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Abstract. Many palaeoclimate proxies share one challenging property: they are not only driven by the climatic variable of inter-

est, e.g., temperature, but they are also influenced by secondary effects which cause, among other things, increased variability,

frequently termed noise. Noise in individual proxy records can be reduced by averaging the records, but the effectiveness of this

approach depends on the correlation of the noise between the records and therefore on the spatial scales of the noise-generating

processes. Here, we review and apply this concept in the context of Antarctic ice-core isotope records to determine which core5

locations are best suited to reconstruct local-to-regional-scale temperatures. Using data from a past-millennium climate model

simulation equipped with stable isotope diagnostics we intriguingly find that even for a local temperature reconstruction the

optimal sampling strategy is to combine a local ice core with a more distant core ∼ 500–1000 km away. A similarly large dis-

tance between cores is also optimal for reconstructions that average more than two isotope records. We show that these findings

result from the interplay of the two spatial scales of the correlation structures associated with the temperature field and with10

the noise generated by precipitation intermittency. Our study helps to maximise the usability of existing Antarctic ice cores

and to optimally plan future drilling campaigns. It also broadens our knowledge on the processes that shape the isotopic record

and their typical correlation scales. Finally, many palaeoclimate reconstruction efforts face the similar challenge of spatially

correlated noise, and our presented method could directly assist further studies in also determining optimal sampling strategies

for these problems.15

1 Introduction

The oxygen and hydrogen isotopic composition of firn and ice recovered from polar ice cores is a key proxy for past near-

surface atmospheric temperature changes (Dansgaard, 1964; Lorius et al., 1969; Masson-Delmotte et al., 2008; Sjolte et al.,

2011). Although the physical mechanisms that link local changes in temperature to the isotopic composition of precipitated

snow are generally well understood (Dansgaard, 1964; Craig and Gordon, 1965; Jouzel and Merlivat, 1984) and can be mod-20

elled with general circulation models (Joussaume et al., 1984; Werner et al., 2011, 2016; Sjolte et al., 2011; Goursaud et al.,
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2018), the quantitative interpretation of ice-core isotope variability, in terms of temperature variability, is complicated by

second-order processes that influence the isotopic record, adding noise (Münch and Laepple, 2018).

Specifically, the isotopic record that is derived from an ice core is the result of a chain of processes: (1) atmospheric tem-

perature changes along with (2) isotopic fractionation during the pathway from atmospheric moisture to precipitation, (3) the25

effect of variable and intermittent precipitation and finally (4) local depositional and post-depositional effects. As we outline

in the following, each element of this chain can be associated with a typical spatial length scale over which it is correlated.

Atmospheric temperature variations drive the isotopic composition fractionation of the atmospheric moisture along its path-

way to the final stage of precipitation (Dansgaard, 1964; Jouzel and Merlivat, 1984). The spatial coherence of the temperature-

related isotopic signal in precipitation is hence determined by the spatial coherence of the variations of the atmospheric tem-30

perature field itself. Typical spatial decorrelation scales for temperature anomalies are on the order of & 1000 km (Jones et al.,

1997), which implies that ice cores distributed on spatial scales below ∼ 1000 km should typically record a similar, i.e., cor-

related, temperature signal. However, the temporal variability of the isotopic composition in the local atmospheric moisture

also depends on the variability of the atmospheric circulation, since different air masses may exhibit different source regions

and distillation pathways (Schlosser et al., 2004; Sodemann et al., 2008; Birks and Edwards, 2009; Küttel et al., 2012). In35

addition, the isotopic composition profile across a deposited layer of snow will not directly reflect the temporal variability of

the atmospheric isotopic signal due to the intermittent nature of precipitation (Schleiss and Smith, 2015). By this, the initial

isotope signal is weighted with the amount of precipitation, which introduces bias (Steig et al., 1994; Laepple et al., 2011) and

adds additional variability to the isotopic record (Persson et al., 2011; Casado et al., 2020). The latter two processes are linked

to atmospheric dynamics and their typical spatial scales range from the mesoscale (i.e., tens of kilometres), driven by topogra-40

phy and orographic effects, to synoptic scales of hundreds of kilometres, associated with cyclonic activity and the movement

of high and low pressure systems. Finally, in polar conditions, the precipitated snow does not directly settle but is constantly

eroded, blown away, and redeposited. These depositional processes have been shown to give rise to stratigraphic noise in the

isotopic record (Fisher et al., 1985; Münch et al., 2016; Laepple et al., 2016), which exhibits a small-scale decorrelation scale

of a few metres (Münch et al., 2016). We note further that the final isotopic record is also influenced by potential exchange45

processes at the surface and by densification and diffusion within the snow and ice, which are, however, not within the scope

of this article.

Both the effect of precipitation intermittency and stratigraphic noise constitute a significant relative contribution to the

overall isotopic variability in form of noise: Around a deep drilling site in Dronning Maud Land, East Antarctica, stratigraphic

noise was shown to amount to approximately 50 % of the total variance at the seasonal time scale (Münch et al., 2016), but50

quantitative estimates for other Antarctic regions are still missing. A similarly high relative contribution is expected from

precipitation intermittency (Laepple et al., 2018), which probably has a larger impact further inland than compared to coastal

regions (Casado et al., 2020; Hatvani and Kern, 2017).

The hierarchy of the different spatial scales of the processes influencing an isotope record determines the effectiveness of

reducing the overall noise, since a reduction in the noise level by averaging records will depend on the spatial correlation scale55

of the different noise sources. For example, if an isotope record were only shaped by temperature variations and stratigraphic
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noise, it would be sufficient to average records spaced only tens of metres apart, as this would ensure highly correlated tempera-

ture signals but uncorrelated stratigraphic noise between the records. However, comparing the correlation-based signal-to-noise

ratios derived from nearby isotope records (Münch et al., 2016, 2017) with the signal-to-noise ratios estimated from analysing

the records’ temporal variability (Laepple et al., 2018) shows that the reproducibility on a local scale does not necessarily imply60

a climatic, i.e., temperature-driven, origin. Instead, the additional noise sources from circulation variability and precipitation

intermittency are likely to exhibit larger decorrelation lengths than the stratigraphic noise (Laepple et al., 2018; Münch and

Laepple, 2018). Taking this into account, we expect there to be an optimal length scale which lies in between the decorrelation

scales of the local noise and of the temperature, and which results in a trade-off between averaging out atmospheric circulation

and precipitation intermittency effects, while also ensuring a sufficient coherence in the recorded temperature signal.65

The aim of the present study is to use data from a climate model equipped with stable isotope diagnostics to systematically

study the different typical process scales – including those from atmospheric temperature variations, circulation variability,

precipitation intermittency and the isotope–temperature relationship –, to determine the optimal spatial arrangement of ice-

core locations which maximises the correlation with temperature at a specific target site. To address this problem we focus on

target sites on the East Antarctic Plateau. Our results show that the average of multiple ice-core isotope records yields a higher70

degree of correlation with temperature when the sampled locations are spread across distances of 1000 km or more from the

target site, than when they are all located close (< 250 km) to the target site. While these results may seem counterintuitive

at first, we qualitatively explain their general features with a simple analytical model that uses the typical spatial correlation

structures associated with the temperature and isotope fields, and with the noise generated by precipitation intermittency.

