Articles | Volume 17, issue 3
https://doi.org/10.5194/cp-17-1341-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1341-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years
Naoko Nagatsuka
CORRESPONDING AUTHOR
National Institute of Polar Research, Tokyo 190-8518, Japan
Kumiko Goto-Azuma
National Institute of Polar Research, Tokyo 190-8518, Japan
Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo 190-8518, Japan
Akane Tsushima
Graduate School of Science, Chiba University, Chiba 277-0882, Japan
Koji Fujita
Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
Sumito Matoba
Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
Yukihiko Onuma
Institute of Industrial Science, University of Tokyo, Kashiwa 277-8574, Japan
Remi Dallmayr
Alfred Wegener Institute, Am Alten Hafen 26, 27568 Bremerhaven, Germany
Moe Kadota
Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
Motohiro Hirabayashi
National Institute of Polar Research, Tokyo 190-8518, Japan
Jun Ogata
National Institute of Polar Research, Tokyo 190-8518, Japan
Yoshimi Ogawa-Tsukagawa
National Institute of Polar Research, Tokyo 190-8518, Japan
Kyotaro Kitamura
National Institute of Polar Research, Tokyo 190-8518, Japan
Masahiro Minowa
Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
Yuki Komuro
National Institute of Polar Research, Tokyo 190-8518, Japan
Hideaki Motoyama
National Institute of Polar Research, Tokyo 190-8518, Japan
Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo 190-8518, Japan
Teruo Aoki
National Institute of Polar Research, Tokyo 190-8518, Japan
Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo 190-8518, Japan
Related authors
Naoko Nagatsuka, Kumiko Goto-Azuma, Kana Nagashima, Koji Fujita, Yuki Komuro, Motohiro Hirabayashi, Jun Ogata, Kaori Fukuda, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Ayaka Yonekura, Fumio Nakazawa, Yukihiko Onuma, Naoyuki Kurita, Sune Olander Rasmussen, Giulia Sinnl, Trevor James Popp, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1522, https://doi.org/10.5194/egusphere-2025-1522, 2025
Preprint archived
Short summary
Short summary
We present the first continuous records of dust size, composition, and temporal variations in potential sources from the northeastern Greenland ice core (EGRIP) over the past 100 years. Using a multi-proxy provenance approach based on individual particle analysis, we identify the primary dust sources as the Asian (Gobi) and African (Sahara) deserts. Our findings show shifts in their contributions since the 1970s–1980s, highlighting the effectiveness of this approach during low dust periods.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Naoko Nagatsuka, Kumiko Goto-Azuma, Koji Fujita, Yuki Komuro, Motohiro Hirabayashi, Jun Ogata, Kaori Fukuda, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Ayaka Yonekura, Fumio Nakazawa, Yukihiko Onuma, Naoyuki Kurita, Sune Olander Rasmussen, Giulia Sinnl, Trevor James Popp, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1666, https://doi.org/10.5194/egusphere-2023-1666, 2023
Preprint archived
Short summary
Short summary
We present a new high-temporal-resolution record of mineral composition in a northeastern Greenland ice-core (EGRIP) over the past 100 years. The ice core dust composition and its variation differed significantly from a northwestern Greenland ice core, which is likely due to differences in the geological sources of the dust. Our results suggest that the EGRIP ice core dust was constantly supplied from Northern Eurasia, North America, and Asia with minor contribution from Greenland coast.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Tomotaka Saruya, Atsushi Miyamoto, Shuji Fujita, Kumiko Goto-Azuma, Motohiro Hirabayashi, Akira Hori, Makoto Igarashi, Yoshinori Iizuka, Takao Kameda, Hiroshi Ohno, Wataru Shigeyama, and Shun Tsutaki
The Cryosphere, 19, 2365–2385, https://doi.org/10.5194/tc-19-2365-2025, https://doi.org/10.5194/tc-19-2365-2025, 2025
Short summary
Short summary
Crystal orientation fabrics and microstructures in the deep sections of the Dome Fuji (DF) ice core were investigated using innovative methods with dense depth coverage. Together with our previous studies, we have obtained whole layer profiles of the crystal orientation fabric and physical properties of the DF ice core. Development and fluctuation of the crystal orientation fabric were found to be highly dependent on impurity concentrations and recrystallization processes.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
