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Abstract. Oxygen and hydrogen isotope ratios in polar pre-
cipitation are widely used as proxies for local temperature. In
combination, oxygen and hydrogen isotope ratios also pro-
vide information on sea surface temperature at the oceanic
moisture source locations where polar precipitation origi-
nates. Temperature reconstructions obtained from ice-core
records generally rely on linear approximations of the rela-
tionships among local temperature, source temperature, and
water-isotope values. However, there are important nonlin-
earities that significantly affect such reconstructions, partic-
ularly for source region temperatures. Here, we describe a
relatively simple water-isotope distillation model and a novel
temperature reconstruction method that accounts for these
nonlinearities. Further, we examine in detail many of the pa-
rameters, assumptions, and uncertainties that underlie water-
isotope distillation models and their influence on these tem-
perature reconstructions. We provide new reconstructions of
absolute surface temperature, condensation temperature, and
source region evaporation temperature for all long Antarctic
ice-core records for which the necessary data are available.
These reconstructions differ from previous estimates due to
both our new model and reconstruction technique, the influ-
ence of which is investigated directly. We also provide thor-
ough uncertainty estimates for all temperature histories. Our
reconstructions constrain the pattern and magnitude of polar
amplification in the past and reveal asymmetries in the tem-
perature histories of East and West Antarctica.

1 Introduction

Stable-isotope ratios of water have been the foundational
proxy for polar paleoclimate research for more than a
half-century (Langway, 1958; Gonfiantini, 1959; Dansgaard,
1964). Primarily used as a temperature proxy, stratigraphic
records of water-isotope ratios in ice sheets provide detailed
histories of Earth’s climate over hundreds of thousands of
years (Dansgaard et al., 1969; Petit et al., 1999), providing
insight into the past magnitudes, spatial patterns, and phas-
ing of climate change across the globe (Masson-Delmotte
et al., 2006; EPICA Community Members, 2006; WAIS Di-
vide Project Members, 2013, 2015). Both oxygen and hydro-
gen have stable isotopes whose ratios (18O/16O and 2H/1H)
are commonly expressed as deviations, δ18O and δD, from
Vienna Standard Mean Ocean Water (VSMOW) in per mill
(‰):

δ =
Rx −Rstd

Rstd
, (1)

where Rx is the ratio in the sample and Rstd is the ratio in
VSMOW.

Poleward transport of moisture by the climate system,
the progressive removal of moisture from the atmosphere
by condensation and precipitation, and the fractionation of
water-isotope ratios during phase changes are all processes
inherently linked to temperature and together underpin the
use of water-isotope ratios in polar precipitation as a tem-
perature proxy (Craig, 1961; Epstein et al., 1963; Dans-
gaard, 1964; Gonfiantini, 1965). The strong empirical cor-
relation between the water-isotope ratios in precipitation and
surface temperature supports this interpretation (Petit et al.,
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1999; Jouzel et al., 1997; Masson-Delmotte et al., 2008). Air
temperatures during condensation (Petit et al., 1999; Jouzel
et al., 1997) and during initial moisture evaporation (Vimeux
et al., 2002) can be reconstructed from ice-core water-isotope
records if the relevant scaling relationships can be deter-
mined from theory, models, or observations (Vimeux et al.,
2002; Kavanaugh and Cuffey, 2002; Stenni et al., 2010).
Here, we examine the widely used assumption of linearity
in the scaling relationships between water-isotope ratios and
temperature.

1.1 Temperature reconstructions

Any interpretation of water-isotope ratios as a proxy for tem-
perature requires a model, whether conceptual, statistical,
or numerical. A conceptual model of progressive distillation
and integrated fractionation (e.g., Dansgaard, 1964) is suffi-
cient to qualitatively interpret variations in water-isotope ra-
tios as variations in temperature in the high latitudes. The
simplest quantitative interpretation of ice-core water-isotope
records relies on the empirical correlation between observed
water-isotope ratios of precipitation and surface temperature
at the precipitation site (Petit et al., 1999; Jouzel et al., 1997).
A limitation of this approach is the possibility to conflate
the “spatial slope” between water isotopes and temperature,
which is the relationship observed across a range of mod-
ern sites, and the “temporal slope”, which is the relationship
at a single point through time (Jouzel et al., 1997). Relat-
edly, this approach also does not account for simultaneous
and independent changes in evaporation conditions, which
can impact high-latitude water-isotope ratios in several ways.
Initial evaporation temperature, together with the condensa-
tion temperature, determines the total temperature gradient
through which moisture must be distilled to reach a given
site. Further, evaporative conditions set the initial isotopic
values of the vapor before distillation. The isotope ratios
of vapor above the ocean depend on the temperature during
evaporation, the isotopic values of the seawater, and the oc-
currence of kinetic fractionation during evaporation, which is
driven by sub-equilibrium relative humidity and influenced
by sea surface temperature and wind speed (Merlivat and
Jouzel, 1979; Jouzel et al., 1982).

A more complete approach to reconstructing temperature
from water-isotope records is to employ numerical models
that account for the combined influence of variability in both
evaporation and condensation temperatures, as well as other
factors. Reconstructing two unknowns (i.e., both evapora-
tion source and condensation site temperatures) requires two
constraints, which are provided by the oxygen and hydrogen
isotope ratios and the relationship between them. While the
oxygen and hydrogen isotope systems have similar behavior
in the atmosphere, there are differences in their response to
the same environmental conditions and to processes such as
kinetic fractionation. The deuterium excess is the weighted
difference between δ18O and δD, dxs = δD−8× δ18O, and

is commonly used to quantify these differences (Dansgaard,
1964; Merlivat and Jouzel, 1979).

Changes in water-isotope parameters measured in precip-
itation at an ice-core site, 1δ18O and 1dxs, can be concep-
tualized as driven by changes in site and evaporation source
temperature, 1Tsite and 1Tsource:

1δ18O= γ11Tsite+ γ21Tsource, (2)
1dxs = β11Tsite+β21Tsource, (3)

where β and γ are the partial derivatives of δ18O and dxs with
site and source temperature, respectively. The magnitudes of
β and γ can be diagnosed from water-isotope distillation
models for the ice-core site in question (Vimeux et al., 2002;
Kavanaugh and Cuffey, 2002; Stenni et al., 2010; Uemura
et al., 2012). Once these slopes are established, the equations
may be solved for 1Tsite and 1Tsource using records of δ18O
and dxs (Vimeux et al., 2002; Stenni et al., 2010; Uemura
et al., 2012).

1.2 Nonlinearities in isotope fractionation and the
deuterium excess definition

The temperature reconstruction approach described above
depends on the assumption that the parameters, β and γ , are
fixed in time and independent of temperature. However, the β
and γ parameters, as diagnosed from model simulations, are
found to be different for different ice-core sites, whose only
distinguishing characteristics are differing modern surface
conditions (e.g., Stenni et al., 2010; Uemura et al., 2012).
Thus, β and γ depend on the site conditions, which obvi-
ously change over time.

Another issue with the linear reconstruction approach is
the definition of the deuterium excess parameter (Uemura
et al., 2012; Markle et al., 2017). The origin of the slope
in the definition of deuterium excess is an empirical fit to
global precipitation measurements (Dansgaard, 1964). How-
ever, a linear relationship between δ18O and δD is not funda-
mental (Craig, 1961); equilibrium fractionation alone drives
a nonlinear relationship between δ18O and δD (Markle et al.,
2017). While the effects of source region conditions on deu-
terium excess of vapor are nearly linear during initial evapo-
ration (Merlivat and Jouzel, 1979; Uemura et al., 2008), the
signal is not uniformly preserved as moisture is transported
toward the deposition site. Kinetic fractionation that occurs
during transport (Jouzel et al., 1982) alters the deuterium ex-
cess of the vapor, as does equilibrium fractionation during
condensation, owing to biases in the linear definition (Markle
et al., 2017). Thus, the sensitivity of dxs in precipitation to
evaporation and condensation temperatures must vary as a
function of the total condensation and fractionation experi-
enced during transport to any deposition site and is thus a
function of Tsite.

Some of these issues have been addressed by redefin-
ing the deuterium excess parameter (Uemura et al., 2012;
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Markle et al., 2017). Uemura et al. (2012) fit a second-order
polynomial to a compilation of δ′18O and δ′D data, where
δx
′
= ln (1+ δx), and defined a phenomenological, nonlinear

deuterium excess parameter:

dln = δ
′D−

(
A× (δ′18O)2

+B × δ′
18O

)
, (4)

with coefficients A=−28.5 and B = 8.47 (note that the co-
efficients and δ′ values are unitless; for example, δ′18O=
0.040 not 40, with the ‰ ignored).

While still empirical, this definition of deuterium excess
reduces the influence of kinetic fractionation during trans-
port and the biases inherent to the linear definition, making it
a more faithful qualitative proxy for source region conditions
(Uemura et al., 2012; Markle et al., 2017), and is particularly
important at the coldest Antarctic sites where nonlinear ef-
fects overwhelm the dxs definition. However, the same distil-
lation processes that lead to biases in the linear definition of
the deuterium excess parameter will also bias the results of
temperature reconstructions if fixed sensitivities (Eqs. 2 and
3) are assumed.

Here we examine these issues in water-isotope-based tem-
perature reconstructions and suggest an improved technique.

2 A (relatively) simple water-isotope model

The quantitative reconstruction of temperatures from water-
isotope ratios rests on the encapsulation of fractionation
processes in models. Any investigation into nonlinearity in
those relationships will depend on the representation of those
physics. To assess the importance of those nonlinearities, we
construct a model that is relatively simple while still faith-
fully representing the observed relationships between the hy-
drogen and oxygen isotope ratios in polar precipitation. We
describe the construction of the Simple Water Isotope Model
(SWIM) in detail in the Appendix. Here we describe the con-
ceptual framework of the model.

The underpinning of SWIM is shared by many water-
isotope models: the transport and distillation of mois-
ture down climatological temperature gradients. Moisture is
evaporated from the oceans in the low and midlatitudes and
transported toward the poles. As air cools, the saturated vapor
pressure decreases nonlinearly, and moisture above satura-
tion is removed by precipitation. During these phase changes,
water fractionates; the vapor and precipitation falling from it
become increasingly depleted in the heavier isotope. The to-
tal fractionation at any point is a consequence of the tem-
perature gradient through which the water is distilled, as
well as the mean temperature of that gradient, owing to non-
linearity in the Clausius–Clapeyron relationship. A change
in the average condensation temperature at a site thus re-
sults in a change in the isotope ratios of precipitation at
that site. This is the essential (though not sole) reason that
high-latitude water-isotope ratios are a useful temperature
proxy. They are driven by two basic nonlinear processes,

the Clausius–Clapeyron relationship and Rayleigh distilla-
tion (see Sect. A2.2).

Other processes can be important as well. The tempera-
ture dependence of fractionation factors, for example, gener-
ally amplifies the temperature relationship. While any single
precipitation event at a site may be subject to a variety of ad-
ditional factors and processes, the long-term mean is strongly
influenced by climatological moisture distillation.1

Our model distills moisture down thermodynamic path-
ways defined by temperature and pressure. Changes in water-
isotope ratios are driven neither by changes in space nor time
but by changes in the thermodynamic variables that cause
the water to change phase. The temperature gradient of the
pathway is prescribed from an initial evaporation tempera-
ture, T0, to a final condensation temperature, Tc. The path-
ways are pseudo-adiabatic, consistent with isentropic mois-
ture transport to the Antarctic (Bailey et al., 2019) and the
basic assumption of Raleigh distillation that moisture is re-
moved after precipitation. A superposition of many thermo-
dynamic pathways is required to represent a single Antarctic
precipitation site, reflecting both the range of precipitation
conditions experienced at a site and moisture transport from
sources with a distribution of evaporative conditions (Markle
et al., 2017, Fig. 1). An example of a set of these pathways is
shown in Fig. 2. We use climatological correlations to relate
initial evaporation air temperature, T0, to other initial condi-
tions including sea surface temperature, SST0, and relative
humidity, RH0 (see Sect. A1.1).

We consider the temperature dependence of kinetic and
equilibrium fractionation during both evaporation and trans-
port, as well as mixed liquid and ice phases of precipita-
tion. The model incorporates supersaturation at very cold
conditions, which is tuned to match the observed relation-
ship between the oxygen and hydrogen isotope ratios in
global precipitation (Fig. 2d) rather than the relationships be-
tween those parameters and climate variables such as tem-
perature. We investigate the sensitivity of the model and the
resulting reconstructions to uncertainties and assumptions
including fractionation factors, evaporative closure assump-
tions, precipitation schemes, supersaturation, the pseudo-
adiabatic pathway, initial climatological correlations during
evaporation, and non-uniqueness. We also investigate the in-
fluence of mixing during both evaporation and transport,
the potential influence of seasonality (and intermittency) of
precipitation and evaporation, and the relationship between
surface temperature at a site and the vertically integrated,
precipitation-weighted condensation temperature above that

1This process is not incidental but rather fundamental to the cli-
mate system itself. The Earth’s surface absorbs shortwave radiation
from the sun and transfers that heat to the atmosphere. The majority
of that transferred heat is latent in the form of evaporated moisture.
The basic climatological function of the atmosphere and its motions
is to transport heat from regions of net energy gain to regions of net
loss from low to high latitudes, and a large fraction of that trans-
ported heat is also moisture.
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Figure 1. Moisture sources and transport to Antarctica from the moisture-tagged Community Atmosphere Model (CAM) experiment (Markle
et al., 2017). (a) Difference, in degrees latitude, between the latitude of precipitation and mean latitude of evaporation (effectively mean
transport in degrees of latitude to any site). (b) Mean latitude of evaporation vs. latitude of precipitation. All longitudes are shown by the
black line; longitudes encompassing West Antarctica are shown by the blue line, while longitudes encompassing East Antarctica are shown
in red. (c) The mean evaporation latitude (in ◦ S) of precipitation falling at all Antarctic grid points. Select ice-core sites shown in white.
(d) The relationship between mean evaporation latitude and site elevation across Antarctica. Select ice-core locations shown in color; see
text for site details. (e) Latitudinal moisture source distributions for select Antarctic ice-core sites, colored by site elevation.

site. We make no attempt to model post-depositional pro-
cesses.

3 Temperature-dependent slopes

To investigate the sensitivity of water-isotope ratios of
Antarctic precipitation to site and source conditions, we
use SWIM to model isotopic state spaces. We run SWIM
through a large ensemble of temperature pathways defined
by T = T0,T0−dT , . . .,Tc, with dT = 0.1 ◦C. We run nearly
24 000 trajectories to fill the plausible parameter space of

0 ◦C≤ T0 ≤ 28 ◦C and −70 ◦C≤ Tc ≤ 10 ◦C. We first exam-
ine the model with base assumptions and parameterizations2.
We next investigate the sensitivity to these choices.

The modeled isotopic state spaces are shown as maps
whose x and y coordinates are the condensation and evap-
oration temperatures, Tc and T0, respectively, and whose z

2The base model includes local closure during evaporation, val-
ues of SST0 and RH0 for a given T0 determined by a spline fit to
NCEP/NCAR climatology, and a tuned supersaturation such that
S = 1−0.00525T , where T is in degrees Celsius (◦C). See the Ap-
pendix for details.
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Figure 2. Simple Water Isotope Model. (a) Condensation
temperature–pressure pathways for pseudo-adiabatic distillation.
Pathways are colored by initial evaporation air temperature in all
panels. (b) Mixing ratios for all pathways. (c) δ18O of precipitation
for all pathways. (d) Relationship between δ18O and dln of precip-
itation for all pathways. Black dots show water-isotope values of
annual averaged precipitation from a compilation of global obser-
vations (see text), while grey dots show a broader set of monthly
observations from the GNIP database (IAEA, 2001).

(color) dimension is the isotopic value of final precipitation
in Antarctica: δ18O in Fig. 3a, δD in Fig. 3b, dxs in Fig. 3c,
and dln in Fig. 3d.

The gradients of both the δ18O and δD surfaces are pre-
dominantly in the direction of the condensation temperature
(the x axis in Fig. 3), emphasizing the strong condensation
temperature dependence of these parameters. However, the
slopes of both δ18O and δD are not strictly linear with con-
densation temperature Tc, clearly varying with its absolute
value (and to a much lesser extent with the evaporation tem-
perature, T0, due to its influence on the total distillation gra-
dient). Further, the partial slopes of δ18O and δD with re-
spect to the evaporation source temperature depend strongly
on the absolute values of both the evaporation and conden-
sation temperatures, evidenced by the changing angle of the
contour lines in Fig. 3. The partial derivatives of the isotopic
surfaces with respect to T0 and Tc are shown explicitly in
Figs. 4 and 5. It is important to recognize that the partial

derivatives with respect to T0 are not for the initial vapor at
the point of evaporation, but for the precipitation after the
vapor has passed through the distillation pathway to the final
precipitation site. The sensitivity of isotopic values of precip-
itation to source region conditions is a function of the total
distillation that the moisture experiences.

The modeled dxs surface shows strong slopes along both
the condensation temperature and evaporation temperature
axes (Fig. 3c), as does modeled dln (Fig. 3d). The dln depends
more strongly on the evaporation temperature than the dxs. In
particular, at the coldest condensation temperatures, variabil-
ity in dxs is dominated by the condensation temperature, re-
flecting the influence of kinetic fractionation during conden-
sation and the nonlinear bias inherent to the historical linear
definition (Uemura et al., 2012; Markle et al., 2017). These
model results (Figs. 3, 4, and 5) demonstrate that the loga-
rithmic definition of the deuterium excess parameter (dln) is
a more faithful qualitative proxy for source region conditions
than the linear definition (dxs). Even at very low condensation
temperatures, dln still depends strongly on the initial evapo-
ration temperature, whereas linear dxs becomes more depen-
dent on condensation temperature.

A “bump” in the partial derivatives of all isotope param-
eters with respect to the condensation temperature is seen
around−30 ◦C, arising primarily from the transition between
liquid and ice condensate (Fig. 4), whose relationship to tem-
perature is prescribed in the model and based on satellite
data (see Appendix A2.2). The slopes in this region also
depend on the parameterization of supersaturation. This lo-
cal change in the partial derivatives with respect to Tc is
smoothed somewhat when atmospheric mixing is incorpo-
rated into the model (see Appendix A5). The changes in the
partial derivatives with respect to Tc across the entire range
investigated are larger than these changes localized around
−30 ◦C.