2 Data and methods75

2.1 Climate model data

We use data from the past-millennium simulation (800–1999 CE; Sjolte et al., 2018) of the fully coupled ECHAM5/MPI-

OM-wiso atmosphere–ocean general circulation model equipped with stable isotope diagnostics (Werner et al., 2016). This

simulation is forced by greenhouse gases, volcanic aerosols, total solar irradiance, land use changes, and changes in the Earth’s

orbital parameters. The model’s atmospheric component ECHAM5-wiso is run with a T31 spectral resolution (3.75◦× 3.75◦)80

and with 19 vertical levels (Sjolte et al., 2018). Compared to observations, the climatological relationship between temperature

and the precipitation isotopic composition is reproduced well by the model, but it is biased towards warm temperatures in the

T31 setup and its isotopic composition is not depleted enough over Antarctica (Werner et al., 2011). These issues can be im-

proved upon by using a higher spatial resolution (Werner et al., 2011); however, such a higher-resolution model is not needed

for our study, since we are mainly interested in the relative variability between sites and not in the absolute temperature or85

isotope values. The full atmosphere–ocean model was compared to observational data and palaeoclimate records for two equi-

librium simulations under pre-industrial and Last Glacial Maximum conditions (Werner et al., 2016), and the past-millennium

simulation was used to reconstruct North Atlantic atmospheric circulation in combination with ice-core isotope data (Sjolte

et al., 2018).
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In this study, we use the 1200-year ECHAM5/MPI-OM-wiso time series of two-metre surface air temperature (T2m), pre-90

cipitation (p), and oxygen isotopic composition in precipitation (the relative abundance of oxygen-18 to oxygen-16 istopes,

denoted as δ18O) extracted from the total number of 442 model grid cells that are available for the Antarctic continent (Münch

and Werner, 2020).

2.2 Data processing

The model simulation output has a monthly temporal resolution, while ice-core isotope records typically exhibit an annual95

(or even lower) resolution. The latter is commonly achieved by averaging the isotopic data across annual layers of snow

and ice, which are determined through a dating approach. The resulting annual isotopic composition data therefore include a

weighting effect due to the intra-annual variability in the amount of precipitation. To account for this, we produce two versions

of annual data from the monthly model output (Münch and Werner, 2020): (1) the two-metre temperature and oxygen isotopic

composition data are averaged to an annual resolution without any weighting (denoted as T2m and δ18O in the following),100

and (2) the respective monthly data are averaged to an annual resolution including the weighting by the monthly precipitation

amount (denoted as precipitation-weighted data T (pw)
2m and δ18O(pw)).

In extremely dry areas with very little precipitation amounts or high evaporation, numerical instabilities can occur for the

modelled isotopic composition in precipitation, resulting in anomalously strong positive or negative spikes in the isotope time

series, which is also observed for the Antarctic data in our model simulation. We set a threshold of 4 times the interquartile105

range of a time series above or below which data points are regarded as outliers, and apply it to every grid cell in order to filter

outliers in the δ18O and δ18O(pw) time series. This approach removes 443 anomalous annual values (< 0.1%), out of which

435 anomalies occur for the model year 970CE.

2.3 Data analyses

2.3.1 General approach110

The overarching aim of this study is to determine a set of locations from which the averaged model data optimally reconstruct

the T2m temperature time series at a target site, i.e., a specified model grid cell of interest. The optimal reconstruction is

assessed by maximising the Pearson correlation coefficient (r) to the target site temperature. To define a spatial set, we combine

a given number, N`, of model grid cells, and vary N` and the distances of these locations relative to the target site. To derive

implications for actual ice-core studies, we use the δ18O(pw) time series at the locations as a surrogate for ice-core isotope115

records. We thus neglect stratigraphic noise and any further depositional or post-depositional effects on the isotopic record,

and therefore our results represent an upper limit of the extent to which ice cores can reconstruct the climatic temperature

signal in the atmosphere. In order to learn about how the different underlying processes affect the results and to isolate their

contributions, we compare the results obtained for δ18O(pw) with those obtained for T2m, T (pw)
2m and δ18O. In addition to

using only a single target site, we analyse several adjacent target sites in a given region to derive results that are relevant120
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on local-to-regional spatial scales. In the next section, we present the two main methods that we use to assess the optimal

reconstructions.

2.3.2 Assessing optimal reconstructions

Selecting optimal sites

In a first approach, we select an optimal set of ice-core locations to reconstruct a target site’s T2m time series by sampling with-125

out replacement N` grid cells that lie within a selection circle of 2000 km radius around the target site, and then correlating the

average δ18O(pw) time series from these N` grid cells with the target site temperature. We perform this for different N` and

determine the optimal set of cores for each value of N` from the maximum correlation value across all selection trials. For this,

we either sample all possible combinations of grid cell locations within the selection circle, if the number of possibilities does

not exceed 107, which effectively applies to all N` ≤ 3, or we randomly sample 107 times from all the possible combinations.130

Optimal sampling structure

In order to learn about the typical spatial scales associated with the processes that contribute to the overall temperature–isotope

relationship, we aim to investigate how the reconstruction quality depends on the radial distances between the target site and the

locations of the ice-core network only, neglecting their angular positions. To do so, one could use the above random selection135

trials and bin them according to the distances of the selected locations relative to the target site. However, for N` > 1 the

number of possible grid-cell combinations quickly becomes much larger than the actual number of grid cells. In combination

with the limited computation time, such an approach would likely result in uneven sample sizes for the available distance

combinations for larger N`, especially for distances farther away from the target site due to the radially increasing number of

grid cells.140

Here, we instead use a second more general approach that ensures constant sampling of the entire available space of radial

distance combinations, and which also reduces local effects in the climate model data and provides more stable correlation

results. For a given target site, we define as sampling regions nine concentric rings around the target site with increasing radius

in steps of 250 km (Fig. 1) and identify all grid cells that lie within each of these rings. The sampling of N` grid cells is

then implemented in the following two-step process: First, we determine all possible combinations of selecting N` rings with145

replacement. For every ring combination, we then apply the following second step: we sample one individual grid cell from

each of the N` rings (see the examples in Fig. 1b for an illustration), extract from this grid-cell set the time series for a studied

model variable, average them, and compute the degree of correlation of this average record with the target site temperature.

This second step is iterated over the available number of grid-cell sets and we report the mean correlation across all analysed

grid-cell sets. For the iteration, we identify all possible grid-cell sets until N` = 2; for N` ≥ 3, we resort to Monte Carlo150

sampling of the grid-cell sets due to computational reasons, for which we estimated a number of 105 iterations to provide

sufficient convergence of the results.