Atmos. Chem. Phys., 25, 5727–5742, https://doi.org/10.5194/acp-25-5727-2025, https://doi.org/10.5194/acp-25-5727-2025, 2025
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions and atmospheric oxidation chemistry driven by human activity. However, UV-driven postdepositional processes can alter nitrate in snow, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in a southeastern Greenland ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Ken Kondo and Koji Fujita
EGUsphere, https://doi.org/10.5194/egusphere-2025-1893, https://doi.org/10.5194/egusphere-2025-1893, 2025
Short summary
Short summary
Increased river runoff due to ice melt in Greenland contributes to sea-level rise and flooding in coastal settlements. We reconstructed glacier runoff in northwestern Greenland from 1950 to 2023. The long-term modelling revealed recent increase in the glacier runoff owing to circulation changes over Greenland, characterized by moisture and heat transport to the north. Our study illustrated a significant impact of atmospheric variability on Greenlandic glaciers and local communities.
Yutaka Kurosaki, Sumito Matoba, Mai Matsumoto, Tetsuhide Yamasaki, Ilannguaq Hendriksen, and Yoshinori Iizuka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1560, https://doi.org/10.5194/egusphere-2025-1560, 2025
Short summary
Short summary
We conducted snow observations on the coastal region in the northwestern Greenland Ice Sheet close to the North Water. The snowpack on the coastal region in the northwestern Greenland Ice Sheet contained aerosols originated from ocean biological activity and frost flowers in the North Water. The chemical substances in an ice core from the coastal region in the northwestern Greenland Ice Sheet could help explain past changes in ocean biological and sea ice conditions in the North Water.
Naoko Nagatsuka, Kumiko Goto-Azuma, Kana Nagashima, Koji Fujita, Yuki Komuro, Motohiro Hirabayashi, Jun Ogata, Kaori Fukuda, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Ayaka Yonekura, Fumio Nakazawa, Yukihiko Onuma, Naoyuki Kurita, Sune Olander Rasmussen, Giulia Sinnl, Trevor James Popp, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1522, https://doi.org/10.5194/egusphere-2025-1522, 2025
Preprint archived
Short summary
Short summary
We present the first continuous records of dust size, composition, and temporal variations in potential sources from the northeastern Greenland ice core (EGRIP) over the past 100 years. Using a multi-proxy provenance approach based on individual particle analysis, we identify the primary dust sources as the Asian (Gobi) and African (Sahara) deserts. Our findings show shifts in their contributions since the 1970s–1980s, highlighting the effectiveness of this approach during low dust periods.
Rémi Dallmayr, Hannah Meyer, Vasileios Gkinis, Thomas Laepple, Melanie Behrens, Frank Wilhelms, and Maria Hörhold
The Cryosphere, 19, 1067–1083, https://doi.org/10.5194/tc-19-1067-2025, https://doi.org/10.5194/tc-19-1067-2025, 2025
Short summary
Short summary
Recent studies showed that a large number of independent vertical profiles allow for inferring a common local climate signal from the stacked stable water isotope record. Through investigating instrumental limitation and the effect of percolation of such porous samples, this study assesses the continuous flow analysis (CFA) technique in order to analyze the significant number of snow surface profiles within a reasonable time and with high quality.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Ryo Inoue, Teruo Aoki, Shuji Fujita, Shun Tsutaki, Hideaki Motoyama, Fumio Nakazawa, and Kenji Kawamura
The Cryosphere, 18, 3513–3531, https://doi.org/10.5194/tc-18-3513-2024, https://doi.org/10.5194/tc-18-3513-2024, 2024
Short summary
Short summary
We measured the snow specific surface area (SSA) at ~2150 surfaces between the coast near Syowa Station and Dome Fuji, East Antarctica, in summer 2021–2022. The observed SSA shows no elevation dependence between 15 and 500 km from the coast and increases toward the dome area beyond the range. SSA varies depending on surface morphologies and meteorological events. The spatial variation of SSA can be explained by snow metamorphism, snowfall frequency, and wind-driven inhibition of snow deposition.