The temperature reconstruction technique described in
Sect. 1.1 is based on the linearization of the slopes between
δ18O, dxs, condensation temperature, and evaporation tem-
perature, and it assumes that the β and γ parameters in
Eqs. (2) and (3) are fixed over the range of reconstructed
1Tsite and1Tsource. Our results demonstrate that the assump-
tion that β and γ are independent of temperature (i.e., that the
sensitivities are fixed and linear) is problematic. The param-
eters γ1 and γ2 in Eq. (2) are comparable to the slopes ∂δ18O

∂Tc

and ∂δ18O
∂T0

in Figs. 4 and 5. Although the slope of δ18O along

the condensation temperature axis, ∂δ18O
∂Tc

, does not change

dramatically, it is clearly variable, as is ∂δ
18O
∂T0

. The slopes ∂dxs
∂Tc

and ∂dxs
∂T0

(comparable to β1 and β2 in Eq. 3, respectively) are
highly variable. Indeed, the dxs surface in Fig. 3 has a sad-
dle at moderate condensation temperatures, over which ∂dxs

∂Tc
changes sign (Fig. 4c). This shows that the assumption of
constant β and γ parameters in isotope-based temperature re-
constructions is incorrect and may be reasonable only under
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Figure 3. Water-isotope state spaces as a function of the boundary conditions Tc, the condensation temperature, and T0, the mean evaporation
temperature. Surface shading and contour lines are the water-isotope values of precipitation (in units of ‰) (a) δ18O, (b) δD, (c) linear
deuterium excess dxs, and (d) nonlinear deuterium excess dln.

narrow ranges of 1Tsite and 1Tsource. For plausible changes
in site temperatures, assuming a fixed γ , for example, may
not only lead to errors in magnitude but even to errors in
the sign of γ and ultimately1T . The use of a fixed γ can in-
troduce spurious variability into temperature reconstructions,
particularly of T0, the evaporation source temperature.

Evidence for the critical change in the sign of ∂dxs
∂Tc

(Fig. 4c)
can actually be seen directly in Antarctic ice-core records.
Deuterium excess (dxs) records from core sites whose aver-
age conditions lie on the same side of this change in slope
are generally correlated over the last 60 000 years, while sites
whose average conditions lie on opposite sides of the change
in slope are weakly correlated or even anticorrelated with
each other (Fig. 6). Note how glacial–interglacial changes
in dxs at the coldest sites (blue colors in Fig. 6c) are oppo-
site to those at the warmest sites (red and orange colors).
On the other hand, dln values from different cores are vastly
more coherent (Fig. 6e and f) for reasons described above.
Comparison of dxs and dln between cores (Figs. 6 and A24)
together with our modeling results demonstrates that the in-
coherence of Antarctic dxs records arises from the change in
slope of ∂dxs

∂Tc
, not from differing source conditions between

sites. This exposes a fundamental flaw in the assumptions
used in traditional isotope temperature reconstructions.

The issue of variable isotope–temperature scalings is im-
plicit in previous work. Uemura et al. (2012), for example,
following Stenni et al. (2010), used an isotope model to
calculate the relevant β and γ parameters for several East
Antarctic ice-core sites. Using the same isotope model, they
calculated different scalings for each site. However, by as-
suming that these slopes are constant for each site, they do
not consider the possibility that one site’s conditions may
have been more like another’s in the past. Recognizing this as
well as the inability of their model to simultaneously match
observed site temperature and δ values, Uemura et al. (2012)
create several reconstructions for the Dome Fuji site utilizing
different linearizations of the model. They do not, however,
attempt a reconstruction that accounts for the nonlinearities
in the water-isotope–temperature relationships.

The solution to this issue of slope nonlinearity, within the
linear isotope temperature reconstruction framework (Eqs. 2
and 3), is not obvious. The nonlinearities in the slopes of
the isotope surfaces depend on the absolute condensation and
evaporation temperatures that represent the target of the re-
construction, which are of course not known a priori. We
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Figure 4. Partial derivatives of isotope state spaces with respect to condensation temperature: (a) ∂δ
18O
∂Tc

, (b) ∂δD
∂Tc

, (c) ∂dxs
∂Tc

, (d) ∂dln
∂Tc

. Shading

and contours in all panels represent the slope in ‰ ◦C−1.

next present a novel temperature reconstruction framework,
which takes into account the inherent nonlinearities in the
water-isotope fractionation process.

4 Nonlinear temperature reconstructions

4.1 Reconstruction method

For every pair of T0 and Tc inputs to SWIM there is a corre-
sponding modeled value of δ18O, δD, and dln of final precip-
itation as shown in Fig. 3. We invert the modeled state spaces
and project each independent temperature parameter onto a
pair of dependent isotope values, e.g., δ18O and dln. This de-
fines a set of maps, with x and y axes of δ18O and dln and
with z axes Tc and T0, as shown in Fig. 7. To reconstruct Tc
and T0, the inverted model results may be used as a lookup
table: a pair of δ18O and dln measurements determine a pair
of Tc and T0 reconstructions (Fig. A16). While previous re-
construction methods (e.g., Vimeux et al., 2002; Kavanaugh
and Cuffey, 2002; Stenni et al., 2010) linearize the slopes cal-
culated by a water-isotope model around the modern climate
state, this method accounts for the changes in the slopes that
depend on the mean state. Further, there is no need to find

analytical solutions to the model or fit families of high-order
polynomials to the results.

The boundary conditions Tc and T0 may be projected onto
axes defined by any two isotope parameters, which may then
be used to reconstruct temperature. Since the only unique iso-
tope information comes from the original δ18O, δD measure-
ments (dxs and dln being second-order parameters), any com-
bination of those parameters may seem equally well suited
for the purposes of temperature reconstruction. In practice,
however, δ18O and dln represent the optimal pair of parame-
ters to use for temperature reconstruction. This result is ex-
amined in more detail in the Appendix (see Sect. A6 and
Fig. A15). The fundamental reason is that the logarithmic ex-
cess parameter, as a second constraint, provides an axis more
orthogonal to the variability we are attempting to reconstruct.
This is also the same reason dln is a better qualitative proxy
for source region temperature than dxs. After proposing the
dln parameter, Uemura et al. (2012) suggest that there is no
added value in the logarithmic parameter over the traditional
linear dxs in terms of the temperature reconstruction equa-
tions. While true for the linear temperature reconstruction
equations, this is not the case when the nonlinearities of β
and γ are accounted for.

https://doi.org/10.5194/cp-18-1321-2022 Clim. Past, 18, 1321–1368, 2022
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Figure 5. Partial derivatives of isotope state spaces with respect to evaporation temperature: (a) ∂δ
18O
∂T0

, (b) ∂δD
∂T0

, (c) ∂dxs
∂T0

, (d) ∂dln
∂T0

. Shading

and contours in all panels represent the slope in ‰ ◦C−1.

Note that we could just as readily reconstruct source re-
gion relative humidity (RH0) instead of source region air
temperature (T0), since we assume climatological relation-
ships between them. Indeed, RH0 is a strong lever on the
deuterium excess of evaporation. We reconstruct T0 out of
interest in the parameter from a climate dynamics perspec-
tive. In principle, our method can be extended to indepen-
dently reconstruct more than two variables simultaneously,
such as Tc, T0, and RH0, by modeling multidimensional pa-
rameter spaces. This of course requires additional measured
constraints, which could include the δ17O of precipitation,
the accumulation rate, or other variables modeled in this
framework, and is discussed in the Appendix.

4.2 Absolute temperature reconstructions

An advantage of the reconstruction technique presented here
is that we are able to reconstruct absolute evaporation and
condensation temperatures, not just relative variability, as in
previous techniques. There are several additional consider-
ations that are important in making these reconstructions.
First, we are often interested in the surface air temperature
for paleoclimate studies rather than the condensation tem-

perature. In Appendix A3.2 we review previous work on the
relationship between surface and condensation temperature
over Antarctica and conduct novel analysis using the high-
resolution MERRA-2 reanalysis data (Gelaro et al., 2017).
We also examine the seasonality and vertical distribution
of Antarctic precipitation and reevaporation. Based on these
analyses we use a simple, linear temperature-dependent rela-
tionship to estimate weighted, annual mean surface air tem-
perature from our condensation temperature reconstructions
and account for the uncertainty in this relationship.

We examine in detail how assumptions and modeling
choices concerning initial evaporation (Appendix A2.1) im-
pact our results, as well as the potential for bias arising from
seasonality in evaporation from the ocean. We also examine
the influence of non-uniqueness on our temperature recon-
struction technique arising from below-freezing evaporation
conditions (Appendix A9.4).

Finally, we conduct an extensive uncertainty analysis of
our temperature reconstructions (Appendix A9). We calcu-
late numerous isotope state spaces from the same tempera-
ture parameter space using multiple iterations of the model
in which model assumptions are altered and parameters are
varied over plausible ranges. We calculate the uncertainty in
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Figure 6. Time series and cross-correlation matrices for eight different deep Antarctic ice-core sites. (a, b) δ18O; (c, d) dxs; and (e, f) dln.
In the time series plots, each record is colored by its Holocene average δ18O value. See Sect. 4.2 in the text for details and references for the
ice-core records. All original records are interpolated to even 50-year time spacing on the Buizert et al. (2018) synchronized timescale where
possible, or they are plotted on original published timescales. All records are ordered by their approximate modern surface temperature in
the cross-correlation matrices.

our reconstructions arising from the supersaturation param-
eterization, the evaporation fractionation factors, the evapo-
ration closure assumption, the precipitation scheme, the in-
fluence of vapor mixing during transport, and other model
choices (see, e.g., Fig. A25). We use the ensemble of isotope
state spaces to estimate both the absolute and relative uncer-
tainty in our temperature reconstructions. As an example, the
central reconstructions and their uncertainties for the evap-
oration and condensation temperatures for the WAIS Divide
ice core (WDC) are shown in Fig. 8. Our reconstruction of
relative temperature variability has much lower uncertainty
than the reconstruction of absolute temperature, and we find

lower uncertainty in the reconstruction of condensation tem-
perature than evaporation temperature.

We reconstruct condensation site and surface tempera-
tures and evaporation source temperatures for eight different
Antarctic deep ice-core sites for which there are δ18O and dln
records (Fig. 9). The records include WDC (Markle et al.,
2017; WAIS Divide Project Members, 2013; Steig et al.,
2013) and Siple Dome (Brook et al., 2005; Schilla, 2007)
from West Antarctica, as well as the EDML (Stenni et al.,
2010), EDC (Stenni et al., 2010), Vostok (Vimeux et al.,
2002), Dome Fuji (Uemura et al., 2012), Talos Dome (Stenni
et al., 2011), and South Pole (SP, Steig et al., 2021) records
from East Antarctica. We correct all records for changes in
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Figure 7. Inverted T0 and Tc surfaces as a function of modeled dln and δ18O of precipitation. (a) Surface shading and contours show
condensation site temperature, Tc, in degrees Celsius (◦C) as a function of dln and δ18O of precipitation at a site. (b) Surface shading and
contours show evaporation source temperature, T0, in degrees Celsius (◦C) as a function of dln and δ18O of precipitation at a site.

the isotopic composition of seawater (Bintanja and Van de
Wal, 2008), δ18Osw, following the method outlined in Ue-
mura et al. (2012) and Stenni et al. (2010).

We make no corrections to the records for elevation
changes or ice flow, lacking sufficient constraints for all
records. These effects are likely small in both East Antarc-
tica (Stenni et al., 2011) and West Antarctica (WAIS Divide
Project Members, 2013). Consideration of ice sheet changes
are of course critical to disentangling the sources of temper-
ature variability across timescales (e.g., Werner et al., 2018)
and require additional information and assumptions. How-
ever, for logical consistency our aim here is to reconstruct
temperature as it has influenced water-isotope ratios recorded
in the ice cores, leaving the identification of the causes of
those changes in temperature for future work. This means
that neither the sites of precipitation nor evaporation are
strictly fixed in space. Indeed, variability in moisture source
locations may cause a significant amount of variation in re-
constructed evaporation temperature (Markle et al., 2017).
We aim to maintain the broad utility of our reconstructions
by building in as few assumptions about the sources of the
temperature variability as possible.

4.3 Comparison of linear and nonlinear reconstruction
techniques

Linear temperature reconstruction using SWIM

We evaluate the significance of our approach by comparing
our nonlinear reconstructions of condensation and evapora-
tion temperature with reconstructions following the tradi-
tional linear approach. We calculate the equivalent linear β
and γ coefficients for each of eight ice-core sites by regress-
ing the Tc and T0 temperature fields to subsets of δ18O and
dxs SWIM results representative of the Holocene (< 10 ka)
and Last Glacial Period (20 to 30 ka) intervals of each core.
We find that the β and γ values significantly differ for each
core and between the different time intervals owing to the
temperature dependence of the sensitivities. In particular, β2
changes substantially between the glacial and the Holocene.

We reconstruct relative changes in moisture source and site
surface temperature for each ice-core location using the two
sets of linear β and γ coefficients found above and the tra-
ditional linear method. We then compare these linear recon-
structions to our full nonlinear reconstruction and show the
difference in reconstructed surface temperature and evapora-
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Figure 8. Temperature reconstructions and uncertainty estimates
for the WAIS Divide ice-core (WDC) site. (a) moisture source mean
evaporation temperature and (b) ice-core site condensation temper-
ature. Dark blue lines are the central estimate, while red lines show
the bounds of relative temperature uncertainty and cyan lines show
the bounds of the absolute temperature uncertainty. Reconstructions
resampled to even 40-year spacing.

tion temperature in Fig. 10. We also show the residuals be-
tween the two linear reconstructions. In general, the residu-
als are not constant offsets but vary as a function of recon-
structed temperature, demonstrating the temperature depen-
dence of the slopes. They also differ, sometimes in sign, be-
tween the ice-core sites (Fig. A20). Linearization can obscure
true variability or introduce spurious variability into the re-
constructions, depending on the actual conditions of the site
over time.

In the case of the surface temperature reconstruction, the
errors introduced by linearization can be up to ±1 ◦C de-
pending on the core site and are generally smaller for the
colder East Antarctic sites. In the case of evaporation tem-
peratures, the introduced errors are considerably larger with
values up to ±2 ◦C. Further, the total variability in recon-
structed evaporation temperature is much smaller than that in
ice-core site surface temperature. The errors introduced into
the reconstructed evaporation temperatures by ignoring the
nonlinearities can be nearly as large as the total reconstructed
variability. It is thus problematic to attempt reconstructing
evaporation temperatures without accounting for nonlineari-
ties.

In Appendix A8 we show that using the nonlinear re-
construction technique yields greater correlation amongst all
records of Ts and especially of T0 (with increases in shared

variance up to 38 %, Fig. A22). These results suggests that
linear reconstructions have obscured coherent underlying cli-
mate signals, especially in evaporation temperatures. This
same reasoning supports the qualitative use of the dln pa-
rameter over the linear dxs parameter (Fig. 6; Markle et al.,
2017).

The relationship between δ18O and Tc is largely linear
across a wide range of values of Tc, regardless of evapora-
tion temperature. The ice-core site temperature reconstruc-
tions from the linear and nonlinear reconstruction techniques
have relatively small differences. However, as seen in Fig. 10,
there are small artifacts arising from slight nonlinearity in the
δ18O-to-Tc relationship, particularly for relatively warm sites
like those in West Antarctica. The primary source of this non-
linearity is the change in total fractionation factor as the air
parcel transitions between liquid-only and ice-only conden-
sate. SWIM retains liquid condensate at colder temperatures
than previous models (e.g., Kavanaugh and Cuffey, 2002), in
line with satellite measurements (Hu et al., 2010). The result-
ing transition of fractionation factors drives the nonlineari-
ties in the δ18O-to-Tc relationship at temperatures relevant
to West Antarctica, ultimately resulting in larger differences
between the linear and nonlinear reconstruction techniques
at those sites compared to cores from East Antarctica. Be-
cause our model uses a consistent supersaturation parameter-
ization in the model’s isotope and precipitation schemes, the
relationship between δ18O and Tc is actually more linear in
SWIM than in other comparable models.

In Appendix A10 we compare our temperature reconstruc-
tions for several East Antarctic ice cores to previously pub-
lished reconstructions using the linear technique with coeffi-
cients estimated from different water-isotope models (Stenni
et al., 2004, 2010; Uemura et al., 2012). The differences be-
tween our reconstructions and previous reconstructions arise
from differences in both the reconstruction technique and the
underlying isotope models. In general, the previously pub-
lished linear reconstructions overestimate changes in both
site and source temperature compared to our nonlinear recon-
structions (Fig. 11). For example, previous reconstructions
find larger warming since the Last Glacial Period for East
Antarctic sites compared to ours (up to 18 % larger in the case
of site temperature and up to 125 % larger for source tem-
peratures). However, the differences between our reconstruc-
tions and previous reconstructions vary between sites owing
to both temperature dependence and model differences, and
in some cases they are quite small, such as with the Stenni
et al. (2010) reconstructions. The residuals between relative
temperature change in the nonlinear and previous linear re-
constructions are shown in Fig. 12. The residuals are not
random but rather correlated with the reconstructions them-
selves, reflecting the nonlinear biases. In general we find the
largest differences, as a fraction of total reconstructed vari-
ability, in the moisture source temperature reconstructions.
Indeed, these residuals can be over twice as large as the total
reconstructed variability in moisture source temperature.
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Figure 9. Temperature reconstructions for seven ice-core sites: WDC, EDC, EDML, Siple Dome, Vostok, Dome Fuji, Talos Dome, and
the South Pole ice core (SP). (a) Ice-core site locations on the Antarctic continent. Reconstructions of (b) moisture source evaporation air
temperature, (c) ice-core site condensation air temperature, and (d) ice-core site surface air temperature. All records are resampled to even
200-year resolution for visual clarity. Light shading in panels (b–d) is the absolute temperature uncertainty, while dark shading shows the
relative temperature uncertainty, though the latter can be difficult to see at the scale plotted here given the larger magnitude of point-to-point
variability. For more detail see Figs. A17, A18, and A19.