This approach provides insight into the average spatial structure of the correlation with the target site temperature for sam-

pling N` locations from the model field depending on the radial distances of the locations, as given by the respective ring
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Figure 1. Conceptual sketch of the ring sampling approach. Around a given Antarctic target site (black crosses in a and b) we define

consecutive rings of 250 km radial width (red lines in a and b). From the array of available model grid cells (grey points in b), we choose

sets of grid cells which consist of N` cells and which are drawn from N` radial bins determined by a selected combination of rings. As

an example for N` = 2, possible grid-cell sets are shown for the cases of (i) combining the innermost ring with itself (grid cells marked

black), (ii) combining the innermost ring with the second ring (grid cells marked blue), and (iii) combining the third and the fourth ring

(grid cells marked orange). Also shown in (a) are our main study regions (black polygons) around the EDML (upward pointing triangle) and

Vostok (downward pointing triangle) ice-core sites. The ring width of 250 km is chosen as a trade-off between high spatial resolution and the

requirement that a sufficient number of grid cells lie inside each ring. Note that for aesthetic reasons, only four rings are displayed instead of

the actually used nine rings and that the model grid is shown simplified as a regular grid in space.

midpoint radii. We denote this quantity as the sampling correlation structure. Note that in the one-dimensional case (N` = 1),155

the sampling correlation structure is identical to what is often called the spatial correlation structure, i.e., the average correlation

as a function of radial distance.

2.3.3 Study regions

To derive sampling correlation structures which are representative on a regional scale, we conduct the above analysis for

specific regions by successively using each model grid cell in the region as a target site and then averaging the resulting160

sampling correlation structures across these target sites.
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We make use of this approach for two subregions of the East Antarctic Plateau, the Dronning Maud Land (DML) region in

the Atlantic sector of the plateau and the Vostok region in the Indian Ocean sector, both of which include existing deep ice-core

drilling sites as well as large arrays of shallower ice and firn cores. We define the DML region as the area of ±17.5◦ longitude

and ±5◦ latitude around the European Project for Ice Coring in Antarctica (EPICA) DML site (EDML; 75◦ S, 0◦ E; Fig. 1a),165

consisting of 26 model grid cells. This region encompasses the site of the deep EDML ice core (EPICA community members,

2006; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 2016) and > 50 firn and shallow ice cores

(Altnau et al., 2015). For the Vostok region, we choose an identical latitudinal and longitudinal coverage with respect to the

Vostok station (78.47◦ S, 106.83◦ E; Fig. 1a), covering 30 model grid cells, and encompassing the sites of the deep Vostok

and Dome C ice cores, of several shallower cores (Stenni et al., 2017), and of the new deep drilling project (“Little Dome C”)170

where an ice core extending back more than one million years is envisaged (Passalacqua et al., 2018).

3 Results

3.1 Spatial scale of the temperature anomalies and the local temperature–isotope relationship

First, we asses the extent to which a single ice-core record, i.e., the annual isotope time series of an individual grid cell in the

model simulation, is representative of the local and regional scale variability of the near-surface atmospheric temperature.175

The temperature field over Antarctica in the climate model exhibits large scale coherent variations (Fig. 2a) with a clear two-

part structure, which is roughly divided by the Transantarctic Mountain range: For most parts of the East Antarctic Plateau,

the temperature field shows typical decorrelation lengths between ∼ 1500 and 2500 km, while the decorrelation lengths are

notably lower with values ranging from ∼ 500 to 1500 km for larger parts of the West Antarctic Ice Sheet and for the Antarctic

Peninsula. Still, for perfect ice cores, i.e., assuming an ideal temperature proxy record that is only governed by local temperature180

variations, a single ice core would capture the temperature variability in both East and West Antarctic regions across hundreds

of kilometres.

However, as simulated by the isotope-enabled climate model, actual single Antarctic ice-core isotope records only explain

a low portion of the variations in the local temperature fields: Correlating the annual precipitation-weighted field of modelled

δ18O(pw) with the annual T2m time series at the same grid cell results in generally low correlations (mean of 0.38), which185

across all analysed grid cells range from ∼ 0.1 up to ∼ 0.57 with ∼ 60% of the correlations ≤ 0.4 (Fig. 2b). The correlations

are overall improved when the T (pw)
2m time series is used instead of the T2m time series (mean correlation of 0.53, range ∼ 0.1

to 0.77; Fig. 2c), but with unaffected correlation values mostly in the coastal regions (Fig. 2d). This shows that precipitation

intermittency is a major limiting factor for the local temperature–isotope correlation on the continental plateau, but is less

important near the coasts due to higher and more regular snowfall amounts there (Casado et al., 2020).190
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Figure 2. Temperature decorrelation lengths and local temperature–isotope relationship across Antarctica. (a) The temperature decorrelation

lengths (τ , in km) for each Antarctic model grid cell, estimated by fitting an exponential model to the correlation–distance relationship (cf.

Eq. A4) obtained from correlating the local annual near-surface T2m time series with the respective temperature time series from all other

grid cells. Note that only the continental grid cells were used for the fit. Although the decorrelation lengths show a strong partition between

East and West Antarctica, they are larger than 1000 km at most locations. (b, c) The local correlations at each model grid cell between the

annual time series of precipitation-weighted oxygen isotope composition and of (b) near-surface temperature and (c) precipitation-weighted

near-surface temperature. The difference between the maps (d) clearly demonstrates that precipitation intermittency is a major limiting factor

for the temperature–isotope relationship.

3.2 Spatial correlation to local temperature

In the next step, we investigate how a local temperature record correlates in space with the temperature itself and with the

oxygen isotope composition. For this, we choose the EDML and Vostok drilling sites as target sites, and correlate the annual
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Figure 3. Spatial correlation to the temperature at the EDML and Vostok target sites. Shown are the correlations of the T2m time series at

the target sites EDML (a–d) and Vostok (e–h) with, respectively, the spatial fields of temperature (a, d), precipitation-weighted temperature

(b, f), oxygen isotope composition (c, g), and precipitation-weighted oxygen isotope composition (d, h). The target sites are marked with a

black cross, black lines indicate correlation contour lines incremented in steps of 0.1.

T2m time series at these target sites with the spatial fields of annual temperature and of annual δ18O, both unweighted and

weighted by the precipitation amount (Fig. 3).195

We find that the correlation patterns with the temperature field itself are largely radially symmetric with respect to the target

sites and decay uniformly with distance within the first couple of hundred kilometres from the target (Fig. 3a, e). However, for

δ18O, and also partly through the effect of the precipitation weighting, radial asymmetry in the correlation patterns occurs. This
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is in particular striking for the EDML target site. Here, the maximum in correlation with the δ18O field is not centred on the

target site but displaced by ∼ 1200 km towards the southeast (Fig. 3c, d). Some spatial displacement in maximum correlation200

is also visible for the Vostok target site and the T (pw)
2m , δ18O and δ18O(pw) fields (Fig. 3f–h), but in different directions between

T
(pw)
2m and the oxygen isotope fields and much smaller than in the case of EDML. We also note that the correlation patterns for

the T (pw)
2m , δ18O and δ18O(pw) fields still contain radially symmetric contributions with respect to the target sites, which are

more pronounced for the Vostok than for the EDML target site.