Orie Sasaki, Evan Stewart Miles, Francesca Pellicciotti, Akiko Sakai, and Koji Fujita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2026, https://doi.org/10.5194/egusphere-2024-2026, 2024
Short summary
Short summary
This study proposes a new method to detect snowline altitude (SLA) using the Google Earth Engine platform with high-resolution satellite imagery, applicable anywhere in the world. Applying this method to five glaciated watersheds in the Himalayas reveals regional consistencies and differences in snow dynamics. We also investigate the primary controls of these dynamics by analyzing climatic factors and topographic characteristics.
Ryo Inoue, Shuji Fujita, Kenji Kawamura, Ikumi Oyabu, Fumio Nakazawa, Hideaki Motoyama, and Teruo Aoki
The Cryosphere, 18, 425–449, https://doi.org/10.5194/tc-18-425-2024, https://doi.org/10.5194/tc-18-425-2024, 2024
Short summary
Short summary
We measured the density, microstructural anisotropy, and specific surface area (SSA) of six firn cores collected within 60 km of Dome Fuji, Antarctica. We found a lack of significant density increase, development of vertically elongated microstructures, and a rapid decrease in SSA in the top few meters due to the metamorphism driven by water vapor transport under a temperature gradient. We highlight the significant spatial variability in the properties, which depends on the accumulation rate.
Vigan Mensah, Koji Fujita, Stephen Howell, Miho Ikeda, Mizuki Komatsu, and Kay I. Ohshima
EGUsphere, https://doi.org/10.5194/egusphere-2023-2492, https://doi.org/10.5194/egusphere-2023-2492, 2023
Preprint archived
Short summary
Short summary
We estimated the volume of freshwater released by sea ice, glaciers, rivers, and precipitation into Baffin Bay and the Labrador Sea, and their changes over the past 70 years. We found that the freshwater volume has risen in Baffin Bay due to increased glacier melting, and dropped in the Labrador Sea because of the decline in sea ice production. We also infer that freshwater from the Arctic Ocean has been exported to our study region for the past 30 years, possibly as a result of global warming.
Motoshi Nishimura, Teruo Aoki, Masashi Niwano, Sumito Matoba, Tomonori Tanikawa, Tetsuhide Yamasaki, Satoru Yamaguchi, and Koji Fujita
Earth Syst. Sci. Data, 15, 5207–5226, https://doi.org/10.5194/essd-15-5207-2023, https://doi.org/10.5194/essd-15-5207-2023, 2023
Short summary
Short summary
We presented the method of data quality checks and the dataset for two ground weather observations in northwest Greenland. We found that the warm and clear weather conditions in the 2015, 2019, and 2020 summers caused the snowmelt and the decline in surface reflectance of solar radiation at a low-elevated site (SIGMA-B; 944 m), but those were not seen at the high-elevated site (SIGMA-A; 1490 m). We hope that our data management method and findings will help climate scientists.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Yukihiko Onuma, Koji Fujita, Nozomu Takeuchi, Masashi Niwano, and Teruo Aoki
The Cryosphere, 17, 3309–3328, https://doi.org/10.5194/tc-17-3309-2023, https://doi.org/10.5194/tc-17-3309-2023, 2023
Short summary
Short summary
We established a novel model that simulates the temporal changes in cryoconite hole (CH) depth using heat budgets calculated independently at the ice surface and CH bottom based on hole shape geometry. The simulations suggest that CH depth is governed by the balance between the intensity of the diffuse component of downward shortwave radiation and the wind speed. The meteorological conditions may be important factors contributing to the recent ice surface darkening via the redistribution of CHs.