5 Discussion

Using the self-consistent, nonlinear temperature reconstruc-
tion technique for eight different ice-core sites, we next
investigate the patterns of Southern Hemisphere tempera-
ture change through time. In Fig. 9 we show the nonlin-
ear reconstructions of Antarctic surface temperature and
moisture source evaporation temperature for the eight ice-
core records. At the WDC site in West Antarctica there
is an independent estimate for the magnitude of glacial–
interglacial temperature change from the borehole temper-
ature profile (Cuffey et al., 2016). Our results are in good

agreement with those findings in both the absolute value
of reconstructed temperatures and the magnitude of glacial–
interglacial change. Cuffey et al. (2016) find 11.3± 1.8 ◦C
warming at WDC during the deglaciation; we reconstruct
11.2± 0.5 ◦C of warming (calculated as the difference be-
tween the average surface temperature at 27–24 and 11–9 ka,
for direct comparison to Cuffey et al., 2016). Using an inde-
pendent temperature reconstruction technique for the South
Pole ice core, Kahle et al. (2021) find an interglacial site
temperature warming of 7.15± 0.68 ◦C between 19.5–22.5
and 0.5–2.5 ka. Our reconstruction yields a site temperature
warming of 8.9± 0.4 ◦C for the same interval.
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Figure 10. Differences between reconstructed (a) Ts and (b) T0 using different reconstruction techniques for multiple core sites. Blue lines
show the difference between our full nonlinear reconstruction and a linear reconstruction using β and γ slopes linearized around Holocene
conditions. Red lines show the difference between our full nonlinear reconstruction and a linear reconstruction using slopes linearized around
glacial conditions. Purple lines show the difference between the two linear reconstructions.

Buizert et al. (2021) used a similar approach as Kahle
et al. (2021) (but without the diffusion constraint) to recon-
struct Antarctic temperatures for many of the sites we inves-
tigate. Their results for the temperature change since the Last
Glacial Maximum (LGM) are in close agreement with ours
for West Antarctica but are substantially smaller than ours
in East Antarctica (and less than Kahle et al., 2021, for the
South Pole). We emphasize that the firn modeling approach
cannot simultaneously satisfy all observational constraints,
as discussed in Kahle et al. (2021), suggesting that the dif-
ferences may lie in a still incomplete understanding of firn
processes (see, e.g., Gkinis et al., 2021). Alternatively, Buiz-
ert et al. (2021) suggest that changes in the inversion strength
may explain the differences.

We create a stack of each reconstructed temperature vari-
able (the evaporation temperature T0, condensation temper-
ature Tc, and surface temperature Ts) for all eight ice-core
records (Fig. 13). We weight the records equally; we do not
adjust for the spatial distribution of the cores or weight by
area, latitude, or elevation.

In Fig. 13 one can see that the Antarctic-wide average
surface temperature change during the last deglaciation was

considerably larger than the concurrent temperature change
in the mean moisture evaporation source. In fact, average
deglacial change in Antarctic surface temperature was about
3 times as large as the changes in evaporation temperatures,
while changes in condensation temperature were about twice
as large as the evaporation temperature changes.

In Fig. 14 we show the pattern of glacial–interglacial tem-
perature change across the Antarctic continent. The magni-
tude of warming since the Last Glacial Maximum is calcu-
lated as the temperature difference between the late Holocene
(LH, 0–4 ka) and Last Glacial Maximum (19–23 ka) for com-
parison with other proxy reconstructions. There may be some
uncertainty in the relative magnitudes of these changes owing
to offsets in the individual timescales of each record. While
the relative magnitudes of interglacial change depend on the
exact time periods used in the differencing, the pattern of
changes in surface temperature across the continent is robust.
Disentangling the full suite of causes for these temperature
changes is a topic of future work but may certainly include
changes in the local energy balance, heat and moisture trans-
port, and ice sheet topography.
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Figure 11. Reconstructions of relative change in Antarctic surface temperature (1Tsite, left panels) and source region evaporation tempera-
ture (1Tsource, right panels) for four East Antarctic ice-core site: Vostok, EDC, EDML, and Dome Fuji. The nonlinear reconstructions (this
study) are shown in black, while published linear reconstructions are shown for each site in color. The linear coefficients for the published
reconstructions are compiled in Uemura et al. (2012) (see Tables 1 and 2). Linear methods labeled U12 for Vostok, EDC, and EDML were
calculated by a simple Rayleigh-type model (Uemura et al., 2012). Reconstructions U12a–e for Dome Fuji represent a sensitivity study from
Uemura et al. (2012). Reconstructions S03 and S09 are from Stenni et al. (2004, 2010).

We find smaller glacial–interglacial temperature change
for East Antarctic sites compared to previous reconstruc-
tions. Our results show that the surface temperatures of the
lower, warmer areas of West Antarctica warmed significantly
more than the higher, colder East Antarctic since the LGM.
For example, the average surface temperature warming be-
tween the LGM and LH for the two lowest sites in our re-
construction, WDC and Siple Dome, is 11.6 ◦C. The average
warming at the two highest sites of Dome Fuji and Vostok,

however, is significantly less and just 6.9 ◦C or 59 % of that
at the lower sites.

In Fig. 14 we plot the magnitude of warming since the
LGM of Antarctic moisture source evaporation air tempera-
tures for all ice-core records as a function of the mean lati-
tude of the moisture source distribution for each site (based
on a water-tagged general circulation model (GCM) simu-
lations; see the Appendix). Additionally, we calculate the
change in sea surface temperature (SST) during evaporation
(red circles Fig. 14a) using the T0–SST relationship from
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Figure 12. Differences between our full nonlinear reconstruction and multiple previously published linear reconstructions (Stenni et al.,
2004, 2010; Uemura et al., 2012) of (a) ice-core site surface temperature, (b) site condensation temperature, and (c) evaporation source
temperature for multiple core sites. Full reconstructions are shown in Fig. 11.

our model for comparison to other SST proxy reconstruc-
tions. While plotted as points, note that these changes in
moisture source temperature reflect the integrated warming
over the moisture source area. Modern moisture source dis-
tributions for each site are indicated by relative histograms
along the latitude axis in Fig. 14a (see Fig. 1 for further in-
formation), which are colored to correspond to the ice-core
site. The moisture source points are plotted at the longitude
of the respective ice-core sites in Fig. 14b, though in real-
ity the moisture source distributions (MSDs) have a signifi-
cant meridional extent (see extended data in Fig. 8, Buizert
et al., 2018) that is often asymmetrically to the west owing
to the westerly winds. Changes in T0 for Antarctic moisture
sources may reflect both warming SSTs at fixed locations and

potential changes in the mean latitude of the moisture source
distributions, for example due to changes atmospheric circu-
lation, e.g., a meridional shift in the mean westerly winds
(Markle et al., 2017). Disentangling these two influences re-
quires additional constraints and is beyond the scope of this
study. While the ice-core T0 reconstructions have low spa-
tial resolution owing to broad moisture source distributions,
they benefit from the temporal resolution and precision of
the ice-core age scales compared to other proxy records of
temperature from the Southern Hemisphere midlatitudes.

It is clear from Fig. 14 that the Antarctic continent warmed
2 to 3 times as much as the Southern Hemisphere midlatitude
moisture source areas since the Last Glacial Maximum. This
result is in line with other paleoclimate reconstructions, as
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Figure 13. Antarctic-wide stacks of reconstructed temperature histories. (a) Moisture source evaporation temperatures, T0, of all ice-core
sites are shown in light blue, while the average of all records is shown in dark blue. (b) All reconstructions of ice-core site surface tem-
peratures, Ts, are shown in light red, while the continent-wide average is shown in dark red. (c) Anomalies of site-averaged evaporation
temperature (blue), condensation temperature (gold), and surface temperature (red) are shown with respect to the mean value of the most
recent 2000 years. All records are interpolated to even 50-year spacing. Where possible records are on the synchronized Buizert et al. (2018)
timescale.

well as modeling of the pattern of polar amplification since
the LGM (Masson-Delmotte et al., 2006; Otto-Bliesner et al.,
2006). In particular, our estimates of moisture source re-
gion changes agree with completely independent estimates
from the MARGO compilation of SST changes (MARGO
Project Members, 2009, open circles Fig. 14). There ap-
pears to be some zonal asymmetry in the warming of South-
ern Ocean surface temperatures in both our moisture source
reconstructions and the MARGO compilation. The waters
around New Zealand and Australia that comprise the mois-
ture source of Talos Dome appear to show the most warming
since the LGM.

These patterns of Southern Hemisphere warming are
also in reasonable agreement with modeling expectations,
e.g., from the Paleoclimate Model Intercomparison Project
(PMIP3; Braconnot et al., 2012). The multi-model mean
pattern of Southern Hemisphere polar amplification from
PIMP3 simulations is shown in Fig. 14. There is broad simi-
larity to our reconstructions, though there are important dif-
ferences as well. The spread in temperature change about
the zonal mean over both the Antarctic and ocean surface
is similar between the model and the reconstructions. Our re-

constructions show more warming in the ice-core moisture
source areas equatorward of the polar front than the PMIP3
mean and less warming over the surface of West Antarc-
tica. We note that the magnitude and pattern of modeled
Antarctic surface warming is predominately a function of im-
posed changes in ice sheet surface elevation to PMIP3 exper-
iments. The extreme warming seen in parts of West Antarc-
tica in the PMIP3 model mean (e.g., > 20 ◦C), which is out-
side the range found in our reconstructions, likely reflects
unrealistically large ice sheet thickness changes prescribed
in PIMP3. This assessment is consistent with the findings
of Werner et al. (2018), who made an extensive analysis of
GCM-modeled changes in Antarctic water isotopes and ice-
core records. Understanding the full set of processes respon-
sible for the reconstructed pattern of Southern Hemisphere
polar amplification is a topic for future work.

6 Conclusions

Ice-core records of the stable isotopes of water provide de-
tailed histories of Earth’s climate. Both qualitative and quan-
titative interpretation of these records requires understanding

Clim. Past, 18, 1321–1368, 2022 https://doi.org/10.5194/cp-18-1321-2022



B. R. Markle and E. J. Steig: Improving temperature reconstructions from ice cores 1337

Figure 14. Spatial pattern of temperature change since the Last Glacial Maximum. (a) Warming between 19–23 and 0–4 ka for ice-core
site surface temperatures (colored circles with black outline corresponding to different ice-core sites as shown in map inset, uncertainty
in the temperature change shown as error bars), moisture source evaporation air temperature (colored circles, red outline and uncertainty),
and moisture source sea surface temperature (red circles). Moisture source warming is plotted at the mean latitude of the modern moisture
source distributions for each ice-core site, while the latitudinal extent of each moisture source is indicated by the relative histograms along
the x axis. Sea surface temperature warming from the MARGO compilation of SST estimates from ocean sediment cores is shown as open
black circles. (b) Ice-core site surface temperature changes and moisture source sea surface temperature changes are shown as large colored
circles with black outline. MARGO compilation SST changes are shown as small colored circles. (c, d) Spatial pattern of temperature change
from the multi-model mean PMIP3 simulations of the LGM and pre-industrial. (c) The multi-model mean for all grid points is shown as grey
dots with the zonal mean in black. Estimates of 1Ts and 1T0 from the ice-core reconstructions are shown as colored circles as in (a) for
reference.

the relationships between fractionation processes and envi-
ronmental conditions.

Qualitatively, δ18O and δD are reliable indicators of the
relative change in condensation temperature over a suffi-
ciently long timescale. The assumption of a roughly linear
relationship is generally justified, as shown in this study and
previously. However, the linear definition of deuterium ex-
cess, dxs, is an unreliable indicator of relative evaporation
site temperature change, particularly at East Antarctic sites
with very depleted δ18O and δD values. In these cases, the
logarithmic definition of the parameter, dln, is a more faithful
qualitative proxy for evaporation temperature.

We can use models to make quantitative interpretations of
water-isotope variability and to disentangle the combined in-
fluences of the source and site temperatures. To date, most
water-isotope temperature inversions have assumed linear re-
lationships (Kavanaugh and Cuffey, 2003; Vimeux et al.,
2002; Stenni et al., 2011; Uemura et al., 2012). However,
as shown here, this assumption is flawed. Even in the sim-
plified water-isotope models that underlie most tempera-
ture reconstructions, there are inherent nonlinearities in the
isotope–temperature relationships. Ignoring these nonlinear-
ities distorts reconstructed temperature variability. In the case
of evaporation source temperature changes, these distortions
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may be a significant fraction of the total reconstructed vari-
ability.

There is a long-standing debate regarding the interpreta-
tion of “spatial” and “temporal” slopes in the water-isotope–
temperature relationship (e.g., Jouzel et al., 1997). These dis-
cussions are conceptually useful. However, while space and
time are obvious coordinates through which to understand
climate, they are not the most relevant for water-isotope frac-
tionation. Neither space nor time can independently cause
water to change phase and fractionate.

The fundamental dimension through which to understand
water-isotope fractionation is temperature. In this study we
use a relatively simple model to investigate the relationships
of water isotopes in precipitation to temperature. While the
distinction between temporal and spatial slopes is not di-
rectly addressed in this context, we are able to resolve the
core question: is the water-isotope–temperature relationship
fixed? It is not. But these slopes are fundamentally functions
of temperature, not space or time.

Our nonlinear reconstruction technique allows for the es-
timation of absolute temperatures in the past, in addition to
their variability, and is corroborated by independent temper-
ature constraints. By taking into account the inherent non-
linearities of water-isotope fractionation we are better able to
constrain evaporation source region changes. Our reconstruc-
tions reveal a spatial pattern of temperature change across the
Antarctic continent in which West Antarctica warmed sig-
nificantly more than East Antarctica since the Last Glacial
Maximum. Further, our reconstructions provide insight into
the spatial pattern of polar amplification, suggesting that the
warming since the LGM in Antarctica was 2 to 3 times that
in the midlatitudes.

Appendix A: Simple Water Isotope Model

The Simple Water Isotope Model (SWIM) is based on ex-
isting numerical Rayleigh-type distillation models (Merli-
vat and Jouzel, 1979; Jouzel and Merlivat, 1984; Ciais and
Jouzel, 1994; Criss, 1999; Kavanaugh and Cuffey, 2003),
though we make several important improvements and up-
dates. We first describe the physical environmental aspects
of the model and then the details of the fractionation scheme.

A1 Environmental trajectory

Our model considers moisture transported from evaporative
sources down an atmospheric temperature gradient (i.e., from
the midlatitudes toward the pole), driving condensation and
fractionation. Our model operates in the dimension of tem-
perature; we consider pseudo-adiabatic temperature path-
ways from an initial surface air temperature, T0, to a final
condensation temperature, Tc, and discrete steps dT , as well
as Euler numerics.

A1.1 Source region conditions

The moisture source surface air temperature (Ta), sea surface
temperature (SST), and relative humidity (RH) influence the
fractionation of vapor evaporating from the ocean. We use
modern climatological correlations to find initial values of
SST0 and RH0 given a specified initial air temperature, T0,
using the 1980–2010 annual mean climatological fields from
the NCEP/NCAR reanalysis project (Kalnay et al., 1996) and
the ERA-Interim reanalysis (Dee et al., 2011). Correlations
with surface air temperature are better defined than spatial
correlations and give greater flexibility to the model for use
in different climate states. Surface air temperature and SST
are extremely well correlated in the reanalysis (Fig. A1) with
a well-defined nearly linear relationship over most of the
temperature range, except where the SSTs asymptote to the
freezing point of seawater. The relationships are nearly iden-
tical between the NCEP and ERA reanalysis products.

Relative humidity gradients in the modern climate are
fairly weak, though surface RH over the ocean is consis-
tently higher at lower surface temperatures on climatological
timescales. While variable on short timescales, RH appears
to be largely invariant on timescales longer than interannual
(Dai, 2006; Vimeux et al., 2002). We find that the over-ocean
surface relative humidity is systematically about 5 % higher
in the NCEP reanalysis compared to the ERA reanalysis,
though the relationship to surface temperature is similar.

Given a specified initial air temperature, T0, our model
uses values of SST0 and RH0 based on fits to the modern cli-
matology. We use three methods to calculate the climatologi-
cal relationships over the interval−10◦≤ Ta ≤ 28 ◦C: a cubic
spline with specified noise tolerance, the mean and median
of SST and RH distributions within binned values of Ta, and
high-order polynomial fits. All methods show effectively in-
distinguishable relationships in both reanalysis products. We
calculate the uncertainty in these fits and test the model’s sen-
sitivity. Our base model uses the cubic spline method, which
is least susceptible to edge effects and phase shifting, and it
maintains a smooth first derivative.

We find some differences in the Ta-to-SST fit between the
Northern and Southern Hemisphere for air temperatures be-
tween 5 and−15 ◦C, as seen in Fig. A1. In this study we will
use the Southern Hemisphere fit for Ta to SST. We find no
major hemispheric differences for the Ta-to-RH fit and find
little impact of zonal asymmetry on either fit. We find rela-
tively small differences in the fit between Ta and SST0 for
different seasons and somewhat larger seasonal changes in
the Ta and RH0 relationship. We use the annual average fits
hereafter and test the sensitivity of the water-isotope values
of evaporation to these seasonal differences.

The normalized relative humidity, RHn, is critical to
kinetic fractionation of water isotopes during evaporation
(Merlivat and Jouzel, 1979; Risi et al., 2010) and depends
on the three variables above:
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Figure A1. Climatological correlations between Ta, SST, and RH. (a) Annual mean climatological surface air temperature, Ta, and sea
surface temperature, SST, from the NCEP/NCAR reanalysis (Kalnay et al., 1996). Light blue dots are Northern Hemisphere (NH) grid
points, while dark blue dots are Southern Hemisphere (SH) grid points. The polynomial fit for the SH is in red. The error estimate for the fit,
σerr in orange, is the standard deviation of the misfit in the model. The 1 : 1 line is shown in black. (b) Same as on the left but for the surface
air temperature over ocean, Ta, and surface relative humidity (RH) over oceans.

RHn =
RH× es(Ta)
es(SST)

, (A1)

where es (Ta) and es (SST) are the saturated vapor pressures
of air at the surface air temperature and at the sea surface
temperature, respectively.