3.3 Selecting optimal ice-core sites for temperature reconstructions205

The above analyses have shown firstly that isotope records from single ice cores likely only capture a small portion of the

local interannual temperature variability, suggesting that additional processes, such as precipitation intermittency, influence the

isotopic signal and decrease the degree of correlation with the local temperature record. Interpreting these additional processes

as noise raises the question of whether the correlation with temperature can be improved upon by averaging isotope records

across space. In addition we have seen that the correlation of an oxygen isotope composition record with a local temperature210

record is not necessarily maximal at the location of the temperature recording, posing the question of how locations of isotope

records should be spatially arranged with respect to the location of the temperature record in order to get the best correlation.

To address these questions, we assume an ideal world in which the climate model data are a perfect surrogate for the true

climate and proxy variations at each site, and set up the simple experiment of selecting and averaging δ18O(pw) records from

grid cells within a 2000 km circle around a target site (see Sect. 2.3.2 for details) to determine what spatial array of N` ice215

cores optimises the temperature correlation with the target site.

For our specific model simulation and specifying the EDML drilling site as the target site, we already know from Fig. 3a

that the optimal location for a single ice core is not the local, i.e., target site grid cell, but should be a∼ 1200 km southeastward

site. Choosing this more distant site increases the correlation with the target temperature from an r value of 0.30 for the local

EDML site to a value of 0.44 (Fig. 4a). Even more intriguingly, when we analyse the maximum correlations with the EDML220

target temperature for an average of three or five cores chosen from the 2000 km selection circle (Fig. 4b–c), we find optimal

locations that in both cases are scattered at significant distances around the target and which yield an even further increase in

correlation (r = 0.50 for N` = 3, r = 0.52 for N` = 5). We obtain comparable results when the Vostok drilling site is specified

as the target (Fig. 4d–f). The optimal single core would be at a location ∼ 190 km west of Vostok (r = 0.49, compared to the

local correlation of r = 0.46), and the optimal locations for averaging three or five cores all lie again scattered around the target225

without including it and result in a significant further increase in correlation (r = 0.60 for N` = 3, r = 0.63 for N` = 5).

We generalise these findings by considering each Antarctic model grid cell as a target site and determining in each case the

ice core location that results in an optimal correlation with the target site. As in the above EDML case study, about half of

the optimal locations for a single ice core are situated at distances between 500 and 1500 km from the respective target sites,

while only about 10% lie within 500 km from the targets. We note that this distribution might be affected by the number of230

available sampling points (i.e., model grid cells) per distance bin which increase with increasing distance from the target site.
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Figure 4. Selecting ice-core locations that optimally reconstruct interannual temperatures at the EDML and Vostok drilling sites. The maps

show the correlation coefficient in the climate model data between the annual temperature time series at the target sites (black crosses)

EDML (a–c) and Vostok (b–f) with the time series fields of precipitation-weighted oxygen isotope composition (δ18O(pw)). Filled black

points denote those grid cells that yield the maximum correlation between the target site temperature and the δ18O(pw) time series from

either selecting a single grid cell (N` = 1; a, d) or from averaging across N` = 3 (b, e) or N` = 5 (c, f) grid cells, obtained from iteratively

selecting sets of N` grid cells from within a selection circle of 2000 km radius around the target site indicated by the black radial lines

(see Sect. 2.3.2 for details). Interestingly, non-local ice-core locations systematically show the strongest relationship with the target site

temperature.

However, after weighting the distance distribution with the average inverse number of available grid cells per distance bin, still

only about one fifth of the optimal distances lie within 500 km from the targets.

3.4 Optimal ice-core sampling structures

The approach for choosing optimal ice-core locations yields straightforward and instructive results. However, it might be235

doubtful as to whether these results can be directly applied to the real world, since they might depend on the specific simulated

climate state, the specific climate model and model isotope scheme used, or result from statistical overfitting. We therefore

adapt our approach in a next step to learn more about the general spatial arrangement of the optimal ice-core locations which

yield the maximum correlation with temperature. This is done by applying our concept of sampling correlation structures (see

Sect. 2.3.2 and the illustration in Fig. 1), which studies the correlation patterns only as a function of radial distance from the240

target site, averaging across 250 km radial bins and across the angular positions, thereby reducing local variability in the model

data. Additionally, we apply the approach to all target sites in our DML and Vostok study regions (Sect. 2.3.3) and average

the results across these sites to obtain regional estimates. Finally, we analyse each of the model variables to highlight the

differences between the individual fields.
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Figure 5. Average sampling correlation structures with temperature for the DML and Vostok regions in the case of sampling single locations.

Shown is as a function of distance the average correlation between the interannual near-surface temperature (T2m) at a target site and the

spatial fields of T2m (black), oxygen isotope composition (δ18O, green) and precipitation-weighted oxygen isotope composition (δ18O(pw),

blue). Averaging was performed in two steps: first, for a given target site, the correlations to the target site temperature were averaged across

grid cells lying within 250 km wide consecutive rings around the given target site. Secondly, this analysis was conducted for all target sites in

the DML (a) and Vostok (b) region and the results were avearged across the respective region (see Sects. 2.3.2 and 2.3.3 for details). Shading

denotes ±1 standard deviations of the correlation results across the different target sites in each region. The black dashed lines indicate an

exponential fit to the T2m data.

When we sample only a single location (N` = 1), the sampling correlation structure is conceptually equivalent to the average245

correlation with distance, and it therefore simply gives the spatial decorrelation in the case of sampling from the T2m field

itself. The average sampling correlation structures for T2m across the DML and Vostok regions (Fig. 5) can be described

by an exponential decay with a length scale of ∼ 1900 km in both cases, consistent with the estimated spatial temperature

decorrelation lengths for the individual grid cells in these regions (Fig. 2a). In accordance with the general expectation, the

maximum average correlation with the target site temperature is thus obtained from sampling the innermost ring only.250

When we compare these results to the average sampling correlation structure for the δ18O field, we find for the DML region

a much lower average correlation with the target site temperature as a function of distance (Fig. 5a). The average correlation

for the innermost ring (< 250 km) is ∼ 0.4, but decreases only slightly within the first ∼ 800 km, followed by a little steeper

decrease and near constant levels of r . 0.2 for distances & 1600 km. For the Vostok region (Fig. 5b), the average sampling

correlation structure for δ18O exhibits a nearly linear decrease from an initial value of r ∼ 0.6 to r ∼ 0.1 in the final ring255

(> 2000 km). When we analyse the δ18O(pw) fields we find that precipitation weighting reduces the correlation values in both

regions, but that it does not have a large effect on the shape of the sampling correlation structures itself.