Naoko Nagatsuka, Kumiko Goto-Azuma, Koji Fujita, Yuki Komuro, Motohiro Hirabayashi, Jun Ogata, Kaori Fukuda, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Ayaka Yonekura, Fumio Nakazawa, Yukihiko Onuma, Naoyuki Kurita, Sune Olander Rasmussen, Giulia Sinnl, Trevor James Popp, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1666, https://doi.org/10.5194/egusphere-2023-1666, 2023
Preprint archived
Short summary
Short summary
We present a new high-temporal-resolution record of mineral composition in a northeastern Greenland ice-core (EGRIP) over the past 100 years. The ice core dust composition and its variation differed significantly from a northwestern Greenland ice core, which is likely due to differences in the geological sources of the dust. Our results suggest that the EGRIP ice core dust was constantly supplied from Northern Eurasia, North America, and Asia with minor contribution from Greenland coast.
Takashi Obase, Ayako Abe-Ouchi, Fuyuki Saito, Shun Tsutaki, Shuji Fujita, Kenji Kawamura, and Hideaki Motoyama
The Cryosphere, 17, 2543–2562, https://doi.org/10.5194/tc-17-2543-2023, https://doi.org/10.5194/tc-17-2543-2023, 2023
Short summary
Short summary
We use a one-dimensional ice-flow model to examine the most suitable core location near Dome Fuji (DF), Antarctica. This model computes the temporal evolution of age and temperature from past to present. We investigate the influence of different parameters of climate and ice sheet on the ice's basal age and compare the results with ground radar surveys. We find that the local ice thickness primarily controls the age because it is critical to the basal melting, which can eliminate the old ice.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Ikumi Oyabu, Kenji Kawamura, Shuji Fujita, Ryo Inoue, Hideaki Motoyama, Kotaro Fukui, Motohiro Hirabayashi, Yu Hoshina, Naoyuki Kurita, Fumio Nakazawa, Hiroshi Ohno, Konosuke Sugiura, Toshitaka Suzuki, Shun Tsutaki, Ayako Abe-Ouchi, Masashi Niwano, Frédéric Parrenin, Fuyuki Saito, and Masakazu Yoshimori
Clim. Past, 19, 293–321, https://doi.org/10.5194/cp-19-293-2023, https://doi.org/10.5194/cp-19-293-2023, 2023
Short summary
Short summary
We reconstructed accumulation rate around Dome Fuji, Antarctica, over the last 5000 years from 15 shallow ice cores and seven snow pits. We found a long-term decreasing trend in the preindustrial period, which may be associated with secular surface cooling and sea ice expansion. Centennial-scale variations were also found, which may partly be related to combinations of volcanic, solar and greenhouse gas forcings. The most rapid and intense increases of accumulation rate occurred since 1850 CE.
Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki
The Cryosphere, 16, 2967–2983, https://doi.org/10.5194/tc-16-2967-2022, https://doi.org/10.5194/tc-16-2967-2022, 2022
Short summary
Short summary
We constructed an ice thickness map across the Dome Fuji region, East Antarctica, from improved radar data and previous data that had been collected since the late 1980s. The data acquired using the improved radar systems allowed basal topography to be identified with higher accuracy. The new ice thickness data show the bedrock topography, particularly the complex terrain of subglacial valleys and highlands south of Dome Fuji, with substantially high detail.