A1.2 Transport

After evaporation at initial air temperature, T0, and speci-
fied surface pressure, P0, moisture is transported toward the
pole in isolation, cooling and condensing along the way. The
air parcel is cooled pseudo-adiabatically, defining a pressure
trajectory, P as a function of temperature, T (Fig. 2). As
the air parcel cools, moisture above saturation is removed
and the latent heat released during the phase change keeps
the air parcel warmer than in an otherwise equivalent iso-
baric pathway. Following the pseudo-adiabatic assumption,
we consider no other heat sources to the air parcel, and mois-
ture is removed immediately after condensation. Below we
investigate in the influence of air parcel mixing on our model
framework, which is a relaxation of the adiabatic assumption.

We calculate a pseudo-adiabat following the iterative rou-
tine described in Bakhshaii and Stull (2013) but taking into
account the saturated vapor pressures of both ice and liquid
water condensate. The temperature-dependent saturated va-
por pressures of ice and liquid water (Murray, 1966; Murphy
and Koop, 2005), together with air pressure P (T ), define sat-
urated mixing ratios for ice and liquid water,

rs =
Rd

Rwv
×

es

P − es
, (A2)

as functions of T , where Rd
Rwv

is the ratio of gas constants of
dry air and water vapor.

We consider air parcels with mixed ice and liquid con-
densate (Ciais and Jouzel, 1994), in which the ice fraction
smoothly increases as temperatures decreases below freez-
ing. Many models, including isotope-enabled GCMs, ap-
proximate the temperature dependence of cloud ice–liquid
fraction as piecewise linear functions (Hu et al., 2010), while
others use smoothly varying error integrals (Ciais and Jouzel,
1994; Kavanaugh and Cuffey, 2003). We use temperature-
dependent functions for the cloud ice fraction derived from
satellite observations (Hu et al., 2010) over the Southern
Ocean and over land snow and ice surfaces, which pre-
serve significantly more liquid water at colder temperatures
than previous parameterizations (e.g., Kavanaugh and Cuf-
fey, 2003).

The specific heat at constant pressure, cp, latent heat, L,
saturated vapor pressure, es, and saturated mixing ratio, rs,
are temperature-dependent and calculated for the liquid and
ice phases individually. Effective values for the parcel as
a whole are calculated from the mixing fractions of each
phase (Kavanaugh and Cuffey, 2003). For example, rs(eff) =

rs(ice)F(ice)+ rs(liq)F(liq), where rs(ice) and rs(liq) are the satu-
rated mixing ratios of ice and liquid, respectively, and F(ice)
and F(liq) are the (temperature-dependent) fractions of each
phase of condensate.

Moisture is removed along the temperature pathway owing
to the temperature-dependent changes in the saturated mix-
ing ratio, −dq

dT =
drs(eff)

dT . This is a simplified view of large-
scale precipitation commonly used in similar models (e.g.,
Markle et al., 2018). We do not consider reevaporation of
falling precipitation. There are several reasonable choices in
the implementation of our simplified view of moisture re-
moval once air parcels are cooled from initial relative humid-
ity to saturation. The instantaneous moisture removal process
may leave the air parcel at saturation, at some specified level
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below saturation (e.g., RH= 90 %), or at the air parcel’s ini-
tial level below saturation, in which case relative humidity is
constant along the path. We test the sensitivity of our model
to these assumptions below using constant relative humidity
as our default.

At very cold temperatures moisture is removed not at sat-
uration but at a specified level of supersaturation. The pres-
ence of both ice and liquid condensate in the cloud dictates
a supersaturation of vapor over ice due to the difference in
liquid and ice vapor pressures (Jouzel and Merlivat, 1984).
A paucity of condensation nuclei may lead to further super-
saturation at very cold temperatures (Tegen and Fung, 1994).
The total supersaturation is parameterized here to depend on
temperature (discussed in detail in Sect. A2.3).

A2 Isotope fractionation

In this section we outline the water-isotope fractionation
scheme used in SWIM. We model equilibrium and the ki-
netic fractionation of the

2H
1H ,

18O
16O , and

17O
16O ratios in water.

We use conventional notation in which R is the number ratio
of heavy to light isotopes of a species, for example DR =

2H
1H

and 18R =
18O
16O .

The fractionation factor is the ratio of R values between
phases. For example, the fractionation factor between liquid
and vapor phases for δ18O is

18αl−v =

(
18O
16O

)
liquid(

18O
16O

)
vapor

=

18Rl
18Rv

. (A3)

We use the empirically determined, temperature-
dependent equilibrium fractionation factors between liquid
and vapor, 18αeq(l−v) and Dαeq(l−v), as well as those be-
tween vapor and ice, 18αeq(i−v) and Dαeq(i−v) (Majoube,
1970, 1971; Merlivat and Nief, 1967; Criss, 1999), with
updates for the ice–vapor equilibrium fractionation factor
found by Lamb et al. (2017).

A2.1 Evaporation from the ocean

The isotopic values of vapor evaporating from the ocean
are determined, in part, by the isotopic values of the sea-
water. By definition, globally averaged seawater has δ val-
ues near 0 ‰. However, the δ18O of seawater (δ18Osw) in
the regions of Antarctic moisture sources is more depleted
than average, with a mean around −0.3 ‰, (Schmidt et al.,
1999). We use the observed correlation between δ18Osw and
δDsw from a compilation of global seawater measurements
(Schmidt et al., 1999) to find an initial δDsw given the spec-
ified initial δ18Osw (which changes with mean climate) and
investigate the sensitivity of the model to these initial con-
ditions. We assume a 17Oxs of seawater equal to 0, where
17Oxs = δ

′17O− 0.528× δ′18O, which is typically reported
in per meg.

The atmosphere above the global oceans is not at satura-
tion on average, with relative humidity typically around 80 %
(Hartmann, 2015). Because of this steady-state disequilib-
rium, significant kinetic fractionation occurs during evapo-
ration from the ocean. Kinetic fractionation depends both on
the relative humidity and the wind speed at the air–ocean in-
terface during evaporation (Merlivat and Jouzel, 1979). The
effective fractionation factor associated with diffusion and
turbulence is

αdiff =

(
D

D∗

)n
, (A4)

where D and D∗ are the diffusivities of the light and heavy
isotopes, respectively (Merlivat and Jouzel, 1979). The expo-
nent n ranges from 0 to 1 and relates to the wind regime and
speed and the ratio of turbulent to molecular diffusion. For
the diffusive fractionation between H18

2 O and H16
2 O during

initial evaporation, the fractionation factor 18αdiff equals 1.0
for pure turbulence and 1.0028 for pure molecular diffusion
(Merlivat and Jouzel, 1979; Barkan and Luz, 2007).

Following Kavanaugh and Cuffey (2003), we do not ex-
plicitly consider surface wind speeds. Instead we use an em-
pirical approach and the results of Uemura et al. (2008, 2010)
for 18αdiff, who estimate the parameter based on measure-
ments of δD, δ18O, and δ17O in vapor above the South-
ern Ocean. Uemura et al. (2010) find a value of 18αdiff =

1.007± 0.0013 and 1.008± 0.0018 when optimizing for ob-
servations of dxs and 17Oxs of vapor, respectively. These re-
sults are within uncertainty of each other and of independent
analysis by Pfahl and Wernli (2009), which found a value of
1.0076. Using a compilation of vapor measurements (includ-
ing Uemura et al., 2008, 2010; Liu et al., 2014; Kurita et al.,
2016; Benetti et al., 2017), we find that 18αdiff = 1.009 leads
to a good match between modeled and observed values of
both dxs and 17Oxs of vapor when using the observed values
of T0, SST, and RH at the time of the vapor measurements.
We investigate the sensitivity of the model to this parameter
below.

The diffusive fractionation factor between hydrogen and
deuterium, Dαdiff, may be determined experimentally by
measuring the ratio of diffusive fractionation factors (Mer-
livat, 1978; Luz et al., 2009).

φdiff =
Dαdiff− 1
18αdiff− 1

(A5)

Merlivat (1978) found a mean value for φdiff of 0.88 based
on laboratory evaporation studies, and Luz et al. (2009)
found that the value of φdiff depends on the evaporation tem-
perature, ranging between 0.73 and 1.06 for temperatures
between 10 and 69.5 ◦C. We use a piecewise linear func-
tion based on the results of Luz et al. (2009) to relate φdiff
and evaporation temperature and thus Dαdiff to 18αdiff. For
evaporation temperatures colder than the experimental range
of Luz et al. (2009) (< 10 ◦C), we use the measured value
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at 10 ◦C (φdiff = 1.06). The differences in model results for
evaporation with a temperature-dependent φdiff and a con-
stant φdiff = 0.88 are small (< 1 ‰ for initial δD of vapor).

For the fractionation of
17O
16O we use the following relation-

ships, which are backed by both theory and empirical obser-
vation (Barkan and Luz, 2005, 2007): 17αeq=

18α0.529
eq for va-

por and liquid in equilibrium and 17αdiff=
18α0.518

diff for vapor
diffusion.

An alternative to the empirical approach for diffusive frac-
tionation outlined above is to use new results from kinetic
molecular theory (Hellmann and Harvey, 2020), which lead
to physically constrained temperature dependence of the dif-
fusivity ratios for the isotopologues. These results lead to a
temperature dependence of φdiff that is different than the ex-
perimental results of Luz et al. (2009), being less variable
and closer to the 0.88 value of Merlivat (1978). Using this
formulation in the evaporation scheme requires us to choose
a representative value of n (see Eq. A4) for the wind turbu-
lence regime to match observations. A value of n between
0.22 and 0.32 leads to a range of results equivalent to that
resulting from 18αdiff between 1.006 and 1.010 and the em-
pirically based scheme described above. As before, this tem-
perature dependence leads to very minor differences for the
δ values of vapor as a function of temperature.

The relationship between the initial R value of the vapor
and the ocean due to kinetic fractionation depends on the nor-
malized relative humidity during evaporation, RHn, and the
equilibrium and diffusive fractionation factors, αeq(l−v) and
αdiff. Following Criss (1999) and Luz et al. (2009),

αevap =
Ro

Re
=
αeqαdiff(1−RHn)

1−αeqRHn
(
Rv
Ro

) , (A6)

where Ro and Rv are the isotopic ratios of the ocean wa-
ter and the water vapor in the atmospheric boundary layer,
respectively. Re is the ratio of the evaporate, the net vapor
lost to the atmosphere, which is a quantity that is not directly
measurable (Criss, 1999).

If we assume that the only source of vapor to the bound-
ary layer is the local evaporate, we may equate Rv and Re
and solve Eq. (A6) for Rv (Merlivat and Jouzel, 1979; Criss,
1999; Risi et al., 2010):

Rv =
Ro

αeq× (αdiff+RHn (1−αdiff))
. (A7)

The modeled isotopic composition of vapor evaporated
from the ocean is shown in Fig. A2. This “local” closure as-
sumption is within the range of observations of water iso-
topes in vapor over the Southern Ocean and elsewhere (Ue-
mura et al., 2008, 2010; Liu et al., 2014; Kurita et al., 2016;
Benetti et al., 2017).

However, the validity of the local closure assumption un-
der certain conditions is in question (Uemura et al., 2010;
Risi et al., 2010). In addition to moisture from the ocean sur-

face, the boundary layer may receive moisture from advec-
tion, convection, subsidence, and reevaporation of precipita-
tion. Risi et al. (2010) explored this issue extensively using a
model that takes into account these other sources of moisture.
They show that the local closure assumption leads to vapor
that is too enriched in both δD and δ18O and too low in dxs,
and these offsets are a function of environmental conditions
(Risi et al., 2010).

We investigate the influence of the closure assumption in
a few ways. First, we examine closure globally rather than
locally. The mean ocean has δ values of about 0 ‰, and
global average precipitation has δ18O=−4.5 ‰ and δD=
−26.7 ‰ (Craig and Gordon, 1965). Considering the global
average steady state in which the ocean is the ultimate vapor
source for precipitation (Merlivat and Jouzel, 1979; Criss,
1999) , the delta values of precipitation must reflect the net
loss by evaporate from the ocean. Thus, globally, the ratio
Ro
Re

is 1.0267 for D and 1.0045 for 18O. Instead of equating

Re and Rv locally, we define a global αevap =
(
Ro
Re

)
global

and

solve forRv. Substitution into Eq. (A6) and rearranging leads
to

Rv = Ro

(
1−

αeqαdiff (1−RHn)
αevap

)(
αeqRHn

)−1
. (A8)

Though an obviously blunt approach for determining local
evaporation, this global closure assumption is the limit for a
globally mixed atmosphere. Modeled evaporation using both
closure assumptions is compared to isotopic measurements
of Southern Ocean vapor in Fig. A2.

Next, we consider specific mixing of evaporative condi-
tions instead of the generalized globally mixed case above.
Rather than the local ocean being the only source of vapor,
we can consider a simple scenario in which the isotopic com-
position of the boundary layer, Rv, is comprised of both local
evaporate, Re, and vapor evaporated at some distal location
and advected to the site, Rv = (1−θ )Re+θRdistal, where θ is
the fraction of nonlocal vapor with composition Rdistal. The
local evaporative conditions are defined by T0, while the dis-
tal conditions may be either warmer or colder than T0. Vapor
is evaporated under those distal conditions (using a local clo-
sure assumption) and advected without fractionation before
mixing with the local vapor of composition Re. Figure A3
shows the isotopic composition of vapor over a range of T0,
with a full range of contributions from both a 5 ◦C warmer
moisture source (T0+ 5 ◦C, red) and a 5 ◦C colder moisture
source (T0− 5 ◦C, blue). This range of mixing leads to a
spread of delta values of the initial vapor around the simple
local closure assumption, though the difference is generally
less than that between the local and global closure assump-
tions.

The isotopic values of vapor produced by any of these
closure assumptions (local, mixed, or global) are within the
range of mean values of the observational data and show sim-
ilar relationships to local environmental conditions like SST
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Figure A2. Modeled isotopic values of evaporation compared to Southern Ocean vapor measurements. (a) Modeled δ18O versus SST using
the “local” closure assumption (red lines) and “global” closure assumption (blue lines). We use two different reanalysis datasets for the
SST and RH climatology: NCEP/NCAR (solid lines) and ERA-Interim (dashed lines). Black dots are discrete vapor measurements from
the Southern Ocean made by Uemura et al. (2008) (U08), while grey, blue, red, and yellow dots are continuous ship-based Southern Ocean
vapor measurements made by Liu et al. (2014) (L14), Kurita et al. (2016) (JARE55), and Benetti et al. (2017) (STRASSE, RARA AVIS),
respectively. (b) Same as (a) but for modeled δD versus SST. (c) Same as (a) but for modeled dxs versus SST. The vertical tails at low SST
in panels (a) and (b) result from SSTs asymptoting to the freezing point of seawater while air temperatures may continue to decrease.

Figure A3. Relationship between isotopic composition of vapor and SST under different mixing scenarios. Positive values on the color scale
reflect the fraction of moisture from a 5 ◦C warmer moisture source mixed with the local moisture source (50= 50 % moisture from local
source+ 50 % moisture from 5 ◦C warmer-than-local moisture source), while negative values reflect the fraction of moisture from a 5 ◦C
colder moisture source mixed with the local moisture source (−50= 50 % moisture from local source+50 % moisture from 5 ◦C colder-
than-local moisture source). Model results use NCEP/NCAR reanalysis for SST and RH climatology. Unmixed model results for a local
closure assumption are shown as a black dashed line and a global closure assumption as a solid black line.

and RH. These closure assumptions represent the bounds of
a well-mixed and unmixed atmosphere or something in be-
tween. The amount of mixing in the boundary layer could
change with location and with climate mean state. Rather
than tying our model to one closure assumption, we view
mixing at evaporation as an inherent uncertainty.

It is important to note that in Fig. A2 we use climatologi-
cal correlations between T0, SST, and RH, while the observa-
tional data represent far shorter time intervals, mostly from
one season. When using the observed values of T0, SST, and
RH at the time of the observational measurements (Uemura
et al., 2008; Liu et al., 2014), we are able to capture the com-
plex variability in the isotopic values of the vapor on those
given days. For example, in Fig. A4 we compare modeled
dxs of vapor and modeled 17Oxs of vapor to Southern Ocean

vapor observations using the observed environmental condi-
tions at the time of the vapor measurements. The modeled
relationships between dxs and 17Oxs with SST0 and RH0 are
in good agreement with observations.

We examine the sensitivity of initial evaporation to several
model parameters discussed above in Fig. A5. In all cases the
modeled sensitivity to these parameterizations and uncertain-
ties is relatively small compared to the natural variability in
observations of isotopic vapor compositions. The choice of
reanalysis product used to derive the climatological relation-
ships between T0, SST0, and RH0, as well as the uncertainty
in those fits, has relatively small effects on the results of evap-
oration (Figs. A2, A5a–f). We also show the influence of the
initial δ18Osw of the ocean (Fig. A5g–i) as well as the value
of αdiff (Fig. A5j–l).
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Figure A4. Comparison of modeled and observed isotope excess parameters and relationship to source region conditions. (a) Observed dxs
and SST relationship in Southern Ocean vapor from Uemura et al. (2008) (black dots, U08) and Liu et al. (2014) (grey dots, L14). SWIM
results for evaporation under SST and RH conditions observed coincident with vapor measurements of Uemura et al. (2008) (cyan dots,
U08 model) and Liu et al. (2014) (purple dots, L14 model). (b) Same as (a) but for modeled and observed dxs-to-RH relationship from
observations of Uemura et al. (2008) The Liu et al. (2014) observations and model show a similar trend and are omitted for visual clarity.
(c) Observed 17Oxs and SST relationship in Southern Ocean vapor from Uemura et al. (2010) (black dots, U10) and SWIM results run
under observed sea surface conditions (cyan dots, U10 model). (d) Same as (c) but for observed and modeled 17Oxs and RH relationship in
Southern Ocean vapor.

The direct comparisons of observed and modeled vapor
composition using observed T0, SST0, and RH0 at the time
of the vapor measurements (Fig. A4) suggest that a single ef-
fective αdiff may not fully capture the kinetic effects across
the range of surface conditions. While αdiff = 1.009 leads
to a good fit between observed and modeled deuterium ex-
cess for much of the range of surface conditions, there is a
small persistent misfit for surface temperatures between 20
and 27 ◦C, where a smaller αdiff is suggested (Fig. A6). While
it is possible to implement a temperature-dependent αdiff to
reduce this misfit, we prefer a fixed αdiff to avoid over fitting
a relatively small dataset in the absence of further evidence
or physical reasoning. While we do not consider tempera-
ture dependence of αdiff, we do consider a range of αdiff as
an inherent uncertainty in our model and account for this in
the uncertainty analysis of our temperature reconstructions
as discussed in Sect. A9.