Extending this analysis to the two-dimensional case of sampling and averaging N` = 2 locations offers the possibility of

investigating the average correlation not only as a function of distance from the target site but implicitly also as a function of

distance between the two sampled locations (Fig. 6). The difference in the average sampling correlation structure between the260
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Figure 6. Average sampling correlation structure with temperature for the DML and Vostok regions in the two-dimensional case of sampling

two locations. Shown is the mean correlation of all possible single correlations to the target site temperature of the average of two grid

cells of (a, d) T2m, (b, e) T (pw)
2m and (c, f) δ18O(pw) time series sampled from the same ring or from two different rings. This analysis was

conducted for every target site in the DML region (panels a–c) and in the Vostok region (panels d–f) and the results were then averaged

across the respective region. For each plot, the axes display the distance from the target site, where the x (y) axis represents the first (second)

sampled ring, with the results being mirrored along the diagonal for aesthetic reasons; the tick marks indicate the border distances of the

rings. Note the marked difference in the locations of the correlation maxima between T2m and δ18O(pw) for the DML region, and also for the

Vostok region the – albeit marginal – correlation maximum for δ18O(pw) is achieved by combining the innermost ring with the ring between

500–750 km.

fields of T2m and δ18O(pw) is even more pronounced for N` = 2 than for N` = 1. The maximum average correlation for T2m

is still found when both sampling locations lie inside the innermost ring, as shown for the DML region (Fig. 6a). However, for

δ18O(pw) the optimal arrangement of two locations is to sample one location from within the innermost ring but the second

location from within the fifth ring, i.e., between ∼ 1000 and 1250 km from the target site (Fig. 6c). Part of this structure is

related to the effect of precipitation intermittency, which can be seen from the average sampling correlation structure of the265

T
(pw)
2m field (Fig. 6b). Here, in contrast to T2m, the correlation is about as high when we combine the innermost ring and one

ring further away, as when we sample both locations from within the innermost ring.

Analysing the Vostok study region leads to comparable results (Fig. 6d–f), with a similar difference in average sampling

correlation structure between T2m and T (pw)
2m as for the DML region, and a similar structure of T (pw)

2m and δ18O(pw) for distances

. 1000 km. However, the results for the δ18O(pw) field (Fig. 6f) do not display such a pronounced maximum correlation when270
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Figure 7. The optimal arrangement for averaging three or five δ18O(pw) ice cores to reconstruct the target site temperature at the EDML (a,

c) and Vostok (b, d) drilling sites. Displayed are subsets of the sampling correlation structures for N` = 3 and 5, showing along the vertical

axis the optimal five of all possible combinations of rings (best denoted as rank 1, fifth best as rank 5), i.e., those which exhibit the five

highest mean correlation values across 105 random trials of averaging N` = 3 (a, b) or N` = 5 (c, d) grid cells from these rings. The ring

bin borders are marked by thin vertical lines with their distances from the target site given on the horizontal axes; the selected optimal ring

combinations are marked as black dots. Systematically, arrangements which combine ice cores from the innermost ring with ice cores further

away are found to be optimal, with larger distances for the EDML target site.

one location is sampled from within the innermost ring and the second one from inside a ring further away as it is observed for

the DML region. This suggests that the regional differences in the spatial correlation structure of the δ18O field (Fig. 5) have

an influence here.

The general feature of the optimal δ18O(pw) sampling arrangement is robust throughout Antarctica, despite the above re-

gional differences. When we analyse all available Antarctic target sites and fix the first core location to lie inside the innermost275

ring, in ∼ 82% of all cases the optimal second core location is at least the second ring (> 250 km), and in ∼ 63% of the cases

it is the second to fourth ring (250–1000 km).

We obtain similar results also when averaging N` = 3 or 5 locations of the δ18O(pw) field to reconstruct the target site

temperature (Fig. 7). For computational reasons, we here only analyse single target sites. When EDML is set as the target site,

the optimal sampling configuration is such that 1–2 core locations lie in the innermost ring while the others are distributed at280

distances mostly between∼ 750 and 1500 km from the target. For reconstructing the Vostok target site temperature, the optimal

core locations combine the innermost ring with locations distributed mostly across the second to third (250–750 km) ring.

In summary, averaging the δ18O(pw) time series across the optimal locations clearly increases the average correlation to the

target site temperature more strongly with the number of locations, as compared to sampling all core locations only locally

close to the target site, i.e. from the grid cells that lie within the innermost ring (Fig. 8a). While the local correlation for the285
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Figure 8. Gain in correlation and risk of adverse sampling. (a) The average correlation with the target temperature at the EDML (red) and

Vostok (blue) sites depending on the number of locations, N`, used for averaging the δ18O(pw) time series. Sampling is performed either

locally from the innermost ring only (dashed lines), or from all possible individual combinations of locations for the respective optimal ring

combination determined for each N` (solid lines). Compared to the local samples which show virtually no or only a small increase with the

number of sampled locations, the correlation increases markedly withN` when sampling from the optimal rings, as highlighted by the shaded

area. (b) Histogram of individual correlations for sampling from the optimal ring combination when averaging N` = 3 locations compared

to the correlation (vertical lines) for sampling from the innermost ring only, displayed for the EDML (red) and Vostok (blue) target sites. In

both cases, the correlation is higher than the local value for more than 93% of the optimal ring combination samples.

EDML target site stays constant around 0.31, the optimal correlation rises to 0.35 for N` = 2 and to 0.43 for N` = 10, which

is equivalent to nearly a doubling in the explained variance. For the Vostok target site, we observe a nearly concurrent increase

in correlation between the local and the optimal sampling up until N` = 2 from 0.45 to ∼ 0.50, but for larger N` the optimal

correlation also increases more strongly and reaches 0.58 for N` = 10, a ∼ 1.7-fold higher explained variance compared to

N` = 1.290

These results are the mean value from averaging across many possible combinations of individual locations. In reality,

any new drilling campaign or reanalysis of existing ice cores only represents one single combination of locations. Therefore,

we further assess the risk of an “adverse optimal sampling”, i.e., the probability of choosing by chance a specific sampling

realisation from the optimal ring combination which yields a lower correlation than the correlation for sampling locally. For

this purpose, we compare the distribution of individual correlations from sampling the optimal ring combination with the295

value obtained from sampling only the local sites which lie in the innermost ring. Overall we find the risk of adverse optimal

sampling to be low, since more than 93% of all individual correlation values in the example of N` = 3 are actually larger than

the respective local correlation (Fig. 8b).
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4 Discussion

4.1 Dependence on radial distance300

Oxygen isotope records derived from ice cores are commonly interpreted to reflect local temperature changes at the ice-core

drilling site. Here we have shown that while there is local isotope–temperature correlation (Fig. 2b), this correlation can be

increased considerably by averaging isotope records across space (Fig. 8a) following a distinct radial pattern which combines

the local target site with locations located between a few hundred kilometres to up to ∼ 1000 km from the target site (Figs. 6c,

6f, and 7). These results are based on a method which investigates the spatial correlation structure only as a function of radial305

distance by averaging across the azimuthal component. The motivation for this approach is that from physical arguments we

expect the first-order spatial correlation patterns to be invariant against rotation. Such radial symmetry is indeed observed as the

leading component of the spatial correlation structure of the temperature field and as a second-order component of the oxygen

isotope field (Fig. 3). We interpret these symmetric contributions as a general feature of the underlying atmospheric processes,

as compared to individual, local correlation maxima which are more due to the actual dynamics. Therefore, we expect that310

our results obtained from the radial sampling correlation structures should be largely independent of the climate state, or the

climate model used, and thus serve as valid recommendations for real-world applications. In the next section, we substantiate

this interpretation by showing that a simple conceptual model can predict the sampling correlation structure from the basic

processes which shape the isotopic composition time series, modelled only as a function of radial distance. Finally, we will

discuss the relevance of our results to actual ice-core studies.315

4.2 Conceptual model of the optimal sampling structure

For a conceptual model of the sampling correlation structure, we focus on the three main atmospheric processes that influence

the oxygen isotope records in ice cores: (i) temperature variations, (ii) precipitation intermittency, and (iii) the temperature–

isotope relationship. We statistically model the associated fields of T2m, T (pw)
2m and δ18O(pw) separately in order to understand

the influence of each process (see Appendix A for details), and we assess, for comparable results, the predicted average320

sampling correlation structure with the target site temperature in the two-dimensional case of averaging two locations in the

same manner that we analysed the climate model data.