Tomotaka Saruya, Shuji Fujita, Yoshinori Iizuka, Atsushi Miyamoto, Hiroshi Ohno, Akira Hori, Wataru Shigeyama, Motohiro Hirabayashi, and Kumiko Goto-Azuma
The Cryosphere, 16, 2985–3003, https://doi.org/10.5194/tc-16-2985-2022, https://doi.org/10.5194/tc-16-2985-2022, 2022
Short summary
Short summary
Crystal orientation fabrics (COF) of the Dome Fuji ice core were investigated with an innovative method with unprecedentedly high statistical significance and dense depth coverage. The COF profile and its fluctuation were found to be highly dependent on concentrations of chloride ion and dust. The data suggest deformation of ice at the deepest zone is highly influenced by COF fluctuations that progressively develop from the near-surface firn toward the deepest zone within ice sheets.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022, https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Yota Sato, Koji Fujita, Hiroshi Inoue, Akiko Sakai, and Karma
The Cryosphere, 16, 2643–2654, https://doi.org/10.5194/tc-16-2643-2022, https://doi.org/10.5194/tc-16-2643-2022, 2022
Short summary
Short summary
We investigate fluctuations in Bhutanese lake-terminating glaciers focusing on the dynamics change before and after proglacial lake formation at Thorthormi Glacier (TG) based on photogrammetry, satellite, and GPS surveys. The thinning rate of TG became double compared to before proglacial lake formation, and the flow velocity has also sped up considerably. Those changes would be due to the reduction in longitudinal ice compression by the detachment of the glacier terminus from the end moraine.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Ikumi Oyabu, Kenji Kawamura, Tsutomu Uchida, Shuji Fujita, Kyotaro Kitamura, Motohiro Hirabayashi, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Jeffrey P. Severinghaus, and Jacob D. Morgan
The Cryosphere, 15, 5529–5555, https://doi.org/10.5194/tc-15-5529-2021, https://doi.org/10.5194/tc-15-5529-2021, 2021
Short summary
Short summary
We present O2/N2 and Ar/N2 records from the Dome Fuji ice core through the bubbly ice, bubble–clathrate transition, and clathrate ice zones without gas-loss fractionation. The insolation signal is preserved through the clathrate formation. The relationship between Ar/Ν2 and Ο2/Ν2 suggests that the fractionation for the bubble–clathrate transition is mass independent, while the bubble close-off process involves a combination of mass-independent and mass-dependent fractionation for O2 and Ar.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Pavel Talalay, Yazhou Li, Laurent Augustin, Gary D. Clow, Jialin Hong, Eric Lefebvre, Alexey Markov, Hideaki Motoyama, and Catherine Ritz
The Cryosphere, 14, 4021–4037, https://doi.org/10.5194/tc-14-4021-2020, https://doi.org/10.5194/tc-14-4021-2020, 2020
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Cited articles
Allen, V. T. and Johns, W. D.: Clays and clay minerals of New England and
Eastern Canada, GSA Bulletin, 71, 75–86,
https://doi.org/10.1130/0016-7606(1960)71[75:CACMON]2.0.CO;2, 1960.
Amino, T., Iizuka, Y., Matoba, S., Shimada, R., Oshima, N., Suzuki, T.,
Ando, T., Aoki, T., and Fujita, K.: Increasing dust emission from ice free
terrain in southeastern Greenland since 2000, Polar Sci., 27, 100599,
https://doi.org/10.1016/j.polar.2020.100599, 2021.
Bendixen, M., Iversen, L. L., Bjørk, A. A., Elberling, B.,
Westergaard-Nielsen, A., Overeem, I., Barnhart, K. R., Khan, S. A., Box, J.
E., and Abermann, J.: Delta progradation in Greenland driven by increasing
glacial mass loss, Nature, 550, 101–104, https://doi.org/10.1038/nature23873, 2017.
Bergaya, F., Theng, B. K. G., and Legaly, G. (Eds.): Handbook of Clay
Science. Development in Clay Science, Elsevier, Amsterdam, 2006.
Biscaye, P. E.: Mineralogy and sedimentation of recent deep-sea clay in the
Atlantic Ocean and adjacent seas and oceans, GSA Bulletin, 76, 803–832, https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2, 1965.