We note that it is of course also possible that other fac-
tors, rather than temperature dependence of αdiff, could ac-
count for the apparent misfit, such as a difference between
the ship-measured RH and Ta and that felt at the water’s sur-
face or specific mixing of nonlocal moisture in the boundary
layer on the days of the ship-based measurements. Given the
magnitude of the misfit, it is also possible that spatial or tem-

poral variability in δ18Osw and δDsw could account for the
misfit (Schmidt et al., 1999).

A2.2 Distillation

We next discuss the distillation of water isotopes during
transport. As an air parcel cools, water condenses, fraction-
ates, and is removed as precipitation. The essential differen-
tial equation for Rayleigh distillation (Rayleigh, 1902; Dans-
gaard, 1964; Criss, 1999) is

d ln(R)
d ln(f )

= α− 1 (A9)

where f is the fraction of initial water vapor remaining in
the air parcel. The amount of moisture at any temperature
along the pathway is found by integrating the changes in the
saturated mixing ratio rs owing to pseudo-adiabatic cooling
from the source (Dansgaard, 1964) . Thus,

f =
q

q0
=
rs

rs0
. (A10)

In general, condensation occurs in the model at saturation,
and thus the temperature-dependent equilibrium fractiona-
tion factor αeq is used in Eq. (A9). However, at cold condi-
tions there may be supersaturation of vapor over ice, leading

https://doi.org/10.5194/cp-18-1321-2022 Clim. Past, 18, 1321–1368, 2022



1344 B. R. Markle and E. J. Steig: Improving temperature reconstructions from ice cores

Figure A5. (a–f) Sensitivity of modeled δ18O, δD, and dxs of vapor to uncertainty in the reanalysis-based fits between climatological Ta, SST,
and RH in the NCEP/NCAR reanalysis. Panels (a) and (b) show the modeled isotope vapor relationship to uncertainty in the climatological
Ta-to-SST relationship. Red lines show the model run using the central estimate of the fit, and orange lines show the spread expected with
±σerr of the fit as shown in Fig. A1. Panels (c) and (d) are the same as (a) and (b) but showing the central estimate (dark blue) and spread
associated with ±σerr (light blue) in the climatological Ta-to-RH relationship shown in Fig. A1. (g–i) Sensitivity of modeled isotope values
of vapor to the δ18Osw of seawater. Values of δ18Osw from −0.5 ‰ to 0.5 ‰ are specified, representing most of the global variance in
δ18Osw. Values of δDsw are determined based on correlations of δ18Osw and δDsw from observations (Schmidt et al., 1999). (j–l) Sensitivity
of modeled isotope values of vapor to a range of 18αdiff values from 1.007 to 1.010. Also shown are results using the first-principles-based
diffusivities of Hellmann and Harvey (2020) (HH20, black, using n= 0.27 in Eq. A4). Local closure is assumed in all panels.

to additional kinetic fractionation. Following previous mod-
els (Jouzel and Merlivat, 1984), the total fractionation αtot
factor is αtot = αeqαk. Equation (A9) thus becomes

d ln(R)= (αtot− 1)d ln(f ). (A11)

The kinetic fractionation factor, αk, depends on the supersat-
uration of vapor over ice, Si:

αk =
Si

αeq×
D
D∗

(Si− 1)+ 1
. (A12)

Following Jouzel and Merlivat (1984), we use the ratio of
diffusivities for oxygen isotopes D16

D18 = 1.0285 during mois-
ture transport, representative of pure molecular diffusion and
ignoring the negligible ventilation effect. Likewise we use

D1

D2 = 1.0251 for the ratio of diffusivities of hydrogen iso-
topes. These values imply a constant φdiff during transport
equal to 0.88 (Jouzel and Merlivat, 1984) rather than the
temperature-dependent φdiff used in the evaporation scheme.
We prefer this value for simplicity, consistency with ear-
lier work, and lack of experimental measurements of φdiff
at the colder temperatures experienced during transport (Luz
et al., 2009). However, to investigate the effect of assuming
a constant φdiff, we also use a configuration of the model
with the temperature-dependent diffusivity ratios of Hell-
mann and Harvey (2020) based on molecular kinetic the-
ory. We can achieve essentially identical results using this
physically based temperature dependence of the diffusivity
ratios and assuming no temperature dependence, with ex-
ceedingly minor changes to the supersaturation function (see
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Figure A6. Relationship between observed and model dxs (a) and
17Oxs (b) of vapor over the Southern Ocean. Observed vapor val-
ues are from Uemura et al. (2008, 2010) (large dots) and Liu et al.
(2014) (small dots). Modeled values use the reported T0, SST0,
and RH0 from the observations and four different values of 18αdiff
(shown in color of dots). The 1 : 1 line is shown in black.

Sects. A2.3 and A4); a change of b in the supersaturation
function of less than 0.00015 is sufficient to negate any dif-
ference between these assumptions. We thus consider the ef-
fect of temperature dependence in these diffusivities to be
subsumed within the uncertainty associated with tuning the
supersaturation function (see Sects. A4 and A9)

In the mixed-phase portion of the transport pathway, the
effective fractionation factors are determined by the mixing
fractions of ice and liquid condensate. Following Kavanaugh
and Cuffey (2003),

αeff = αtot(l−v)F(liq)+αtot(i−v)F(ice). (A13)

The temperature dependence of the ice and liquid fraction
is shown in Fig. A7a and based on satellite observations (Hu
et al., 2010).

A2.3 Supersaturation

The supersaturation of vapor over ice is a critical parame-
terization in water-isotope distillation models. The true re-
lationship of supersaturation to environmental conditions is
the result of complex cloud microphysics (Hong et al., 2004).
Because of its strong influence on water-isotope fractiona-
tion and the uncertainty in the underlying physics, the su-
persaturation is often parameterized to depend on temper-
ature and tuned to fit water-isotope models to observations
(Jouzel and Merlivat, 1984; Kavanaugh and Cuffey, 2003;
Schoenemann et al., 2014). Jouzel and Merlivat (1984) pa-
rameterized the supersaturation as a function of temperature
and note that available water-isotope data could not distin-
guish among possible functional forms of the parameteriza-
tion (e.g., linear, exponential). Their linear parameterization
has been used extensively in water-isotope models since:

Si = a− b× T , (A14)

where a and b are tuned to fit observational data.
It is important to note here that the prescribed mixing of

liquid and ice in the cloud implies a supersaturation of va-
por over ice that follows the blue curve shown in Fig. A7b,
which is inconsistent with the supersaturation driving kinetic
fractionation as prescribed in Eq. (A14). The presence of
both liquid and ice phases in a cloud is not the only po-
tential source of supersaturation. The lack of condensation
nuclei, for example, allows supersaturation to remain high
in cold, ice-only conditions (Hong et al., 2004), rather than
returning to unity as the cloud becomes entirely ice-phase.
It is common for water-isotope models, even those in some
GCMs (e.g., Schoenemann et al., 2014), to have multiple
variables equivalent to supersaturation in different aspects of
the same model, such as the isotope fractionation and pre-
cipitation schemes, which may not be self-consistent. Be-
cause the environmental supersaturation experienced by the
air parcel is related to the relationship between temperature
and moisture removal (that is dln(f )

dT ) and the supersaturation
driving kinetic fractionation relates temperature to δ values
(largely through Eq. A12), an inconsistency in the model’s
view of supersaturation can influence the modeled water-
isotope–temperature relationship in unphysical ways.

To resolve this physical inconsistency, precipitation only
occurs in SWIM when the parcel reaches the prescribed su-
persaturation by dictating an effective saturated mixing ratio
of the air parcel, in which rs(eff) = rs(ice)Si. Ensuring consis-
tent supersaturation across the model leads to a smoother re-
lationship between temperature and the δ values of precipi-
tation. This is in contrast to rather complex curvature in the
temperature–water-isotope relationship that results if incon-
sistent relationships between saturation and temperature are
used in the precipitation and fractionation schemes, which is
generally incompatible with observations. In line with previ-
ous work (Jouzel and Merlivat, 1984), we find that using only
the supersaturation implied by the mixing of ice and liquid,
across all aspects of the model, results in a relationship be-
tween δ18O and δD irreconcilable with observations. Were
the air parcel to return to non-supersaturated conditions in
the ice-only portion of the cooling pathway, the simultane-
ous transition to equilibrium-only fractionation would drive
a slope of ∂δ

18O
∂δD that is not compatible with measured values

in Antarctic precipitation. This gives additional credence to
sustained supersaturation at cold temperatures.

A3 Application to Antarctic ice-core sites

A3.1 Moisture source distributions

The atmospheric circulation transports moisture poleward of
≈ 30◦ S (Fig. 1a). The mean evaporation latitude of mois-
ture that precipitates at any given site can be estimated from
moisture-tagged GCM experiments (Markle et al., 2017).
The difference between the mean latitudes of moisture evap-
oration and precipitation steadily increases between the sub-

https://doi.org/10.5194/cp-18-1321-2022 Clim. Past, 18, 1321–1368, 2022



1346 B. R. Markle and E. J. Steig: Improving temperature reconstructions from ice cores

Figure A7. Supersaturation of vapor over ice. (a) Fractions of ice
(cyan) and liquid (blue) condensate as a function of temperature.
Curves are derived from satellite-based measurements (Hu et al.,
2010). (b) Supersaturation as a function of temperature. The blue
curve shows supersaturation based solely on the saturated vapor
pressures of ice and liquid, the mixing fractions based on the curves
shown in panel (a), and the pseudo-adiabatic assumption (ILS). The
red curve shows the linear parameterization of supersaturation (lin-
ear) used in the model, Si = 1− 0.00525 ◦C−1

× T . Note that the
atmosphere is subsaturated with respect to ice at temperatures above
0 ◦C but that our pathways do not include ice at these temperatures.

tropics and the pole (Fig. 1a and b). The mean evaporative
latitude of moisture that precipitates in Antarctica ranges be-
tween 44 and 50◦ S (Fig. 1c). The surface elevation of the
ice sheet is a strong predictor of the mean latitude of pre-
cipitation, with higher-elevation sites having more equator-
ward moisture sources (Fig. 1d) due to topographic isolation
(Sodemann and Stohl, 2009; Bailey et al., 2019). There are
some notable asymmetries in this general pattern. The large
embayments are areas of comparatively high-latitude mean
moisture source, such as the Victoria Land coast in the Ross
Sea region.

The mean moisture source latitude is, however, not the
full story. The moisture reaching any Antarctic site does not
originate from just a single mean source latitude or follow
a single temperature pathway. The contribution of moisture
evaporated from different latitudes to the final precipitation
at a site defines a moisture source distribution (Markle et al.,
2017), which reflects the combination of the spatial pattern
of evaporation, cumulative rainout, and the influence of at-
mospheric circulation. Here we diagnose annual mean mois-
ture source distributions (MSDs) as a function of latitude
from a moisture-tagged run of the Community Atmosphere
Model (CAM) for East and West Antarctic sites (details are
given in Markle et al., 2017), as shown in Fig. 1e. Moisture
source distributions derived from other methods like trajec-
tory modeling are similar (e.g., Sodemann and Stohl, 2009;
Markle et al., 2012; Buizert et al., 2018). These MSDs dic-
tate the influence of evaporation source conditions (Ta, RH,
SST) on moisture reaching any Antarctic site. There are some

zonal asymmetries in surface conditions over the Southern
Hemisphere oceans, but the strong latitudinal gradients are
the largest source of spatial variance in these conditions at
climatological timescales.

While the mean latitudes of moisture sources vary between
Antarctic sites, largely as a function of site elevation, Antarc-
tic MSDs are not fundamentally distinct in latitude, but rather
span broadly overlapping swaths of the Southern Hemisphere
from the Antarctic coast to the tropics (Fig. 1e). The dif-
ference in weighted mean moisture source latitude between
Antarctic ice-core sites is less than 10◦ of latitude, while the
moisture source distribution for any one site spans over 40◦

of latitude. Local evaporation is a small contribution to the
moisture precipitating at Antarctic sites. On average moisture
is transported more than 20◦ of latitude to reach Antarctica.

Given the broad range of evaporative conditions that con-
tribute to moisture precipitating at an ice-core site, what is
the meaning of the Tsource that can be reconstructed from
water-isotope records? It is the moisture-weighted evapora-
tive temperature, determined by the convolution of the spatial
pattern of the MSD and the underlying surface temperatures
(Fig. A28, Markle et al., 2017). Both surface temperatures at
fixed locations and the pattern of the MSD can change in-
dependently. The water-isotope records alone do not allow
the disentanglement of these two patterns, which may have
different temporal evolution (Markle et al., 2017).

To understand the moisture transport and water-isotope
distillation to Antarctic sites it is important to consider evap-
oration from the range of conditions comprising the mois-
ture source distribution. We thus use an ensemble of temper-
ature pathways for Antarctic precipitation defined by a range
of Antarctic condensation temperatures as well as the broad
range of evaporation temperatures underlying the Antarctic
moisture source distributions. The means of these distribu-
tions vary across the continent.

A3.2 Condensation site conditions

During transport, moisture is cooled from initial surface air
temperature at evaporation to subsequent condensation tem-
peratures. The condensation temperature is not the same as
the surface temperature where that precipitation falls. Indeed,
there is a vertical and temporal distribution of condensation
contributing to precipitation that falls at any point on the sur-
face, analogous to the horizontal and temporal distribution of
evaporation contributing the moisture ultimately transported
to any precipitation site. What is the meaning of Tc recon-
structed from ice-core records? It is the vertical profile of
temperature weighted by the vertical profile of condensation
that yields net accumulation to a site. The weighted conden-
sation temperature has a distinct relationship to the surface
temperature across the globe.

Antarctica has strong climatological inversions such that
temperature aloft is often warmer than the surface (Connol-
ley, 1996). Masson-Delmotte et al. (2008) review the rela-
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tionship between the condensation temperature and the sur-
face temperature (Ts) over Antarctica and compare the sur-
face temperature to the weighted annual mean condensa-
tion temperature in both ERA-40 reanalysis (1980–2002) and
MAR, a high-resolution mesoscale model forced by ERA-
40 (see Fig. 8, Masson-Delmotte et al., 2008). In both mod-
els the upper bound of the Antarctic condensation temper-
ature appears to be set by the peak inversion temperature,
though condensation temperatures are on average colder than
the peak inversion temperature (meaning simply that con-
densation occurs at a range of temperature up to the peak
inversion temperature). Masson-Delmotte et al. (2008) cal-
culate a best fit of the surface to condensation temperature
slope of 0.65 ◦C ◦C−1 in the ERA-40 data, consistent with
previous work that found a slope of 0.67 ◦C ◦C−1 (Connol-
ley, 1996; Jouzel and Merlivat, 1984). The spread of con-
densation temperatures in the higher-resolution MAR model
suggests colder condensation temperatures than in the lower-
resolution reanalysis (Masson-Delmotte et al., 2008). The
strength of the Antarctic inversion diminishes with increas-
ing surface temperature (Connolley, 1996), and relatively
warm Antarctic surface temperatures (e.g.,>−20 ◦C) are as-
sociated with condensation temperatures colder than the sur-
face temperature (Masson-Delmotte et al., 2008).

We analyze the relationship between surface temperature
and condensation temperature in monthly MERRA-2 reanal-
ysis from 2008 through 2017 (Gelaro et al., 2017). We show
the climatological zonal-mean vertical profile of air temper-
ature, the sum of the convective and large-scale precipita-
tion source production rate, and the rate of reevaporation and
sublimation of precipitation in Fig. A8. The relationship be-
tween the climatological weighted condensation temperature
and the surface air temperature at every grid point is shown
in Fig. A9. Note that this calculation accounts for the sea-
sonality of precipitation throughout the atmospheric column,
as well as the reevaporation and sublimation of falling pre-
cipitation. Ignoring reevaporation and sublimation leads to
qualitatively similar results.

The primary take-away is that the MERRA-2 data show a
generally linear relationship between condensation and sur-
face temperature for typical Antarctic surface temperatures.
That relationship, however, is not linear at warmer surface
temperatures. Indeed, even at surface temperatures below
zero, the relationship is not strictly linear, but rather steep-
ens with decreasing temperature. The relationship between
the surface air temperature and the weighted condensation
temperature (for surface temperatures below −10 ◦C) has
an average slope between 0.61 and 0.64 ◦C ◦C−1 depending
on whether one accounts for reevaporation and whether the
comparison is between the surface or 2 m air temperature.
Note that this slope is weighted toward the surface temper-
ature of regions comprising more model grid points. Fur-
ther, the slope clearly steepens with decreasing temperature,
reaching≈ 0.71–0.75

◦C
◦C at the very coldest Antarctic surface

temperatures. Given the uneven distribution of grid points in

Figure A8. MERRA-2 reanalysis data for 2008–2017. (a) Annual
mean zonal-mean air temperature as a function of pressure and lati-
tude. (b) Annual mean zonal-mean precipitation source (kilograms
of water per kilogram of air per second). (c) Annual mean zonal-
mean reevaporation and sublimation of falling precipitation in the
same units and color scale as panel (b).

temperature space, it is difficult to estimate the robustness of
this steepening of slope.

Using our nonlinear temperature reconstruction method,
we model the condensation temperature for every pair of
δ18O and δD samples in the MD08 and GNIP datasets
(Masson-Delmotte et al., 2008; IAEA, 2001) that also have
a reported mean surface temperature. We compare the rela-
tionship between the modeled condensation temperature and
the reported surface temperature in Fig. A9. The pattern of
this reconstructed relationship is remarkably consistent with
that found in the MERRA-2 dataset, even to some extent at
warm surface temperatures. This is despite the potential for
offsets between the reported surface temperature and that at
the time of the precipitation for the MD08 and GNIP precip-
itation samples, differing time intervals, potential moisture
biases in the column in MERRA-2 (Bosilovich et al., 2017),
and the lack of processes in our isotope distillation model
that should be important, for example, in tropical convection
or that might alter Antarctic precipitation after deposition.