To model the atmospheric temperature field, we assume an isotropic exponential decay of the spatial correlation with a

constant decorrelation length (Appendix A2). Such an exponential temperature decorrelation is a commonly observed feature

(Jones et al., 1997) and also confirmed by our climate model data (Figs. 2a, 3a, e, and 5). Given this relationship, we find a325

good agreement for the two-dimensional sampling correlation structure between the conceptual model and the climate model

data, both regarding absolute correlation values as well as the spatial pattern (Fig. A2a). We emphasise that the maximum

correlation with the target site temperature naturally occurs, in case of an isotropic correlation decay, when the averaged two

(or N`) locations are close to the target site, as any location which is further away will contribute a temperature signal that is

less similar to the other locations.330
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To elucidate the role of precipitation intermittency, we follow the simplest assumption which is that this process can be

described by partly aliasing the original temperature signal into temporal white noise (Laepple et al., 2018; Casado et al., 2020).

We further assume that this noise is not independent between sites but that it follows the spatial scale of precipitation events,

which we describe as an exponential decorrelation in space with a second length scale (Appendix A3). This intermittency length

scale is related to the atmospheric processes that deliver precipitation, e.g., synoptic systems, and is hence assumed to be smaller335

than the length scale of the temperature anomalies. The introduction of this second length scale into our conceptual model

generally explains the optimal sampling structure we obtained from the climate model data. Qualitatively, close-by locations

exhibit a strong correlation in temperature but also in the noise from precipitation intermittency; therefore, this noise cannot be

reduced by averaging the locations, yielding an overall low signal-to-noise ratio. However, with increasing distance between

the locations, the intermittency noise decorrelates faster than the temperature field due to the different decorrelation scales,340

resulting in an optimal distance of maximum signal-to-noise ratio. This is also reflected in our conceptual model (Figs. A1

and A2b, e): When fixing the position of one core to the innermost location and varying only the distance from the target

site of the second core location, the correlation with the target site temperature first increases with increasing distance of the

second location and then maximises at an optimal distance, before it decays with a further increase in distance. In the climate

model data, we observed a similar feature for the precipitation-weighted temperature (Fig. 6), though it was not as clear as345

in the conceptual model. This mismatch could be related to the assumed isotropy in the conceptual model and the according

azimuthal averaging done in the climate model data analysis, which potentially smears the intermittency effect in the climate

model data due to slight differences in the decorrelation lengths between the different horizontal directions.

In order to incorporate the δ18O(pw) field into the conceptual model, we need to account for the spatial temperature–isotope

relationship. To accomplish this, we parameterise the spatial dependence of the correlation between temperature and the oxygen350

isotope composition with a simple isotropic linear model based on the climate model data results (Fig. 5 and Appendix A4).

In addition, we assume that the same effect of precipitation intermittency that we adopted for the temperature field is also

applicable to the oxygen isotope field. With these simple assumptions, we obtain a good qualitative agreement for the DML

region between the conceptual model and the climate model data results (cf. Figs. A2c and 6c). In addition, when we change

the parameterised isotope–temperature relationship such that it more closely resembles the Vostok region data (Fig. 5b), the355

sampling correlation structure in the conceptual model (Fig. A2f) is more similar to the observed correlation structure (Fig. 6f).

However, in general the conceptual model fails for δ18O(pw) to reproduce the actual range in correlations as it produces much

lower values than expected.

In summary, our conceptual model provides a quantitative understanding of the spatial correlation of the temperature in the

climate model data, and, at least, a qualitative understanding of the processes that affect the correlation between temperature360

and the δ18O(pw) field, i.e., precipitation intermittency and the spatial temperature–isotope relationship. The deficiencies in the

conceptual model may be attributed to its simplicity. For the governing processes, we assumed spatially constant and isotropic

length scales, neglecting local and direction-related differences in, e.g., temperature decorrelation lengths (cf. Fig. 2a) or the

spatial extent of the coherence of precipitation intermittency. Instead of being constant, the latter may differ depending on

the type of precipitation, e.g., synoptic versus stratiform precipitation, and may exhibit directional dependencies related to365
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topography. Furthermore, we assumed constant variance of all time series, thereby ignoring potential weighting effects on the

correlations for the spatial average of several locations due to different variabilities between them.

4.3 Relevance for ice-core studies

Our results from analysing the climate model data provide guidance on where to drill or from where to analyse N` = 1,2,3

or more ice cores in order to optimally reconstruct the atmospheric temperature signal for a certain target site. For this, our370

analysis highlights two distinct approaches.

The first possibility is to follow the recommendations obtained from directly choosing the specific locations which maximise

the correlation with the target site temperature (Fig. 4). This is straightforward, however, for applications such locations would

need to be derived for every target site in question. In addition, as outlined above, it is unclear whether the results can be

one-to-one transferred to the real world, since they might be due to unaccounted model deficiencies, or depend on dynamical375

processes in the atmosphere which could differ between climate states or depend on initial conditions. One indication for this

is that we obtain different optimal single core locations for more than half of all investigated Antarctic target sites, when we

analyse only the first or only the second half of the respective climate model time series as compared to the full 1200 years.

We have argued above that the sampling correlation structures, obtained from averaging the individual correlations across

space for combinations of concentric rings around the target site, are a more general quantity, and we have shown with our380

conceptual model that they are on average governed by the interplay of the different underlying correlation length scales. We

expect the latter to vary less in between different climate periods or states, or in between regions. This is substantiated by the

fact that the sampling correlation structures for two cores (Fig. 6) are much more robust against analysing only the first or

the second half of the model time series, different to the results from directly choosing optimal locations. Thus, the sampling

correlation structure offers a general approach for finding an optimal ice core network, but with the downside that it informs385

us only about the relative radial distances of the optimal network around the target site.