Biscaye, P. E., Grousset, F. E., Revel, M., Van der Gaast, S., Zielinski, G.
A., Vaars, A., and Kukla, G.: Asian provenance of glacial dust (stage 2) in
the Greenland Ice Sheet Project 2 ice core, Summit, Greenland, J. Geophys.
Res., 102, 26765–26781, https://doi.org/10.1029/97JC01249, 1997.
Bory, A. J.-M., Biscaye, P. E., and Grousset, F. E.: Two distinct seasonal
Asian source regions for mineral dust deposited in Greenland (NorthGRIP),
Geophys. Res. Lett., 30, 1167, https://doi.org/10.1029/2002GL016446, 2003a.
Bory, A. J.-M., Biscaye, P. E., Piotrowski, A. M., and Steffensen, J. P.:
Regional variability of ice core dust composition and provenance in
Greenland, Geochem. Geophy. Geosy., 4, 1107, https://doi.org/10.1029/2003GC000627, 2003b.
Box, J. E. and Herrington, A.: Was there a 1930's meltdown of Greenland
glaciers?, American Geophysical Union Fall Meeting, San Francisco, USA,
10–14 December 2007, C11A-0077, 2007.
Box, J. E., Yang, L., Bromwich, D. H., and Bai, L.: Greenland Ice Sheet
Surface Air Temperature Variability: 1840–2007, J. Climate, 22,
4029–4049, https://doi.org/10.1175/2009JCLI2816.1, 2009.
Bullard, J. E. and Austin, M. J.: Dust generation on a proglacial
floodplain, West Greenland, Aeolian Res., 3, 43–54,
https://doi.org/10.1016/j.aeolia.2011.01.002, 2011.
Bullard, J. E. and Mockford, T.: Seasonal and decadal variability of dust
observations in the Kangerlussuaq area, west Greenland, Arct. Antarct. Alp.
Res., 50, S100011, https://doi.org/10.1080/15230430.2017.1415854, 2018.
Capo, R. C., Stewart, B. W., and Chadwick, O. A.: Strontium isotopes as
tracers of ecosystem processes: theory and methods, Geoderma, 82, 197–225,
https://doi.org/10.1016/S0016-7061(97)00102-X, 1998.
Cappelen, J. (Ed.): Denmark – DMI Historical Climate Data Collection
1768–2018, DMI Report 19-02, DMI, Copenhagen, Denmark, 2019.
Clausen, H. B. and Hammer, C. U.: The Laki and Tambora eruptions as revealed
in Greenland ice cores from 11 locations, Ann. Glaciol., 10, 16–22,
https://doi.org/10.3189/S0260305500004092, 1988.
Cremaschi, M.: Paleosols and Ventusols in the Central Po Plain (Northern
Italy), A Study in Quaternary Geology and Soil Development, Unicopli,
Milano, Italy, 1987.
Dallmayr, R., Goto-Azuma, K., Kjær, H. A., Azuma, N, Takata, M.,
Schüpbach, S., and Hirabayashi, M.: A High-Resolution Continuous Flow
Analysis System for Polar Ice Cores, Bull. Glaciol. Res., 34, 11–20, https://doi.org/10.5331/bgr.16R03, 2016.
Darby, D. A.: Kaolinite and other clay minerals in Arctic Ocean sediments,
J. Sediment. Res., 45, 272–279, https://doi.org/10.1306/212F6D34-2B24-11D7-8648000102C1865D, 1975.
De Angelis, M., Steffensen, J. P., Legrand, M., Clausen, H., and Hammer, C.:
Primary aerosol (sea salt and soil dust) deposited in Greenland ice during
the last climatic cycle: Comparison with East Antarctic records, J. Geophys.