Examining all modeled condensation temperatures for
samples in the MD08 and GNIP datasets with reported sur-
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Figure A9. Weighted condensation temperature as a function of
surface temperature. (a) MERRA-2 reanalysis data for 2008–2017.
Seasonally and vertically weighted condensation temperature (ac-
counting for reevaporation and condensation) for every grid point
in the Southern Hemisphere against 2 m air temperature (black)
and surface temperature (dark grey). The same relationship with
2 m air temperature is shown for the Northern Hemisphere as light
grey dots. (b) The reported surface temperature and the SWIM-
modeled condensation temperature using pairs of δ18O and δD in
the Masson-Delmotte et al. (2008) database (MD08, blue dots) from
both Southern Hemisphere sites (black dots) and Northern Hemi-
sphere sites (light grey dots) in the GNIP database, as well as the
average of the top 50 years of sites from several deep ice-core sites
(red dots). Solid black lines are 1 : 1.

face temperatures below 15 ◦C, we find slopes between 0.62
and 0.67 ◦C ◦C−1. For just the Antarctic precipitation sam-
ples in the MD08 dataset we find a best-fit slope between
the reported surface temperature and our modeled condensa-
tion temperature of 0.67–0.69 ◦C ◦C−1 (Fig. A9), depending
on the model assumptions (0.69 ◦C ◦C−1 under our base as-
sumptions) and whether below-freezing source evaporation
is included (see below), in good agreement with previous
Antarctic observational studies (Connolley, 1996; Jouzel and
Merlivat, 1984). These slopes sit well within the range found
in the MERRA-2 data. We also reconstruct the condensation
temperatures for the topmost samples from several deep ice
cores and compare those to the reported annual average tem-
peratures for those sites (Fig. A9). We find a best-fit slope
between 0.68 and 0.70 ◦C ◦C−1, depending on whether we

average samples from the last 50 or 100 years, though only
five points describe these lines.

Based on the above results we use the equation Tc =

0.69
◦C
◦C Ts−8.2 ◦C as our base estimate to reconstruct Antarc-

tic surface temperatures,; however, we consider an uncer-
tainty of ±0.02

◦C
◦C in the slope. Our base estimate leads

to good agreement with the observed relationship between
global δ18O and surface temperature (Fig. A10). We show
our temperature-dependent isotope slopes in Fig. A11.

A3.3 Seasonality

Does seasonality in the hydrological cycle systemati-
cally bias climatological information in ice-core water-
isotope records? While the difference between precipitation-
weighted surface temperature and annual mean surface tem-
perature is often discussed, this is not strictly the rele-
vant comparison from the perspective of water-isotope ra-
tios of precipitation. As discussed above, the critical com-
parison is between the annual mean surface temperature and
the condensation-weighted temperature, integrated over both
time and altitude. Our analysis of the MERRA-2 reanaly-
sis data (Fig. A9) takes seasonal variation in precipitation
and the vertical temperature profile into account. Differences
in seasonality of condensation at different sites contributes
to the spread around the central relationship. It is neverthe-
less useful to investigate potential bias in the precipitation-
weighted surface temperature, since direct observations of
Antarctic surface temperature are more common than full
profiles of the atmospheric column.

The potential for precipitation weighting to bias annual
average surface temperature depends on the phase angle
between the seasonal cycles of precipitation and tempera-
ture. Only strong correlation or anticorrelation between the
two cycles leads to persistent biasing. The potential for bias
also depends on the ratio between stochastic and seasonal
variability in both temperature and accumulation. If non-
seasonal variance in accumulation is very large compared to
the amplitude of the seasonal cycle in accumulation, for ex-
ample, then the potential for bias is small. We examine sea-
sonality in monthly surface temperature and snowfall over
Antarctica in the ERA-Interim reanalysis as well as global
precipitation in the MERRA-2 reanalysis. While the annual
average Antarctic surface temperature and the precipitation-
weighted surface temperature are often different in either re-
analysis product, we find little systematic bias. Across the
Antarctic the month-to-month and year-to-year variance in
snowfall is large compared to the climatological seasonal cy-
cle. The stochastic sampling of the seasonal cycle in surface
temperature overwhelms the potential bias introduced by the
average seasonality of precipitation. Further, the timing of
the climatological annual cycle in snowfall varies across the
continent, whereas the annual temperature cycle is quite co-
herent. The potential for seasonal bias thus varies dramat-
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Figure A10. (a) Observed relationship between δ18O of precipitation and reported surface temperature in the Masson-Delmotte et al. (2008)
database (MD08, blue dots) and the GNIP database from both the Southern Hemisphere (black dots) and Northern Hemisphere (light grey
dots). (b) Modeled relationship between δ18O of precipitation and surface temperature using our linear scaling, colored by initial evaporation
air temperature (in ◦C).

ically between sites, even in the absence of the dominant
stochastic sampling.

We compare the annual average surface temperature to
the precipitation-weighted annual temperature at every grid
point in the Southern Hemisphere. The mean bias for sites
with typical Antarctic surface temperatures is less than
0.33 ◦C, with the precipitation-weighted temperature being
slightly colder on average. We find no systematic depen-
dence of this bias on the surface temperature itself. While
individual sites do show differences up to 4 ◦C over the in-
terval examined, our analysis does not suggest that such
differences are persistent at a site. None of these analyses
of monthly data take into account potential biases at the
scale of individual precipitation events. The intermittency
of Antarctic snowfall likely complicates the relationship be-
tween condensation-weighted and annual mean temperature
at the seasonal and annual scale. At the same time, however,
precipitation intermittency reduces potential seasonal bias-
ing at climatological timescales by degrading any coherence
in the seasonal cycles of accumulation and temperature.

Could seasonality in evaporation bias reconstructed source
region T0? We examine the seasonality of Southern Hemi-
sphere evaporation in the monthly MERRA-2 reanalysis by
comparing the annual average over-sea surface tempera-
tures to the evaporation-weighted annual temperatures. Be-
tween 35 and 65◦ S, the bulk of Antarctic moisture sources
and evaporation-weighted surface temperatures are slightly
colder than mean annual surface temperatures (the mean dif-
ference is 0.123 ◦C, with 95 % of points between −0.25 and
0.5 ◦C). South of the climatological sea ice zone, mean evap-
oration temperatures are a couple degrees warmer than mean
annual surface temperatures on average, though our mois-
ture tagging analysis suggests that these areas contribute at

most a couple percent of the total moisture arriving at typical
Antarctic sites.

A4 Tuning the Simple Water Isotope Model

We tune the Simple Water Isotope Model by adjusting the
temperature dependence of the supersaturation of vapor over
ice. Given insufficient observational and physical constraints,
we parameterize the supersaturation as a linear function of
temperature (Jouzel and Merlivat, 1984) as above, Si = a+

b× T , set a = 1, and tune the slope, b. The supersaturation
has a strong influence on the kinetic fractionation (Eq. A12)
and thus the relationship between δD and δ18O in vapor and
precipitation. We tune the model to yield the observed rela-
tionship between δD and δ18O in global precipitation, rather
than the relationship between δ values and environmental
variables such as surface temperature.

Our target observational dataset includes water-isotope
measurements of precipitation and surface snow from
Antarctica and around the globe. The bulk of this compila-
tion is that published by Masson-Delmotte et al. (2008). We
include additional published surface snow and precipitation
measurements from the GNIP database (IAEA, 2001), sur-
face traverses at Dome A (Xiao et al., 2013; Pang et al.,
2015), Dahe et al. (1994), and a 17Oxs compilation from
Schoenemann et al. (2014). We also include previously un-
published measurements from a transect of snow pits and
shallow firn cores across the main divide of the West Antarc-
tic Ice Sheet. Samples from five sites were collected span-
ning 80 km across the ice flow divide in the 2012–2013 sum-
mer season. Samples were measured at IsoLab, University
of Washington, Seattle, WA, USA. Measurement techniques
are described in Markle et al. (2017). Measurements were
made using laser spectroscopy (Picarro L2120-i analyzer).
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Figure A11. Partial derivatives of isotope state spaces with respect to surface temperature: (a) ∂δ
18O
∂Ts

, (b) ∂δD
∂Ts

, (c) ∂dxs
∂Ts

, (d) ∂dln
∂Ts

. Shading

and contours in all panels is the slope in ‰ ◦C−1.

Data are reported relative to the VSMOW (Vienna Standard
Mean Ocean Water) standard and normalized to SLAP.

The global relationship between δD and δ18O has an ap-
proximate slope of 8, as codified in the historical definition
of the deuterium excess parameter (Dansgaard, 1964). How-
ever, the slope is not fundamental (Craig, 1961); as discussed
in Sect. 1.2 the true observed relationship is nonlinear (Ue-
mura et al., 2012), as is the theoretical relationship even in
the absence of kinetic fractionation (Markle et al., 2017). Ue-
mura et al. (2012) find an empirical fit between δ′D and δ′18O
in a global dataset for precipitation. They use a second-order
polynomial fit, which is the basis for the logarithmic deu-
terium excess parameter (Uemura et al., 2012; Markle et al.,
2017) (Eq. 4). From Eq. (A9), we can see that the theoret-
ical relationship between δD and δ18O, given any amount
of distillation, depends on the ratio of exp(Dαtot)

exp(18αtot)
, where each

αtot is itself a nonlinear function of temperature as outlined
throughout Sect. A2.2. The ratio of exponential functions can
be estimated to any arbitrary degree of accuracy with a poly-
nomial function.

Our modern dataset includes several new sets of measure-
ments in addition to those used in Uemura et al. (2012). We

find similar coefficients in a second-order polynomial fit be-
tween δ′18O and δ′D in our larger dataset compared to those
found by Uemura et al. (2012): A=−29.2 and B = 8.45
(see Eq. 4). Because these coefficients are not significantly
different than those previously published and for consistency
with that work, we use the coefficients found by Uemura
et al. (2012) (A=−28.5 and B = 8.47) to define a logarith-
mic deuterium excess parameter, dln. We find no benefit or
justification for using higher-order fits to this dataset.

We run SWIM to produce an ensemble of temperature tra-
jectories representing a wide range of possible evaporation
and condensation temperatures (T0 varies from 0 to 28 ◦C; Tc
from 27 to −60 ◦C). We then compare the resulting cloud of
modeled δ′18O, δ′D, and dln, finding a second-order polyno-
mial fit between the modeled δ′D and δ′18O from the ensem-
ble of temperature trajectories. We tune the model by itera-
tively adjusting the b value in the supersaturation parameter-
ization to minimize the difference between the modeled and
observed relationship between δ′D and δ′18O (Eq. 4). This is
easily visualized in a plot of δ′18O and dln (e.g., Fig. A12a),
as the average δ′18O-to-dln relationship is flat in measured
samples by definition.
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Using the local closure assumption we find an optimal
tuning of Si = 1− b× T for b = 0.00525 ◦C−1, as shown in
Fig. A12. The observational data allow large ranges of the
value of b to be rejected as shown in Fig. A13b and c; the fit
coefficients of the resultant δ′D and δ′18O are clearly irrecon-
cilable with observations. While it is possible to optimize b
as described above, there are limitations to this tuning proce-
dure and the observational data may not allow discrimination
within a small range of b values. In principle we should not
expect a second-order polynomial fit between modeled δ′D
and δ′18O to be identical to the observed fit: the observa-
tional target data represent a variety of timescales from sub-
seasonal to multiyear averages; the sites are neither evenly
nor randomly distributed over the Antarctic continent, and
the sites represented in the observational dataset have specific
moisture source distributions, mean latitudes of evaporation,
and evaporation temperatures which are not known a priori.

Because higher-elevation, colder Antarctic sites likely
have more equatorward MSDs (Fig. 1), we should expect
more depleted δ′18O in the target data to be associated with
slightly warmer T0 (that is, modeled results from a single
value of T0 should not be strictly flat in the δ′18O–dln space).
If we take the MSDs determined from the GCM experiments
described earlier as representative and assuming the clima-
tological meridional profile in surface air temperature, we
should expect a 1–2 ◦C increase in T0 between δ′18O val-
ues of −40 ‰ and −55 ‰ in the observational dataset. This
is a fairly small shift in mean T0 compared to the range of
T0 that may contribute to a site but should give some down-
ward curvature to model results of equal T0 at the coldest Tc
values.

The appropriate weighting of model realizations with dif-
ferent T0 could vary within our tuning cost function, in prin-
ciple, depending on the site of the target data. However, with-
out knowing the true moisture source distribution and condi-
tions for each sample in the target data a priori, assigning a
single objective weighting scheme is difficult. We prefer val-
ues of b in which the more depleted observational data tran-
sect model realizations of slightly warmer T0, though this is
not a strong constraint on the tuning. While one can reason-
ably reject most possible values of b (as in Fig. A13), we can-
not justifiably discern between others within a small range
(e.g., 0.005≤ b ≤ 0.0055). This gives a small but inherent
uncertainty to the model tuning and in turn our temperature
reconstructions. In spite of these limitations, the tuning pro-
cedure reproduces the observed isotope relationships well.

The model tuning is not especially sensitive to which re-
analysis dataset is used for correlations of the initial evapo-
ration conditions or the season of evaporation. The model is,
however, sensitive to which closure assumption is used.

While the linear, temperature-dependent parameterization
of supersaturation is both simple and widely used, the phys-
ical processes determining supersaturation are complex. To
understand the sensitivity of the model to this parameteriza-
tion we also test a nonlinear parameterization of supersatu-

Figure A12. Tuning SWIM with linear supersaturation parameter-
ization. (a) The modeled δ18O and dln of precipitation (colored
circles) for a range of condensation and evaporation temperatures.
Color shading shows source region evaporation temperature in de-
grees Celsius (◦C). Black dots are the target dataset as described
in the text. Modeled results are for the optimized supersaturation
parameterization (Si = 1− b× T , b = 0.00525 ◦C−1) using the lo-
cal closure assumption and the NCEP/NCAR reanalysis dataset for
source region correlations. (b) Same as panel (a) for the modeled
and target δ18O and δD of precipitation. (c) Same as panel (a) for
the modeled and target δ18O and dxs of precipitation.

ration, Si = a−b×T − c×T
2. If the physical source of the

high supersaturation at very cold conditions is related to the
absence of condensation nuclei, the supersaturation may not
linearly increase at very cold temperatures, as there could be
diminishing returns as the atmosphere becomes increasingly
clean. A small but positive c parameter that gradually de-
creases the slope in Si with decreasing temperature could be
plausible. Only very small values of the second-order term,
c, those of order 5× 10−6 ◦C−2, are reconcilable with the
observed δ′18O-to-dln relationship. The modern data cannot
readily distinguish whether the added complexity of the non-
linear parameterization is a better fit than the simple linear
parameterization. For this reason, the linear parameterization
is the most justifiable choice, though the uncertainty associ-
ated with this parameterization for temperature reconstruc-
tions will be examined below.

A5 Air parcel mixing within SWIM

We have so far assumed that the moisture-weighted average
of a set of independent pseudo-adiabatic pathways, defined
by a range of evaporation and condensation temperatures,
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Figure A13. Comparison of tuned and rejected supersatura-
tion parameterizations, Si = 1− b× T . (a) Tuned example: b =
0.00525 ◦C−1. Same as in Fig. A12a. The modeled δ18O and dln
of precipitation (colored circles) and target dataset (black dots).
Color shading shows source region evaporation temperature in de-
grees Celsius (◦C). (b) Same as panel (a), but for a rejected tuning:
b = 0.003 ◦C−1. The modeled dln values curve upward strongly
with δ18O, incongruently with the target data. (c) Same as panel
(a), but for another rejected tuning: b = 0.007 ◦C−1. The modeled
dln values curve downward strongly with δ18O and incongruently
with the target data.

can approximate the conditions experienced by precipitation
falling at a polar site. We now aim to test the limits of this ap-
proximation and assess the influence of atmospheric mixing
on the isotopic composition of air masses within the simple
model framework.

The influence of air mass mixing during evaporation is
considered in the discussion of the closure assumption above.
Here we consider mixing during transport of air masses with
different initial evaporation conditions, different condensa-
tion histories, and different temperature, moisture content,
and isotopic values at the time of mixing. The central ques-
tion is whether the processes of mixing can result in isotopic
values of final precipitation that are significantly different
than the moisture-weighted average of precipitation from un-
mixed pathways. There are three processes associated with
mixing to consider.

1. Non-uniqueness. Parcels that experienced different
evaporation conditions can arrive at a condensation site
of a given temperature with different isotopic values.

2. Mixing-induced condensation. Mixing two saturated or
undersaturated air parcels of different temperatures may
result in an oversaturated mixed parcel due to nonlin-
earity in the Clausius–Clapeyron relationship. This pro-
cess leads to additional condensation and fractionation
(as well as warming due to latent heat release) and thus
a more depleted isotopic value for a given temperature
compared to the moisture-weighted average of unmixed
pathways.

3. Nonlinear mixing. For isobaric mixing of equal-massed
air parcels, the final mixed temperature reflects their
mass-weighted average (plus the effect of any latent
heat release). However, the relative abundances of wa-
ter isotopes mix with the moisture content of the air
parcels rather than their total mass. Thus, while the tem-
peratures have mixed linearly, the isotopic values of the
resultant mixed parcel will be weighted nonlinearly to-
ward those of the warmer and wetter parcel. The result is
that the mixed parcel has a less depleted isotopic value
for a given final temperature compared to the moisture-
weighted average of the unmixed parcels.

Moisture-weighted differences between mixed and unmixed
parcels only occur when air masses of different temperatures
mix. Physically this may represent colliding fronts at syn-
optic scales. We consider two air parcels evaporated from
identical starting conditions but which mix at different tem-
peratures.

The influence of processes 2 and 3 is largest when the
relative humidities of both parcels are at saturation, and the
magnitude of the influences increases both as the difference
in temperature between the two parcels increases and as the
absolute temperature of the parcels increases. As tempera-
ture decreases the nonlinearity of the mixing of moisture ap-
proaches the linear (mass-weighted) mixing of temperature.