Using the sampling correlation structures we arrive at the following recommendations for optimal ice core sampling config-

urations. If it is only possible to drill or analyse a single ice core, our results show that it is always best to sample locally, i.e.,

to place this core near the target site of interest. This is also common practice, given the usual interpretation of ice-core isotope

records as a proxy for local temperatures. However, due to the effect of precipitation intermittency, modulated by the spatial390

coherence of the temperature–isotope relationship, it is no longer optimal in the case of drilling two ice cores to collect both

cores near the target site, but instead to drill one core at the target site and one at least 500 km away. Where three or more ice

cores will be drilled or analysed, we expect the optimal spatial configuration to be more dependent on the study region, but our

results indicate that it is still likely best to place one core near the target site and distribute the others across several hundreds

of kilometres.395

These inferences are based on data from a single climate model simulation together with a simple statistical conceptual

model, which should be tested against observations. As a proof of concept, we thus need to create an isotope record that is

in first order only governed by temperature variations and precipitation intermittency, and remove the impact of small-scale

stratigraphic noise from the actual measured records (assuming that any further processes in the pre-depositional to depositional
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phase contribute negligibly to the local isotopic variations). To accomplish this, one possible strategy would be to use trench400

sampling campaigns (see Münch et al., 2016, 2017 for the EDML site). Then, one test of our optimal sampling configurations

could be to combine one trench record, e.g., one from EDML, with another trench sampled at the optimal distance based on our

results forN` = 2, and correlate the average of these two trench records with the instrumental temperature data set available for

EDML. Based on the results in this study we would expect a higher degree of correlation in this case compared to using only

one local trench record from EDML. We acknowledge that such an approach would be challenging due to the small amount of405

available instrumental data (∼ 20 years for EDML) and by the inevitable dating uncertainties between the two trench records.

Finally, we note that our implications concerning optimal ice core sampling configurations might in reality be affected by

two further processes we have neglected here. Firstly, clear sky precipitation (“diamond dust”) is a common phenomenon in

Antarctica, especially in the drier regions of the Antarctic Plateau, which potentially occurs more regular than convective-type

or stratiform precipitation. Diamond dust formation is not explicitly simulated by the ECHAM5 model, so it is possible that the410

precipitation intermittency modelled in our simulation is partly offset in reality by a stronger relative contribution of diamond

dust to the total precipitation amount. Secondly, surface–atmosphere vapour exchange in between precipitation events might

constitute a second process which imprints an atmospheric temperature signal into the surface snow, next to precipitation (e.g.,

Steen-Larsen et al., 2014; Madsen et al., 2019). This process could hence also partly counteract the impact of precipitation

intermittency, depending on its relative importance for the isotopic composition of the surface snow. However, there is no clear415

consensus in the recent literature on this question, and ultimately we need quantitative estimates of the importance of vapour

exchange processes across temporal scales. In any case, these considerations do not affect our general notion that the optimal

ice core sampling configuration depends on the differences in spatial decorrelation scales of the processes which shape the

isotopic records.

5 Conclusions420

In this study we assessed the spatial sampling configuration of ice cores to optimally reconstruct the annual near-surface

temperature at a specific target site. This problem was motivated by the expectation that the major processes influencing the

isotopic records of ice cores operate on different spatial scales.

Indeed, by analysing the temperature and isotope data of an isotope-enabled atmosphere–ocean climate model simulating the

climatic history over the last millennium in Antarctica, we showed that while in the optimal setup a single ice core should be425

placed close to the target site of interest, a second core should be located far (> 500 km) from the first core. While this may seem

surprising at first glance, it can be straightforwardly explained by the interplay of two different correlation lengths in space:

one for the temperature anomalies and one parameterising the spatial coherence of the effect of precipitation intermittency, as

demonstrated by a simple conceptual model. Despite the fact that these results were specifically obtained for two regions of the

East Antarctic Plateau, we expect similar results to hold for other parts of Antarctica, and potentially also for other large-scale430

ice-coring regions such as Greenland, as long as our simplified assumptions of nearly isotropic exponential decorrelation length
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scales are also valid there. However, we also suggest to verify our results with a different isotope-enabled climate model in

order to rule out any dependence on the specific atmospheric model and isotope scheme applied in the simulation used here.

Overall, our study explicitly improves the planning of drilling or analysis campaigns for spatial networks of ice-core isotope

records. In addition, it provides a strategy to analyse an optimal configuration of sampling locations for any proxy which is435

influenced by two or more processes that exhibit different spatial correlation scales. This likely applies to various marine as

well as terrestrial proxy types, and our strategy thus might offer a step forward in the best use of sampling and measurement

capacity for quantitative climate reconstructions, which needs to be investigated in further studies.

Code and data availability. The climate model data used in this study is freely available from the Zenodo database under https://doi.org/10.

5281/zenodo.4001565 (Münch and Werner, 2020). Software to run the analyses and produce the figures is available as R code hosted in the440

public git repository at https://github.com/EarthSystemDiagnostics/optimalcores; a snapshot of this software code at the time of publication

is archived on the Zenodo database under https://doi.org/10.5281/zenodo.5075439 (Münch, 2021).

Appendix A: Conceptual model of sampling correlation structures

A1 General model

We set up a conceptual model for the correlation between a target temperature time series and a spatial average based on a set445

of locations sampled from a climatic field (sampling correlation structure). Our model assumes simple isotropic and exponen-

tial decorrelation structures for the involved climatic fields and is based on previous work which suggests that precipitation

intermittency can be described by partly aliasing the original temperature signal into white noise (Laepple et al., 2018).

In the model, we consider a temperature time series T0 at some target site r0 and a field x of a given climate variable. From

this field, we select N` time series xi at the locations ri, i= 1, . . . ,N`, and denote the spatial average of these time series by450

x= 1
N`

∑N`

i=1xi. The distances of the N` locations from the target site and the distances between the locations are given by

ri = |ri− r0| and by dij = |ri− rj |, respectively. The correlation between T0 and x follows from

cor(T0,x) =
cov(T0,x)√
var(T0)var(x)

, (A1)

and it is governed by the covariance between the temperature at the target site and the climate field at the sampling locations

ri,455

cov(T0,x) =
1

N`

N∑̀
i

cov(T0,xi), (A2)

and by the covariance between the sampling locations through the variance of their spatial average,

var(x) =
1

N2
`

 N∑̀
i

var(xi)+ 2

N`−1∑
i

N∑̀
j

cov(xi,xj)

 . (A3)
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Figure A1. Illustration of the decorrelation lengths in the conceptual model. Shown are as a function of distance the correlation between two

temperature time series (black), between the intermittency noise (purple), between a temperature and a precipitation-weighted temperature

time series (dashed black), between two precipitation-weighted temperature time series (green), and between a target temperature time series

and the average of two precipitation-weighted temperature time series (orange), when one is located at the target site and the other one is

located away from the target site at a distance as indicated on the x axis. Model parameters are taken from the DML region. The decorrelation

curve of the precipitation-weighted temperature time series is simply the superposition of the temperature decorrelation and the decorrelation

of the intermittency noise, depending on the intermittency factor ξ.

