Articles | Volume 17, issue 4
https://doi.org/10.5194/cp-17-1587-2021
https://doi.org/10.5194/cp-17-1587-2021
Research article
 | 
29 Jul 2021
Research article |  | 29 Jul 2021

How precipitation intermittency sets an optimal sampling distance for temperature reconstructions from Antarctic ice cores

Thomas Münch, Martin Werner, and Thomas Laepple

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (08 Mar 2021) by Nerilie Abram
AR by Thomas Münch on behalf of the Authors (21 Apr 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (29 Jun 2021) by Nerilie Abram
AR by Thomas Münch on behalf of the Authors (06 Jul 2021)  Manuscript 
Download
Short summary
We analyse Holocene climate model simulation data to find the locations of Antarctic ice cores which are best suited to reconstruct local- to regional-scale temperatures. We find that the spatial decorrelation scales of the temperature variations and of the noise from precipitation intermittency set an effective sampling length scale. Following this, a single core should be located at the target site for the temperature reconstruction, and a second one optimally lies more than 500 km away.