To assess the range of temperature differences associated
with synoptic scales in the Southern Hemisphere, we exam-
ine the difference in daily mean 2 m air temperature from the
ERA-Interim reanalysis (Dee et al., 2011) over the Southern
Hemisphere oceans. In summer, the day-to-day temperature
differences have a standard deviation of less than 0.9 ◦C, and
in winter they have a standard deviation of less than 1.5 ◦C
(other reasonable metrics of synoptic-scale variability such
as lagged 2 or 5 d temperature differences or grid-point-to
grid-point differences are similar). While there is surely the
potential for strong mixing for any given synoptic event, for
the purposes of paleoclimate reconstruction we are interested
in the long-term average of many storm events and thus the
statistics of mixing generally.

We use the simple model to assess the range of final
isotopic values of precipitation that can arise from two air
parcels, which evaporated at the same initial conditions, then
mixed at a range of different temperatures during transport.
Air parcels are evaporated at specified initial air tempera-
ture (T0 = 10 ◦C), cooled, and randomly mixed at any com-
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bination of temperatures whose difference does not exceed a
threshold, then cooled the remainder of the temperature path-
way to −30 ◦C. We assume no preferential temperature of
mixing and no preferential difference in temperature during
mixing, though we assume a normally distributed probabil-
ity of mixing with temperature differences up to 5 ◦C (a high-
end estimate based on the above analysis of daily temperature
differences). This process is repeated 10 000 times to create
a distribution of final δ18O (Fig. A14a), δD (Fig. A14b), and
dln (Fig. A14c) values of precipitation at −30 ◦C, which is
compared to the values from a parcel distilled along the same
temperature pathway with no mixing (vertical red line in pan-
els a–c, closed circle in panel d).

The resultant distributions are skewed and bimodal. The
moisture-weighted means of the mixed distributions are
shown as vertical black lines, while the unmixed final values
are shown as vertical red lines. The means of the distribu-
tion are less depleted than the unmixed parcel owing largely
to process 3. The influence of process 2 can also be seen
in the additional peak at more depleted values. These dis-
tributions vary as a function of both T0 and Tc, though the
differences in moisture-weighted means between mixed and
unmixed parcels are relatively small and consistent.

The idealized tests above show the influence of mixing
(at different temperatures) of air parcels that evaporate from
identical source conditions. Perhaps more realistically, air
parcels from different sources can mix at different air tem-
peratures, in which case all three mixing processes above are
important. This can act to broaden the distribution associ-
ated with a given moisture-weighted mean isotopic value. In
Fig. A14e–h we show the distribution of the isotopic value
of precipitation at −30 ◦C from a simulation of 10 000 ran-
domly mixed air parcels as described above, except that the
two parcels have two different initial evaporation tempera-
tures of 5 and 15 ◦C. We compare the distribution to the
values associated with unmixed parcels originating at each
evaporation temperature, as well as the moisture-weighted
mean of the unmixed parcels. Differences between the mean
isotopic values of mixed and unmixed parcels are less than
0.2 ‰ for δ18O, 1.5 ‰ for δD, and 0.01 ‰ for dln. Inter-
estingly, although the distributions are broader in this sce-
nario compared to the scenario in which the moisture parcels
come from the same evaporative conditions, the differences
between the moisture-weighted means of mixed and unmixed
parcels are actually smaller. This is presumably because the
skewed influence of process 3 (which drives the persistent
bias above) contributes less to the total distribution. The re-
lationship between δ18O and condensation temperature and
the relationship between dln and evaporation temperature are
similar whether or not mixing is present. Below we investi-
gate the influence of mixing on our temperature reconstruc-
tion technique.

A6 Optimal coordinates for reconstruction technique

Consider a water sample with mean values of δ18O and δD
and normally distributed uncertainties σ18 and σD. These un-
certainties may arise from measurement uncertainty or in the
mean δ value over some time or depth range represented by
that sample. The dxs and dln values of the sample have cor-
responding σxs and σln, respectively, resulting from the prop-
agation of σ18 and σD. How do these uncertainties influence
the temperature reconstruction?

In Fig. A15 we examine the estimation of T0 using coordi-
nates of δ18O and δD (Fig. A15a), δ18O and dxs (Fig. A15b),
and δ18O and dln (Fig. A15c). The uncertainties in the po-
sition of the measurement along both the x axis (δ18O) and
y axis (either δD, dxs, or dln) combine to give the total uncer-
tainty in the position on the T0 surface, shown as the targets
in Fig. A15a–c. The total combined uncertainty in the estima-
tion of T0 is shown as probability density functions (PDFs)
for each method in Fig. A15d. All estimates yield the same
mean value of reconstructed T0; however, the widths of the
probability density functions are different for each method.
The δD method yields the broadest PDF and thus most un-
certain reconstruction. While the PDFs for the dxs and dln
reconstructions are similar, the dln reconstruction has a nar-
rower PDF and thus more confident reconstruction. This is
because the T0 isotherms are most separated along and most
perpendicular to the dln axis. The advantage of the separation
of isotherms along the dln axis is in part compensated for by
the broadening of σln compared to σxs due to the propaga-
tion of uncertainties. However, the angle of the isotherms to
the y axis is more important. Given a normal distribution of
uncertainty along the y axis, perpendicular isotherms of the
variable we wish to reconstruct will result in the narrowest
possible distribution of that uncertainty across isotherms. If
the angle of the isotherms deviates from perpendicular, as in
the case with dxs at more depleted δ18O values, that uncer-
tainty will be spread across a wider range of isotherms. The
axis of the influence of T0 on dxs (and δD) is rotated with
respect to its axis of variability in dxs.

This result is of course ultimately tied to the same reasons
that dln provides a better qualitative proxy for source region
changes than dxs. The initial imprint of the source conditions
is better preserved in dln than dxs. The infidelity of the his-
torical definition of the parameter is the result of nonlinear
biases from the linear slope of the definition, the nonlinear
nature of equilibrium fractionation, and the cumulative influ-
ence of kinetic fractionation during transport (Markle et al.,
2017).

A7 Reconstructions

In Fig. A16 we show the SWIM results (under our base as-
sumptions) overlain with every pair of δ18O and dln mea-
surements (corrected for changes in seawater δ18O) from the
eight Antarctic deep ice-core records examined in this study.
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Figure A14. Influence of air mass mixing during transport on water-isotope ratios of precipitation. (a–d) Air parcels from the same initial
evaporation conditions (namely T0 = 10 ◦C) are distilled, stochastically mixed over a range different temperatures during transport, and
distilled to a final precipitation temperature (−30 ◦C). Histograms of the final δ18O (a), δD (b), and dln (c) are shown, and the moisture-
weighted means of those distributions are shown as the vertical black line. For comparison the final isotopic compositions from an unmixed
pathway from 10 ◦C to −30 ◦C are shown as the vertical red lines. The distribution in δ18O–dln space of the 10 000 mixed pathways is
shown in (d). (e–h) Same as for panels (a)–(d) but for stochastically mixed air parcels arising from two different initial evaporation conditions
(T0 = 5 ◦C and T0 = 15 ◦C). Moisture-weighted means of the mixed pathways are shown as vertical black lines, while the moisture-weighted
means for equivalent unmixed pathways are in red. In (h) model results are colored by the moisture-weighted T0 resulting from the mixed
pathways.

We show the full reconstructions of source evaporation
temperatures at all sites in Fig. A17, condensation temper-
atures in Fig. A18, and surface temperatures in Fig. A19. All
sites have been resampled to even 200-year resolution for
visual clarity. The light shading around the reconstructions
represents the uncertainty in absolute temperature, while the
darker shading represents the uncertainty in relative temper-
ature variability as described in Sect. A9. Note that in some
cases sample-to-sample variability is larger than the relative
uncertainty, making the shading difficult to see at the scale
plotted here.

A8 Correlation of nonlinear and linear reconstruction
techniques

In Fig. A20 we show the difference between the nonlinear re-
constructions for all core sites and reconstructions based on
linearization around Holocene and glacial conditions as de-
scribed in the text (Sect. 4.3). We also show the difference in
the reconstructions using the Holocene and glacial lineariza-
tions.

We compare the nonlinear temperature reconstructions
of all eight ice-core sites to linearized reconstructions us-
ing SWIM results for Holocene conditions as described in
Sect. 4.3. We interpolate all records to even time spacing
and compute correlation matrices amongst cores for T0 and
Ts using the linear and nonlinear technique (Fig. A21). Re-

constructed site surface temperatures, Ts, are extremely well
correlated amongst all cores using either technique, though
there is marginal improvement in correlation using the non-
linear technique. In the case of evaporation temperatures,
T0, there is dramatic improvement in coherence amongst the
records when using the nonlinear technique. The increase
in shared variance (R2) explained using the nonlinear tech-
nique is shown in Fig. A22. Note that the largest increase
in shared variance is associated with the Siple record. This
makes sense given the conditions of that site compared to the
others and the patterns of partial slopes in Figs. 4 and 5.

By accounting for the fundamental nonlinearities in water-
isotope distillation we are able to reveal more coherent un-
derlying climate signals in source region temperatures, which
are otherwise obscured by linear temperature reconstruction
techniques. For analogous reasons, Markle et al. (2017) ar-
gued that the logarithmic deuterium excess parameter dln is a
more faithful qualitative proxy for source region conditions
than the linearly define dxs. Compare the correlation matri-
ces of the excess parameters in Fig. A23. The nonlinearly
reconstructed T0 and dln parameters share the same corre-
lation pattern amongst the ice cores and show substantially
more coherence than either linearly reconstructed T0 or dxs.
The correlation pattern of dln and dxs between all core sites
(Fig. A24) reveals how nonlinear effects alter the tradition-
ally defined dxs at the coldest Antarctic temperatures. The
broad change from positive to negative correlation of dln to
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Figure A15. (a) Evaporation source temperature, T0, contours as
a function of modeled δ18O and δD of precipitation. Uncertainty
in δ18O and δD for an interval or sample is shown as PDFs of un-
certainty along the respective axes. The intersection of these PDFs
on the T0 surface results in a two-dimensional PDF in the recon-
structed value of T0, shown as a target. (b, c) Same as panel (a) but
for the evaporation source temperature projected onto the δ18O and
dxs axes and the δ18O and dln axes, respectively. Uncertainties in
δ18O and δD in panel (a) are propagated into the PDF on the dxs
and dln axes in (b, c). (d) The uncertainty in the reconstructed evap-
oration source temperature (Tsource = T0) owing to the weighting
of the combined two-dimensional PDFs from panels (a) (in blue),
(b) (in red), and (c) (in purple).

dxs across sites is a reflection of the change in sign of ∂dxs
∂Tc

as
a function of Tc.

A9 Temperature reconstruction uncertainty

In this section we investigate uncertainty in our temperature
reconstructions by examining the sensitivity of our results
to assumptions and parameterizations in the model. We can
compare reconstructed Tc and T0 from a set of δ18O and
dln measurements using multiple iterations of the model in
which the value of a parameter or an underlying assumption
has been varied. In Fig. A25 we show Tc and T0 reconstruc-
tions for the WDC record (Markle et al., 2017) arising from
a number of model parameters and assumptions, which are
discussed below. Because our reconstruction technique takes
into account nonlinearities, differences in reconstructed tem-
peratures may have mean offsets and may have differences in
variability that vary as a function of δ18O and dln. Thus, un-
certainty arising from a given parameter may vary between

Figure A16. Inverted T0 and Tc surfaces as a function of modeled
dln and δ18O of precipitation as in Fig. 7. Overlain are pairs of dln
and δ18O measurements for eight different deep ice-core records,
whose site locations are shown on the inset map. See Sect. 4.2 in
the text for details on ice-core records.

Figure A17. Source region evaporation air temperature reconstruc-
tion for all ice-core sites. The light shading around the reconstruc-
tions represents the uncertainty in absolute temperature, while the
darker shading represents the uncertainty in relative temperature
variability as described in Sect. A9.
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Figure A18. Condensation air temperature reconstruction for all
ice-core sites. The light shading around the reconstructions repre-
sents the uncertainty in absolute temperature, while the darker shad-
ing represents the uncertainty in relative temperature variability as
described in Sect. A9.

ice-core sites. In general, varying a parameter in the model
results in patterns of the partial slopes in δ18O and dln with
Tc and T0 that are similar, but shifted in the Tc and T0 space.
A consequence of this is that the uncertainty in absolute val-
ues of reconstructed Tc and T0 is generally larger than uncer-
tainty in their relative variability.

It is useful to distinguish between uncertainty in the true
value of a parameter in the modern climate and the possibility
that the effective value may change as a function of climate.
Further, not all sources of uncertainty are independent. Vary-
ing the value of some parameters may require retuning the
model before calculating the isotope state spaces. By ignor-
ing this we risk conflating uncertainty in the reconstruction
with bias in the reproduction of the modern mean state.

A9.1 Sensitivity to model parameters

There is uncertainty in our reconstructions associated with
the tuning procedure. While we can constrain the possible
values of the b parameter in the supersaturation function
by comparison to modern data, variations within a small
range should not be ruled out given the imperfect constraint
of modern observations. In Fig. A25 we show the resultant
uncertainty in the temperature reconstruction from uncer-
tainty in the supersaturation parameterization (b = 0.0051 to

Figure A19. Surface air temperature reconstruction for all ice-core
sites. The light shading around the reconstructions represents the
uncertainty in absolute temperature, while the darker shading repre-
sents the uncertainty in relative temperature variability as described
in Sect. A9.

0.0054 ◦C−1). Uncertainty arising from other aspects of the
distillation scheme, such as the value of the diffusive frac-
tionation factors during transport, is encapsulated by the tun-
ing uncertainty since adjusting those parameters requires re-
tuning the model.

Aspects of the initial evaporation scheme introduce un-
certainty into our reconstructions. The value of α18

diff during
evaporation is important in setting the initial isotopic values
of vapor. While we find the value 1.009 to give the best fit to
modern observations, values within a small range may be de-
fensible (Fig. A6). The local closure assumption used in the
evaporation scheme has known limitations (Risi et al., 2010),
representing an end-member scenario for possible evapora-
tive conditions. While less applicable to past climate mean
states, the global closure assumption provides an extreme test
of the model’s sensitivity. Using the global rather than local
closure assumption can lead to differences in reconstructed
absolute T0 up to 1.5 ◦C for the WDC record, while differ-
ences in absolute Tc are smaller (≤ 1 ◦C). Relative variability
in T0 and Tc is similar when using either closure assumption
and ≤ 0.3 ◦C.

We also examine the influence of the source relative hu-
midity parameterization on our temperature reconstructions.
In our base model we use climatological correlations to deter-
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Figure A20. Difference in site surface temperature and evaporation source air temperature using SWIM results and different reconstruction
techniques. (a, b) Difference between the nonlinear reconstruction technique and linearization of SWIM results around Holocene conditions.
(c, d) Difference between the nonlinear reconstruction technique and linearization of SWIM results around glacial conditions. (e, f) Difference
in reconstructions using linearizations of SWIM results around both Holocene and glacial conditions.

mine an initial relative humidity given an initial air temper-
ature; colder surface air temperatures over the ocean are as-
sociated with slightly higher relative humidity. We show the
difference in reconstructions due to using either the NCEP or
ERA-Interim reanalysis. We can also ask how different our
reconstructed Tc and T0 in WDC would be if we used fixed
mean values of initial relative humidity rather than values
that depend on T0. These differences are not true uncertain-
ties in the reconstruction as variable surface relative humidity
is a more physically defensible choice than a fixed relative
humidity, though these tests serve to demonstrate the robust-
ness of the reconstruction to model assumptions. In a similar

vein we can examine the sensitivity of the model to our pre-
cipitation parameterization and the potential choices of that
parameterization discussed in Sect. A1.2.

A9.2 Influence of mixing on temperature reconstruction

We assess the potential influence of atmospheric mixing on
our temperature reconstruction framework by comparing the
maps of T0 and Tc as functions of δ18O and dln to maps pro-
duced by a large ensemble of model runs that incorporate
stochastic mixing. We consider a range of final condensa-
tion temperatures from −20 to −50 ◦C. We generate ran-
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Figure A21. Correlation (R) matrices for temperature reconstructions of all core sites. (a) Correlation among reconstructions of T0 using a
linearization of SWIM results for isotopic conditions of the Holocene. (b) Correlation among reconstructions of T0 using the full nonlinear
SWIM results. (c) Correlation among reconstructions of Ts using a linearization of SWIM results for isotopic conditions of the Holocene.
(d) Correlation among reconstructions of Ts using the full nonlinear SWIM results. All records are ordered by their approximate modern
surface temperature.

Figure A22. The increase in R2 (shared variance) of the nonlin-
ear reconstructions of T0 for all sites over the linear reconstructions
(linearized around Holocene conditions). All records are ordered by
their approximate modern surface temperature.

dom pairs of pseudo-adiabatic cooling pathways ending at
every value of Tc and random values of T0 pulled from a nor-
mal distribution (with a mean of 12 ◦C and standard devia-
tion of 4 ◦C) similar to the modern Antarctic moisture source
distributions. Air parcels cooled down these two paths are
stochastically mixed at points along the path and cooled to
the final Tc. To mix, parcel temperatures must be above an
absolute threshold temperature (−15 ◦C) and have a relative
difference within 5 ◦C, as described above. This results in a
conservative estimate of the influence of mixing: mixing at
lower temperatures reduces the average difference between
mixed and unmixed pathways since the effects of mixing are
larger when absolute humidity is higher. We take 50 random
mixtures from each of 2× 50 random cooling pathways for
each value of Tc between −20 and −50 ◦C in increments of
0.1 ◦C (a total of 1.5× 104 unmixed and 7.5× 105 mixed
cooling paths). We then interpolate the results of both the
mixed pathways and the moisture-weighted averages of the
unmixed pathways to create maps of T0 and Tc as functions
of δ18O and dln (at a resolution of 0.1 ‰, Fig. A26). Due
to the stochastic mixing these maps are unevenly populated.
The potential influence of mixing on our reconstruction tech-
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Figure A23. Correlation matrices for (a) δ18O, (b) δD, (c) dxs, and (d) dln among all core sites. All records are ordered by their approximate
modern surface temperature.

