Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1321-2022
https://doi.org/10.5194/cp-18-1321-2022
Research article
 | 
21 Jun 2022
Research article |  | 21 Jun 2022

Improving temperature reconstructions from ice-core water-isotope records

Bradley R. Markle and Eric J. Steig

Related authors

Greenland's firn responds more to warming than to cooling
Megan Thompson-Munson, Jennifer E. Kay, and Bradley R. Markle
The Cryosphere, 18, 3333–3350, https://doi.org/10.5194/tc-18-3333-2024,https://doi.org/10.5194/tc-18-3333-2024, 2024
Short summary
The first firn core from Peter 1st Island – capturing climate variability across the Bellingshausen Sea
Elizabeth Ruth Thomas, Dieter Tetzner, Bradley Markle, Joel Pedro, Guisella Gacitúa, Dorothea Elisabeth Moser, and Sarah Jackson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1064,https://doi.org/10.5194/egusphere-2023-1064, 2023
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Ice Cores | Timescale: Milankovitch
Local summer temperature changes over the past 440 ka revealed by the total air content in the Antarctic EPICA Dome C ice core
Dominique Raynaud, Qiuzhen Yin, Emilie Capron, Zhipeng Wu, Frédéric Parrenin, André Berger, and Vladimir Lipenkov
Clim. Past, 20, 1269–1282, https://doi.org/10.5194/cp-20-1269-2024,https://doi.org/10.5194/cp-20-1269-2024, 2024
Short summary
A 120 000-year record of sea ice in the North Atlantic?
Niccolò Maffezzoli, Paul Vallelonga, Ross Edwards, Alfonso Saiz-Lopez, Clara Turetta, Helle Astrid Kjær, Carlo Barbante, Bo Vinther, and Andrea Spolaor
Clim. Past, 15, 2031–2051, https://doi.org/10.5194/cp-15-2031-2019,https://doi.org/10.5194/cp-15-2031-2019, 2019
Short summary
Implementation of counted layers for coherent ice core chronology
B. Lemieux-Dudon, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, M. Guillevic, P. Kindler, F. Parrenin, and P. Martinerie
Clim. Past, 11, 959–978, https://doi.org/10.5194/cp-11-959-2015,https://doi.org/10.5194/cp-11-959-2015, 2015
High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core
S. Schüpbach, U. Federer, P. R. Kaufmann, S. Albani, C. Barbante, T. F. Stocker, and H. Fischer
Clim. Past, 9, 2789–2807, https://doi.org/10.5194/cp-9-2789-2013,https://doi.org/10.5194/cp-9-2789-2013, 2013
Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?
C. Risi, A. Landais, R. Winkler, and F. Vimeux
Clim. Past, 9, 2173–2193, https://doi.org/10.5194/cp-9-2173-2013,https://doi.org/10.5194/cp-9-2173-2013, 2013

Cited articles

Bailey, A., Singh, H. K., and Nusbaumer, J.: Evaluating a Moist Isentropic Framework for Poleward Moisture Transport: Implications for Water Isotopes over Antarctica, Geophys. Res. Lett., 46, 7819–7827, https://doi.org/10.1029/2019GL082965, 2019. a, b, c, d
Bakhshaii, A. and Stull, R.: Saturated Pseudoadiabats-A Noniterative Approximation, J. Appl. Meteorol. Climatol., 52, 5–15, 2013. a
Barkan, E. and Luz, B.: High precision measurements of 17O/16O and 18O/16O ratios in H2O, Rapid Commun. Mass Spect., 19, 3737–3742, 2005. a
Barkan, E. and Luz, B.: Diffusivity fractionations of H216O/H 217O and H216O/H218O in air and their implications for isotope hydrology, Rapid Commun. Mass Spect., 21, 2999–3005, 2007. a, b
Benetti, M., Steen-Larsen, H. C., Reverdin, G., Sveinbjörnsdóttir, Á. E., Aloisi, G., Berkelhammer, M. B., Bourlès, B., Bourras, D., De Coetlogon, G., Cosgrove, A., Faber, A.-K., Grelet, J., Hansen, S. B., Johnson, R., Legoff, H., Martin, N., Peters, A. J., Popp, T. J., Reynaud, T., and Winther, M.: Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012–2015, Sci. Data, 4, 1–17, 2017. a, b, c
Download
Short summary
The geochemistry preserved in polar ice can provide detailed histories of Earth’s climate over millennia. Here we use the stable isotope ratios of ice from many Antarctic ice cores to reconstruct temperature variability of Antarctica and the midlatitude Southern Hemisphere over tens of thousands of years. We improve upon existing methods to estimate temperature from the geochemical measurements and investigate the patterns of climate change in the past.