change during the late Eocene to early Oligocene
transition, Sci. Rep., 7, 43386, https://doi.org/10.1038/srep43386,
2017.
Poynter, J. G., Farrimond, P., Robinson, N., and Eglinton, G.:
Aeolian-Derived Higher Plant Lipids in the Marine Sedimentary Record: Links
with Palaeoclimate, in: Paleoclimatology and Paleometeorology: Modern and
Past Patterns of Global Atmospheric Transport, edited by: Leinen, M. and
Sarnthein, M., Springer Netherlands, Dordrecht, the Netherlands, 435–462,
https://doi.org/10.1007/978-94-009-0995-3_18, 1989.
Prebble, J. G., Raine, J. I., Barrett, P. J., and Hannah, M. J.: Vegetation
and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 231, 41–57,
https://doi.org/10.1016/j.palaeo.2005.07.025, 2006.
Pross, J., Houben, A. J. P., van Simaeys, S., Williams, G. L., Kotthoff, U., Coccioni, R., Wilpshaar, M., and Brinkhuis, H.: Umbria–Marche revisited: a refined magnetostratigraphic calibration of dinoflagellate cyst events for the Oligocene of the Western Tethys, Rev. Palaeobot. Palynol., 158, 213–235, https://doi.org/10.1016/j.revpalbo.2009.09.002, 2010.
Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., Schouten, S., Bendle, J. A., Röhl, U., Tauxe, L., Raine, J. I., Huck, C. E., van de Flierdt, T., Jamieson, S. S. R., Stickley, C. E., van de Schootbrugge, B., Escutia, C., Brinkhuis, H., Brinkhuis, H., Escutia Dotti, C., Klaus, A., Fehr, A., Williams, T., Bendle, J. A. P., Bijl, P. K., Bohaty, S. M., Carr, S. A., Dunbar, R. B., Gonzàlez, J. J., Hayden, T. G., Iwai, M., Jimenez-Espejo, F. J., Katsuki, K., Soo Kong, G., McKay, R. M., Nakai, M., Olney, M. P., Passchier, S., Pekar, S. F., Pross, J., Riesselman, C. R., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Sugisaki, S., Tauxe, L., Tuo, S., van de Flierdt, T., Welsh, K., Yamane, M., and Integrated Ocean Drilling Program Expedition 318 Scientists: Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch, Nature, 488, 73–77, https://doi.org/10.1038/nature11300, 2012.
Punyasena, S. W., Dalling, J. W., Jaramillo, C., and Turner, B.L.: The response
of vegetation on the Andean flank in western Amazonia to Pleistocene climate
change, Science, 331, 1055–1058,
https://doi.org/10.1126/science.1197947, 2011.
Raine, J. I.: Terrestrial palynomorphs from Cape Roberts Project drillhole
CRP-1, Ross Sea, Antarctica, Terra Antart., 5, 539–548, 1998.
Raine, J. I. and Askin, R. A.: Terrestrial palynology of Cape Roberts
Project drillhole CRP-3, Victoria Land Basin, Antarctica, Terra Antart., 8,
389–400, 2001.
Raine, J. I., Mildenhall, D. C., and Kennedy, E.: New Zealand fossil spores and
pollen: an illustrated catalogue, available at: https://www.gns.cri.nz/what/earthhist/fossils/spore_pollen/catalog/index.htm (last access: 31 December 2021), 2011.
Raup, D. M.: Taxonomic diversity estimation using rarefaction,
Paleobiology, 1, 333–342, 1975.
Rawlence, N. J., Potter, B. C. M., Dussex, N., Scarsbrook, L., Orlovich, D.
A., Waters, J. M., McGlone, M., and Knapp, M.: Plio-Pleistocene
environmental changes shape present day phylogeography of New Zealand's
southern beeches (Nothofagaceae), New Zeal. J. Bot., 59, 55–71,
https://doi.org/10.1080/0028825X.2020.1791915, 2021.