Figure A24. Correlation matrix between dxs and dln between all
core sites. All records are ordered by their approximate modern sur-
face temperature.

nique can be seen in the difference between the mean Tc and
T0 maps resulting from the mixed (denoted with the subscript
M) and unmixed pathways (Fig. A26). In Fig. A26 we show
the histograms of 1Tc = Tc,M− Tc and 1T0 = T0,M− T0.
We test a range of mixing and threshold values in multiple
Monte Carlo simulations. In all cases the mean values of

Tc,M− Tc and T0,M− T0 are very near zero (< | ± 0.06 ◦C|
for Tc, and < | ± 0.02 ◦C| for T0). The spread of the his-
tograms in Fig. A26 represents the inherent uncertainty in
our reconstruction technique when mixing is neglected. This
uncertainty is less than ±0.2 ◦C for Tc and ±0.35 ◦C for T0
in all tests. We find similar results when using isobaric rather
than pseudo-adiabatic cooling pathways. Including moisture
sources with T0 < 0◦C in our mixing analysis has no signifi-
cant influence on the mean difference between the weighted
mean maps of either Tc or T0, though expanding the range
of moisture sources to include T0 < 0 ◦C does increase the
range of T0,M− T0 by over a degree, in agreement with the
analysis of unmixed pathways.

A9.3 Combined uncertainty estimates

To calculate the total uncertainty in our temperature recon-
structions, we examine the combined influence of the major
independent sources of uncertainty. These include tuning via
the supersaturation function, the closure assumption, mixing
in the atmosphere during transport, the precipitation param-
eterization, the diffusive fractionation factor during evapora-
tion, and the relationship between initial air temperature and
relative humidity. We calculate the absolute uncertainty for
each Tc and T0 reconstruction interpolated at each pair of
δ18O and dln measurements as the absolute difference in re-
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Figure A25. Temperature reconstruction sensitivity to model parameterizations. Tc and T0 reconstructions using WDC δ18O and dln (re-
sampled to 10-year resolution) as well as SWIM runs. Black lines show the base model in all panels, while colored lines are results in which
model parameters and assumptions are varied: (a–b) evaporation condition correlations based on NCEP (black) and ERA (red) reanalysis
data; (c–d) global (blue) and local (black) closure assumption during evaporation. (e–f) A range of values for 18αdiff; (g–h) a range of values
for the b parameter in the supersaturation parameterization, as well as a nonlinear parameterization (c) as described in the text; (i–j) several
versions of the precipitation parameterization in which all moisture is removed above saturation (sat), all moisture is removed above initial
RH (RH=RH0, constant RH along path), and all moisture is removed above fixed 80 % or 90 % RH.

constructions arising from perturbations to parameter values
or assumptions. To estimate the uncertainty in relative tem-
perature changes we subtract the mean of each reconstruc-
tion before calculating differences due to parameter pertur-
bations.

We estimate the uncertainty due to model tuning as the
mean absolute difference from the base scenario for recon-
structions using values of b = 0.0051 to 0.0054 in the super-
saturation function. Likewise the impact of uncertainty in the
value of the diffusive fractionation factor is estimated as the
mean absolute difference of reconstructions using 18adiff =

1.009±0.001. We estimate the uncertainty introduced by the
precipitation parameterization as the mean absolute differ-
ence from the base scenario of reconstructions using each
of the alternate assumptions outlined in Sect. A1.2, applied
symmetrically to the base scenario. We estimate the uncer-
tainty arising from our assumed relationship between T0 and
RH0 as the mean absolute difference in reconstructions using
climatological fits from the NCEP/NCAR and ERA-Interim
reanalysis.

Based on the tests in Sect. A2.1, a conservative estimate of
the uncertainty arising from mixing at the evaporation source
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Figure A26. The influence of air parcel mixing on modeled isotope state spaces. (a, e) The water-isotope ratios of precipitation resulting
from 7.5× 105 stochastically mixed distillation pathways, colored by Tc and T0, respectively. (b, f) The water-isotope ratios of precipitation
resulting from the corresponding 1.5×104 unmixed distillation pathways, colored by Tc and T0, respectively. (c, g) The difference in Tc and
T0, respectively, between the mixed and unmixed pathways as a function of the δ18O and dln space. (d, h) Histograms of the differences,
1Tc and 1T0, from all points in the δ18O and dln space, resulting from mixing.

is half the absolute mean difference in reconstructions em-
ploying the local and global closure assumptions, applied
symmetrically about the base scenario (local closure). Be-
cause of the stochastic nature of our atmospheric mixing
simulations, our estimates of the Tc and T0 differences are
nonuniform and unevenly populated, making interpolation in
the δ18O–dln space challenging (see Sect. A5). We thus take a
conservative estimate of the absolute and relative uncertainty
introduced by mixing during transport as the mean and stan-
dard deviation of the differences in the mixed and unmixed
reconstructions across the entire state space, respectively (see
Fig. A14).

We add the uncertainty from each independent source
in quadrature as functions of δ18O and dln symmetrically
around the base scenario. Finally, we include the additional
uncertainty in our estimates of relative Ts variability aris-
ing from the Tc-to-Ts relationship outlined in Sect. A3.2.
We use the mean absolute difference of reconstructions us-
ing Tc ∝ 0.69±0.02

◦C
◦C Ts to estimate this uncertainty, which

is added in quadrature to the above uncertainties in Ts. An
example of this spread of uncertainty in the WDC Ts recon-
struction is shown in Fig. A27. Reconstructions of Ts, Tc, and
T0 for several major ice-core records along with the com-
bined relative uncertainty are those reconstructions is shown
in Fig. 9.

A9.4 Uniqueness and source temperature

All Antarctic sites have mean initial evaporation air temper-
atures above 0 ◦C, according to the moisture source distri-
butions from water-tagged GCM experiments (Fig. A28). In
fact, 85 %–95 % of all moisture that arrives at Antarctic sites
in our modeling initially evaporates from locations with an-

Figure A27. Sensitivity of the Ts reconstruction for WDC to the re-
lationship between Tc and Ts. Our base scenario is shown in black
(Tc ∝ 0.69

◦C
◦C Ts), while the spread associated with a ±0.02

◦C
◦C un-

certainty in the scaling factor is shown in red and gold. For compar-
ison the results from a weaker slope of 0.65

◦C
◦C are shown in blue.

This range of scaling factors has little impact on the reconstructed
temperature history and may be difficult to see.

nual average surface air temperatures above freezing. The
relatively small but nonzero contribution of moisture from
evaporation temperatures below freezing poses an interesting
challenge to our temperature reconstruction method. While
it is widely known that there is not a unique value of δ18O
for every value of condensation temperature owing to the in-
fluence of evaporation temperature, there are not necessarily
unique pairs of δ18O and dln for every pair of Tc and T0 if
T0 can be both above and below freezing. The Tc and T0 sur-
faces fold over on themselves in the δ18O and dln space for
values of T0 below 0 ◦C. An example of such a folded sur-
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Figure A28. Annual mean temperature of moisture source regions from moisture-tagged GCM experiments. (a) Annual mean zonal-mean
surface air temperature vs. latitude (blue) overlain with annual mean MSDs for several ice-core sites, colored by MSD-weighted annual mean
air temperature. (b) MSD-weighted annual mean air temperature for every model grid point over the Antarctic. Note that this is not strictly
the evaporation-weighted air temperature; it is weighted by location but not necessarily by time and may thus be biased to be too low.

Figure A29. Isotope model results colored by initial evaporation
air temperature T0 (◦C) using base model assumptions. For initial
evaporation air temperatures below 0 ◦C there are non-unique re-
sults in the δ18O and dln space.

face is shown in Fig. A29. Given a lack of isotopic vapor
measurements for evaporation air temperatures much below
0 ◦C and that our evaporation scheme is not well calibrated
for such conditions, these results are purely illustrative.

Those caveats aside, we investigate the sensitivity of our
temperature reconstructions to this potential non-uniqueness
in the water-isotope state spaces. We run SWIM through a
large field of T0 values from −28 to 28 ◦C. We can in prin-
ciple resolve the non-uniqueness problem by combining re-
constructions from either side of the folded surface based

on the contribution of total moisture represented by each
pair of non-unique paths. Knowing that below-zero mois-
ture sources contribute far less to the total moisture reach-
ing Antarctic sites (Fig. A28), we examine two reasonable
methods of moisture-weighting the reconstructions. In the
first we simply weight each pair of reconstructed tempera-
tures by the final mixing ratio (rs(eff)) of each modeled dis-
tillation path. This approach has the advantage of allowing
contributions to vary with temperature and thus mean climate
and leads to roughly 10 %–20 % contributions from below
0 ◦C moisture sources to modern Antarctic sites (using a lo-
cal closure assumption). However, this approach ignores the
influence of dynamics and topographic–energetic isolation
in determining Antarctic moisture source distributions, ulti-
mately overestimating contributions from below 0 ◦C mois-
ture sources to higher-elevation, colder sites compared to our
GCM-based MSD estimates. In this rs(eff)-weighted scheme,
higher Antarctic sites have a relatively greater contribution
from colder moisture sources than warmer sites owing to the
curvature in the Clausius–Clapeyron relationship. Our mois-
ture tagging analysis and previous studies (e.g., Bailey et al.,
2019) suggest, however, that transport dynamics should lead
to the opposite relationship. An alternate approach is to spec-
ify fixed contributions from above and below 0 ◦C moisture
sources (e.g., 90 % T0 > 0 ◦C, 10 % T0 < 0 ◦C). While these
average relative contributions are based on our moisture tag-
ging analysis, we do not specify contributions as a func-
tion of site elevation or mean climate. Reconstructions based
on these approaches (both calculated and specified moisture
weighting) are shown in Fig. A30 for the WDC record. Con-
sidering the non-uniqueness leads to very small differences
in reconstructed Tc and T0 variability: the standard devia-
tion of differences in reconstructed Tc is less than 0.07 ◦C
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Figure A30. Temperature reconstructions for WDC accounting for below-zero evaporation air temperatures. (a) Reconstructions of Tc under
base conditions (blue; no contribution from T0 < 0 ◦C), with the contribution from T0 < 0 ◦C weighted by the final rs (red) and with a 90 %
contribution from T0 > 0 ◦C as well as 10 % from T0 < 0 ◦C (gold). (b) Same as in (a) but for reconstructions of T0.

using either method and less than 0.19 ◦C for T0. Attempt-
ing to account for this non-uniqueness does, however, lead
to persistent mean offsets in absolute temperature; in partic-
ular, we find colder absolute values of reconstructed T0 for
all ice-core sites.

While these results are interesting, this attempt to account
for non-uniqueness likely does not actually improve the ab-
solute temperature reconstructions. Given the shape of the
folded temperature surfaces in the modeled δ18O and dln
space, as well as the actual values of δ18O and dln in ice-
core measurements, the model must extrapolate to extremely
cold T0 values for the below 0 ◦C side of the folded surface.
These values of T0 are far colder (> 10 ◦C colder) than realis-
tic evaporation temperatures likely to contribute moisture to
high Antarctic sites given energetic constraints (Bailey et al.,
2019) and our moisture tagging GCM experiments. Further,
as stated above, our evaporation scheme is not well calibrated
to such evaporation conditions. Near-surface relative humid-
ity in particular is not well constrained by our climatological
correlations in these circumstances. Our model likely under-
estimates the depletion of the initial evaporate in these cir-
cumstances, meaning that the reconstruction solves for a very
cold T0 when a much warmer one (and perhaps a reduced
RH0) is actually correct. The net result of these considera-
tions is that the analysis above should represent a quite con-

servative estimate of the influence of non-uniqueness on our
temperature reconstructions and their relative variability; the
real effect is likely much smaller though difficult to quantify
precisely.

A10 Comparison to previous reconstructions

We next reconstruct site and source temperatures for four
East Antarctic ice-core records and compare to previously
published linear reconstructions. We use records of δ18O
and δD measurements (and calculate dxs and dln) from the
Vostok (Jouzel et al., 1997; Uemura et al., 2012), EPICA
Dome C (EDC) (Stenni et al., 2004, 2010), EPICA Dron-
ning Maud Land (EDML) (Stenni et al., 2010), and Dome
Fuji records (Uemura et al., 2012). After seawater correction,
we use the ice-core δD and dxs for the linear reconstruction
and δ18O and dln for the nonlinear reconstruction. The lin-
ear reconstruction parameters from several studies are com-
piled by Uemura et al. (2012) (see Tables 1 and 2 in Uemura
et al., 2012). Previous reconstruction techniques solve for
the source temperature, Tsource, equivalent to our evaporation
temperature, T0, and for the site surface temperature, Tsite.
We convert our reconstructed condensation temperatures, Tc,
to surface temperatures following the method in Sect. A3.2.
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A comparison of relative changes in site and source tem-
peratures is shown in Fig. 11. The nonlinear reconstruction
results of this study are shown in black, while published lin-
ear inversions for each core are shown in color. The differ-
ences between the results of this study and the previous tem-
perature reconstructions arise from differences between the
linear and nonlinear reconstruction techniques as well as dif-
ferences in the underlying water-isotope models used for the
estimation of scaling relationships. In many cases, the pre-
viously published linear inversions overestimate changes in
both site and source temperature compared to the nonlinear
reconstruction.

The overestimation of reconstructed temperature change
by the linear reconstruction makes physical sense. The
largest source of nonlinearities in the water-isotope to tem-
perature relationships is the deuterium excess parameters,
∂dxs
∂Tc

and ∂dxs
∂T0

. If one assumes these slopes are linear over a
given range in T0 and Tc when in reality they are nonlinear,
one will attribute a given change in 1dxs to a larger change
in temperature than is actually required. This overestimate
of the required temperature change will be distributed across
the reconstructed site and source temperatures in proportion
to the values of the β and γ parameters. The same reasoning
is true for nonlinearities in the relationships between δD or
δ18O and the temperature boundary conditions, though the
nonlinearities in these slopes are much smaller.

The residuals between relative temperature change in the
nonlinear and previous linear reconstructions are shown in
Fig. 12. Residuals in the site temperature reconstructions
are on the order of ±2 ◦C (Fig. 12a). The residuals are not
random but rather correlated with the reconstructions them-
selves, pointing to nonlinear biases.

The previous reconstructions use a different scaling be-
tween the surface and condensation than that used in this
study (see Sect. A3.2). However, the differences between the
nonlinear reconstruction and the linear reconstructions do not
arise solely because of this different surface–condensation
temperature scaling. The residuals between reconstructed
condensation temperatures are shown in Fig. 12b. These dif-
ferences are somewhat damped compared to those of the sur-
face temperatures owing to different assumed slopes in the
condensation to surface temperature relationship but are of
similar magnitude, and the time series of the residuals are
again correlated with the reconstructions themselves.

The residuals between the reconstructed evaporation tem-
perature anomalies (Fig. 12c) have a large spread ranging
from about +3 to −5 ◦C. While the magnitudes of source
temperature residuals are comparable to those of site temper-
ature, they are far more significant, representing from 50 % to
over 200 % of the total reconstructed variability in the source
temperature.

The residuals between the reconstructed evaporation tem-
perature anomalies (Fig. 12c) have a large spread ranging
from about +3 to −5 ◦C. As discussed above the largest
source of potential biases is the deuterium excess relation-

ships to temperature and should be greatest in the reconstruc-
tion of source temperatures. While the magnitude of source
temperature residuals is comparable to those of site tempera-
ture, they are far more significant, representing between 50 %
and over 200 % of the total reconstructed variability in the
source temperature. This is related to the issues surrounding
the qualitative interpretation of source region changes from
dxs versus dln (Markle et al., 2017; Uemura et al., 2012) (see
Sect. 1.2) and ultimately a consequence of the same distilla-
tion effects.

A11 Three-parameter reconstructions

In the approach outlined above, we have considered the
boundary conditions Tc and T0 to be the only independent in-
put variables. In particular, we have assumed that the source
region relative humidity, RH0, is a dependent variable whose
value is not fixed but determined by climatological correla-
tion with T0. Most previous linear reconstructions have cal-
culated scaling factors based on fixed values of RH or the av-
erage variation in RH over some range (Uemura et al., 2012;
Winkler et al., 2012).

We can relax the assumption that RH0 is dependent on
T0 and reconstruct three independent climate variables (Tc,
T0, and RH0) if we have three independent constraints.
While δ18O and dln alone are not sufficient, 17Oxs = δ

′17O−
0.528δ′18O (Landais et al., 2008) can in principle provide the
necessary additional information. We can allow Tc, T0, and
RH0, to all vary as independent variables, defining a three-
dimensional parameter space through which SWIM is run to
produce three-dimensional isotope state spaces.

While promising, this method currently has practical limi-
tations. Our model does not reproduce the observed 17Oxs-to-
δ18O relationship in Antarctic precipitation to sufficient pre-
cision to offer useful constraints. This may be a consequence
of model limitations such as missing physical processes. Al-
ternatively (or additionally) uncertainties in the absolute val-
ues of 17Oxs in Antarctic precipitation may be too large to
offer useful discrimination amongst variations in Tc, T0, and
RH0 (Schoenemann et al., 2014).

The 17Oxs of Antarctic precipitation in our model is sen-
sitive to the supersaturation, diffusivities, and other param-
eters driving kinetic fractionation. Both small changes in
the supersaturation parameterization and uncertainties in the
absolute value of 17Oxs lead to large changes in the abso-
lute value of reconstructed source region conditions (T0 and
RH0). It is worth noting that absolute values of 17Oxs are
3 orders of magnitude smaller than the deuterium excess.
Further, preliminary testing suggests that there may be sig-
nificant non-uniqueness to address; that is, a position in the
three-parameter space, defined by δ18O, dln, and 17Oxs, does
not necessarily lead to unique values of the boundary condi-
tions.

This general approach is scalable. Additional quantities
that are both influenced by the environmental pathway and
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measurable in an ice core, for example accumulation rate
(Fudge et al., 2016), water-isotope diffusion lengths (Johnsen
et al., 2000), or the concentration of aerosols (Markle et al.,
2018), may be added to the model. These additional proxies
can allow for the reconstruction of additional independent
variables and the relaxation of assumptions. Alternatively it
may be possible to use the same approach to optimize model
parameters like the supersaturation. We leave this task to fu-
ture work.

Code and data availability. The temperature reconstruc-
tions, underlying data, and Simple Water Isotope Model
code are available through a public GitHub repository (doi:
https://doi.org/10.5281/zenodo.6510097, Markle and Steig, 2022;
https://github.com/bradley-markle/simple_water_isotope_model,
Markle, 2022) and the United States Antarctic Research Program
(USAP) Data Center. The ice-core data are all already available
through links provided in the primary papers cited for each dataset.
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