In our model, these quantities depend on the distance between sites and on the correlation structure of the respective field x, as

we show in the following and as illustrated in Fig. A1.460

A2 Temperature

For the near-surface temperature field, x≡ T , we assume a spatially constant variance, var(T0) = var(Ti)≡ σ2
T , and an

isotropic decorrelation following an exponential decay with a decorrelation length τ ; i.e., the covariance between sites is

(see black line in Fig. A1)

cov(T0,Ti) = σ2
T exp

(
−ri
τ

)
, (A4)465

cov(Ti,Tj) = σ2
T exp

(
−dij
τ

)
. (A5)
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The correlation between the target site temperature and the spatial average of N` temperature time series is then obtained from

cor(T0,T ) =

∑N`

i=1 exp
(
− riτ

)√
N`+2

∑N`−1
i=1

∑N`

j=i+1 exp
(
−dijτ

) . (A6)

A3 Precipitation-weighted temperature470

To model the effect of precipitation intermittency, we follow Laepple et al. (2018) and assume that precipitation intermittency

redistributes the energy of the temperature time series constantly across frequencies, i.e., creating temporal white noise without

changing the total variance. Then, the precipitation-weighted temperature time series at location ri arises from Ti as

T
(pw)
i = (1− ξ)1/2Ti+ ξ1/2σT εi(0,1), (A7)

where εi(0,1) are independent and normally distributed random variables with a mean of zero and a standard deviation of 1.475

The parameter 0≤ ξ ≤ 1 determines the fraction of the input temperature time series which is aliased into white noise.

The covariance between the target site temperature and a precipitation-weighted temperature time series is then

cov(T0,T
(pw)
i ) = (1− ξ)1/2σ2

T exp
(
−ri
τ

)
, (A8)

which implies that the spatial correlation structure between T0 and the precipitation-weighted temperature follows the same

exponential decay as in Eq. (A4), only scaled by the factor (1− ξ)1/2 (see dashed black line in Fig. A1). The factor ξ can be480

estimated from the climate model data by analysing the local correlation, i.e., at the same grid cell, between the temperature

and the precipitation-weighted temperature.

We further assume that the effect of precipitation intermittency is not independent between sites but is related to the spatial

coherence of the precipitation fields, for which we assume an exponential decorrelation structure with a decay length τpw.

Based on these assumptions, the spatial covariance between sites of the white noise terms induced by the effect of precipitation485

intermittency has the form (see purple line in Fig. A1)

cov(εi,εj) = exp

(
− dij
τpw

)
. (A9)

Then, the correlation between the target site temperature and the spatial average ofN` precipitation-weighted temperature time

series is governed by the intermittency factor ξ and by the two spatial length scales τ and τpw,

cor
(
T0,T

(pw)
)
=

√
1− ξ

∑N`

i=1 exp
(
− riτ

)√
N`+2

∑N`−1
i=1

∑N`

j=i+1 g(dij ;τ,τpw, ξ)
, (A10)490

with

g(dij ;τ,τpw, ξ) := (1− ξ)exp
(
−dij
τ

)
+ ξ exp

(
− dij
τpw

)
. (A11)

An example of the correlation according to Eq. (A10) is shown for N` = 2 and r1 = 0 as a function of r2 in Fig. A1.
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A4 Precipitation-weighted oxygen isotope composition

For the precipitation-weighted oxygen isotope composition field, x≡ δ(pw), we assume the same effect of precipitation in-495

termittency as for the temperature field. Furthermore, an analysis of the climate model data suggests that the oxygen isotope

field largely exhibits an exponential decorrelation structure in space (not shown). Hence, the correlation between the target site

temperature and the spatial average of N` δ(pw) time series is obtained in a similar manner as for T (pw), i.e.,

cor
(
T0, δ

(pw)
)
=

√
1− ξ

∑N`

i=1 cor(T0, δi)√
N`+2

∑N`−1
i=1

∑N`

j=i+1 g(dij ;τδ, τpw, ξ)
, (A12)

where τδ is the decorrelation length of the δ field and the only difference to Eq. (A10) is the unknown spatial correlation500

structure between the temperature at the target site and the oxygen isotope field, cor(T0, δi). Based on our climate model

results (Fig. 5), we parameterise this function with a simple linear decay of the form

cor(T0, δi) =

c0− γd, d≤ d0,

0, d > d0,
(A13)

where γ = c0/d0, and d0 is some threshold distance above which the correlation is zero.

A5 Model parameter estimation and model results505

Overall, our model is governed by three decorrelation lengths (τ , τδ , τpw), the intermittency factor ξ, and two parameters

describing the temperature–isotope correlation (c0, d0).

We estimate τ from the climate model data for the DML and Vostok regions (Fig. 5) and find for both regions values of

τ = 1900 km. In the same way we estimate a value of τδ = 1100 km for both regions. The intermittency factor ξ is derived

from the local correlation between temperature and precipitation-weighted temperature (Eq. A8). We find an average value510

for the DML region of ξDML = 0.73, which is close to the average value across all of Antarctica (ξAnt. = 0.71), while the

intermittency is stronger for the Vostok region (ξVostok = 0.82). We parameterise the temperature–isotope correlation in the

DML region with c0 = 0.4 and d0 = 6000 km and in the Vostok region with c0 = 0.6 and d0 = 2500 km (Fig. 5). The only

unconstrained parameter is the decorrelation length of the effect of precipitation intermittency, τpw, since it is unclear by

which precipitation variable it is mainly governed (total annual amount, seasonal amount, or its distribution). An investigation515

with reanalysis data yielded scales between ∼ 300 to 500 km for different precipitation variables (Münch and Laepple, 2018),

while our model data exhibits an average decorrelation length of ∼ 600 km for the annual precipitation amount. Here, for the

conceptual model we choose a value of 500 km.

We can test our assumption for the effect of intermittency based on using the estimated values of τ and ξ to predict the

spatial decorrelation between temperature and precipitation-weighted temperature (Eq. A8). Indeed, this yields a comparably520

good fit to the data as an independent fit (root mean square deviation of ∼ 0.03 between data and fit in both cases), supporting

our assumption that intermittency can be parameterised by a partial conversion of the time series into white noise.
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Figure A2. Two-dimensional sampling correlation structures with temperature as predicted from our conceptual model using the model

parameters from the DML (a–c) and Vostok (d–f) regions. Shown is the mean correlation of all possible single correlations for the average

of two time series sampled from a pair of concentric rings around the target site for the fields of (a, d) T2m, (b, e) T (pw)
2m and (c, f) δ18O(pw).

Note that the plots (a) and (d) are based on the same parameters and therefore identical.

Similarly to analysing the climate model data, we now use our conceptual model to predict the two-dimensional (N` = 2)

sampling correlation structures for the different model fields of T2m, T (pw)
2m and δ18O(pw) (Eqs. A6, A10 and A12). Since

our model space is continuous, we sample from locations placed on concentric rings around the target site. We either sample525

the two locations from the same ring or from two different rings, using ring radii from 0 to 2000 km in increments of 10 km,

and calculate the average correlation for a specific ring combination. To obtain meaningful expectation values, we choose 36

locations distributed uniformly across each ring in steps of 10◦, combine these locations one by one for each ring combination,

and average across the correlations for each location pair. With the model parameters from the DML and Vostok regions we

obtain the results displayed in Fig. (A2), which are discussed and compared to the estimated results from the climate model530

data in the main text.
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