R Development Core Team: R: A language and environment for statistical
computing, 2013.
Reichgelt, T., Kennedy, E. M., Jones, W. A., Jones, D. T., and Lee, D. E.:
Contrasting palaeoenvironments of the mid/late Miocene Dunedin Volcano,
southern New Zealand: Climate or topography?, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 441, 696–703, https://doi.org/10.1016/j.palaeo.2015.10.029,
2016.
Reichgelt, T., West, C. K., and Greenwood, D. R.: The relation between
global palm distribution and climate, Sci. Rep., 8, 4721,
https://doi.org/10.1038/s41598-018-23147-2, 2018.
Riding, J. B.: A guide to preparation protocols in palynology, 45, 1–110,
https://doi.org/10.1080/01916122.2021.1878305, 2021.
Rieley, G., Collier, R. J., Jones, D. M., Eglinton, G., Eakin, P. A., and Fallick, A. E.: Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds, Nature, 352, 425–427, https://doi.org/10.1038/352425a0, 1991.
Robert, C. and Maillot, H.: Palaeoenvironments in the Weddell Sea area and
Antarctic climates, as deduced from clay mineral associations and
geochemical data, ODP Leg 113, in: Proceedings of the Ocean Drilling
Program, Scientific Results, 51–66, 1990.
Romero, E. J. and Castro, M. T.: Material fúngico y granos de polen de
angiospermas de la Formación Río Turbio (Eoceno), provincial de
Santa Cruz, República Argentina, Ameghiniana, 23, 101–118, 1986.
Romero, E. J. and Zamaloa, M. C.: Polen de Angiospermas de la Formacion Rio
Turbio (Eoceno), Provincia de Santa Cruz, Republica Argentina, Ameghiniana,
22, 43–51, 1985.
Rommerskirchen, F., Eglinton, G., Dupont, L., and Rullkötter, J.:
Glacial/interglacial changes in southern Africa: Compound-specific δ13C land plant biomarker and pollen records from southeast Atlantic
continental margin sediments, Geochem. Geophy. Geosy., 7, Q08010,
https://doi.org/10.1029/2005GC001223, 2006.
Sampei, Y. and Matsumoto, E.: ratios in a sediment core from Nakaumi
Lagoon, southwest Japan – usefulness as an organic source indicator,
Geochem. J., 35, 189–205, 2001.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S.,
McKay, R., Cody, R. D., Pross, J., van de Flierdt, T., Bohaty, S. M., Levy,
R., Williams, T., Escutia, C., and Brinkhuis, H.: Southern Ocean warming and
Wilkes Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9,
317, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Sarkar, S., Basak, C., Frank, M., Berndt, C., Huuse, M., Badhani, S., and
Bialas, J.: Late Eocene onset of the Proto-Antarctic Circumpolar Current,
Sci. Rep., 9, 10125, https://doi.org/10.1038/s41598-019-46253-1, 2019.
Sarnthein, M., Winn, K., Duplessy, J.-C., and Fontugne, M. R.: Global
variations of surface ocean productivity in low and mid latitudes: Influence
on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000
years, Paleoceanography, 3, 361–399,
https://doi.org/10.1029/PA003i003p00361, 1988.
Schefuß, E., Ratmeyer, V., Stuut, J.-B. W., Jansen, J. H. F., and
Sinninghe Damsté, J. S.: Carbon isotope analyses of n-alkanes in dust
from the lower atmosphere over the central eastern Atlantic, Geochim.
Cosmochim. Ac., 67, 1757–1767,
https://doi.org/10.1016/S0016-7037(02)01414-X, 2003.
Scher, H. D. and Martin, E. E.: Oligocene deep water export from the North
Atlantic and the development of the Antarctic Circumpolar Current examined
with neodymium isotopes, Paleoceanography, 23, PA1205,
https://doi.org/10.1029/2006PA001400, 2008.
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech.
J., 27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x,
1948.
Sicre, M.-A. and Peltzer, E. T.: Lipid geochemistry of remote aerosols from
the southwestern Pacific Ocean sector, Atmos. Environ., 38, 1615–1624,
https://doi.org/10.1016/j.atmosenv.2003.12.012, 2004.
Specht, R. L., Dettmann, M. E., and Jarzen, D. M.: Community associations
and structure in the Late Cretaceous vegetation of southeast Australasia and
Antarctica, Palaeogeogr. Palaeoclimatol. Palaeoecol., 94, 283–309,
https://doi.org/10.1016/0031-0182(92)90124-N, 1992.
Thompson, N., Salzmann, U., López-Quirós, A., Bijl, P. K., Hoem, F., Etourneau, J., Sicre, M. A., Roignant, S., Hocking, E., Amoo, M., and Escutia, C.: Sporomorph counts, diversity, DCA and climate estimate calculations from ODP Hole 113-696B, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.936435, 2021.
Tomlinson, P. B.: The uniqueness of palms, Bot. J. Linn. Soc., 151,
5–14, https://doi.org/10.1111/j.1095-8339.2006.00520.x, 2006.
Truswell, E. M. and Macphail, M. K.: Polar forests on the edge of
extinction: what does the fossil spore and pollen evidence from East
Antarctica say?, Aust. Syst. Bot., 22, 57–106,
https://doi.org/10.1071/SB08046, 2009.
Uhl, D., Mosbrugger, V., Bruch, A., and Utescher, T.: Reconstructing
palaeotemperatures using leaf floras – case studies for a comparison of leaf
margin analysis and the coexistence approach, Rev. Palaeobot. Palynol.,
126, 49–64, https://doi.org/10.1016/S0034-6667(03)00058-7, 2003.
USGS: Antarctica Detail, available at: https://web.archive.org/web/20210417234212/geonames.usgs.gov/apex/f?p=gnispq:5:::NO::P5_ANTAR_ID:10754 (last access 24 January 2022), 1998.
van de Lagemaat, S. H. A., Swart, M. L. A., Vaes, B., Kosters, M. E.,
Boschman, L. M., Burton-Johnson, A., Bijl, P. K., Spakman, W., and van
Hinsbergen, D. J. J.: Subduction initiation in the Scotia Sea region and
opening of the Drake Passage: When and why?, Earth-Sci. Rev., 215, 103551,
https://doi.org/10.1016/j.earscirev.2021.103551, 2021.
Veblen, T. T., Schlegel, F. M., and Oltremari, V. J.: Temperate broad-leaved
evergreen forests of South America, in: Temperate Broad-Leaved Forests,
edited by: Ovington, J. D., Elsevier, Amsterdam, the Netherlands, 5–31, 1983.
Veblen, T. T., Donoso, C., Kitzberger, T., and Rebertus, A. J.: Ecology of
southern Chilean and Argentinean Nothofagus forests, Ecol. Biogeogr.
Nothofagus For., 10, 93–353, 1996.
Villa, G., Fioroni, C., Pea, L., Bohaty, S., and Persico, D.: Middle
Eocene–late Oligocene climate variability: calcareous nannofossil response
at Kerguelen Plateau, Site 748, Mar. Micropaleontol., 69, 173–192,
https://doi.org/10.1016/j.marmicro.2008.07.006, 2008.
Vogts, A., Moossen, H., Rommerskirchen, F., and Rullkötter, J.:
Distribution patterns and stable carbon isotopic composition of alkanes and
alkan-1-ols from plant waxes of African rain forest and savanna C3 species,
Org. Geochem., 40, 1037–1054,
https://doi.org/10.1016/j.orggeochem.2009.07.011, 2009.
Wardle, J.: The New Zealand beeches: ecology, utilisation and management,
New Zealand Forest Service, 1984.
Wardle, P.: Facets of the distribution of forest vegetation in New Zealand, New Zeal. J. Bot., 2, 352–366, https://doi.org/10.1080/0028825X.1964.10428748, 1964.
Warny, S. and Askin, R.: Last remnants of Cenozoic vegetation and organic-walled phytoplankton in the Antarctic Peninsula's icehouse world, in: Tectonic, Climatic, and Cryospheric Evolution of the Antarctic peninsula, vol. 63, American Geophysical Union Washington, DC, 167–192, https://doi.org/10.1029/2010SP000996, 2011.
Warny, S., Askin, R., Anderson, J. B., and Wellner, J. S.: Vegetation and
organic-walled phytoplankton at the end of the Antarctic greenhouse world:
Latest Eocene cooling events, in: Tectonic, Climatic, and Cryospheric
Evolution of the Antarctic peninsula, vol. 63, American Geophysical Union
Washington, DC, 63, 193–210, https://doi.org/10.1029/2010SP000965, 2011.
Warny, S., Kymes, C. M., Askin, R., Krajewski, K. P., and Tatur, A.:
Terrestrial and marine floral response to latest Eocene and Oligocene events
on the Antarctic Peninsula, Palynology, 43, 4–21,
https://doi.org/10.1080/01916122.2017.1418444, 2019.
Wei, W. and Wise, S.: Middle Eocene to Pleistocene calcareous nannofossils
recovered by ocean drilling program leg 113 in the Weddell Sea, in:
Proceedings of the Ocean Drilling Program, Scientific Results, 639–666,
1990.
Wellner, J. S., Anderson, J. B., Ehrmann, W., Weaver, F. M., Kirshner, A.,
Livsey, D., and Simms, A. R.: History of an evolving ice sheet as recorded
in SHALDRIL cores from the northwestern Weddell Sea, Antarctica, in:
Tectonic, Climatic, and Cryospheric Evolution of the Antarctic peninsula,
vol. 63, American Geophysical Union Washington, DC, 131–152,
https://doi.org/10.1029/2010SP001047, 2011.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Wigley, R. A. and Compton, J. S.: Late Cenozoic evolution of the outer
continental shelf at the head of the Cape Canyon, South Africa, Mar. Geol.,
226, 1–23, https://doi.org/10.1016/j.margeo.2005.09.015, 2006.
Willard, D. A., Donders, T. H., Reichgelt, T., Greenwood, D. R., Sangiorgi,
F., Peterse, F., Nierop, K. G. J., Frieling, J., Schouten, S., and Sluijs,
A.: Arctic vegetation, temperature, and hydrology during Early Eocene
transient global warming events, Glob. Planet. Change, 178, 139–152,
https://doi.org/10.1016/j.gloplacha.2019.04.012, 2019.
Wilson, D. S., Jamieson, S. S. R., Barrett, P. J., Leitchenkov, G., Gohl,
K., and Larter, R. D.: Antarctic topography at the Eocene–Oligocene
boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 335–336, 24–34,
https://doi.org/10.1016/j.palaeo.2011.05.028, 2012.
Wilson, D. S., Pollard, D., DeConto, R. M., Jamieson, S. S. R., and
Luyendyk, B. P.: Initiation of the West Antarctic Ice Sheet and estimates of
total Antarctic ice volume in the earliest Oligocene, Geophys. Res. Lett.,
40, 4305–4309, https://doi.org/10.1002/grl.50797, 2013.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science,
292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature,
451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zhang, R. and Delworth, T. L.: Simulated tropical response to a substantial
weakening of the Atlantic thermohaline circulation, J. Climate, 18,
1853–1860, 2005.
Zhou, W., Xie, S., Meyers, P. A., and Zheng, Y.: Reconstruction of late
glacial and Holocene climate evolution in southern China from geolipids and
pollen in the Dingnan peat sequence, Org. Geochem., 36, 1272–1284,
https://doi.org/10.1016/j.orggeochem.2005.04.005, 2005.
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that...