Res., 102, 26681–26698, https://doi.org/10.1029/97JC01298, 1997.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., and Vitart, F.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Deer, F. R. S., Howie, R. A., and Zussman, J.: An Introduction to the
Rock-Forming Minerals, Longman, White Plains, New York, USA, 1993.
Devi, S., Bijaksana, S., Fajar, S. J., and Santoso, N. A.: Characterization
of Volcanic Ash From the 2017 Agung Eruption, Bali, Indonesia, IOP Conf.
Ser.: Earth Environ. Sci., 318, 012014, https://doi.org/10.1088/1755-1315/318/1/012014, 2019.
Donarummo, J., Ram, M., and Stoermer, E. F.: Possible deposit of soil dust
from the 1930's U.S. dust bowl identified in Greenland ice, Geophys. Res.
Lett., 30, 1269, https://doi.org/10.1029/2002GL016641, 2003.
Drab, E., Gaudichet, A., and Jaffrezo, J. L.: Mineral particles content in
recent snow at Summit (Greenland), Atmos. Environ., 36, 5365–5367,
https://doi.org/10.1016/S1352-2310(02)00470-3, 2002.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Faure, G. and Mensing, T. M.: Isotopes, Principles and Applications, John
Wiley & Sons, USA, 2004.
Fuhrer, K., Wolff, E. W., and Johnsen, S. J.: Timescales for dust
variability in the Greenland Ice Core Project (GRIP) ice core in the last
100,000 years, J. Geophys. Res., 104, 31043–31052, https://doi.org/10.1029/1999JD900929, 1999.
Genthon, C. and Armengaud, A.: GCM simulations of atmospheric tracers in the
polar latitudes: South Pole (Antarctica) and Summit (Greenland) cases, Sci.
Total Environ., 160–161, 101–116, https://doi.org/10.1016/0048-9697(95)04348-5, 1995.
Griffin, J. J., Windom, H., and Goldberg, E. D.: The distribution of clay
minerals in the world ocean, Deep-Sea. Res., 15, 433–459, https://doi.org/10.1016/0011-7471(68)90051-X, 1968.
Grumet, N. S., Wake, C. P., Zielinski, G., Fisher, D. A., Koerner, R. M.,
and Jacobs, J. D.: Preservation of glaciochemical time-series in snow and
ice from Penny Ice Cap, Baffin Island, Geophys. Res. Lett., 25, 357–360,
https://doi.org/10.1029/97GL03787, 1998.
Han, C., Hur, S. D., Han, Y., Lee, K. Hong, S., Erhardt, T., Fischer, H.,
Svensson, A. M., Steffensen, J. P., and Vallelonga, P.: High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust, Sci. Rep., 8, 15582, https://doi.org/10.1038/s41598-018-33859-0, 2018.
Hanna, E., Fettweis, X., Mernild, S. H., Cappelen, J., Ribergaard, M. H.,
Shuman, C. A., Steffen, K., Wood, L., and Mote, T. L.: Atmospheric and
oceanic climate forcing of the exceptional Greenland ice sheet surface melt
in summer 2012, Int. J. Climatol., 34, 1022–1037, https://doi.org/10.1002/joc.3743, 2014.
Harris, I. C.: CRU JRA v2.0: A forcings dataset of gridded land surface
blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data;
Jan.1901-Dec.2018, Centre for Environmental Data Analysis, available at:
https://catalogue.ceda.ac.uk/uuid/7f785c0e80aa4df2b39d068ce7351bbb (last access: 20 June 2020), 2019.
Hurrell, J. W: NAO Index Data provided by the Climate Analysis Section, NCAR, Boulder, USA, 2003, available at: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based, last access: 27 May 2021 (updated regularly).
Iizuka, Y., Uemura, R., Fujita, K., Hattori, S., Seki, O., Miyamoto, C.,
Suzuki, T., Yoshida, N., Motoyama, H., and Matoba, S.: A 60 year record of
atmospheric aerosol depositions preserved in a high-accumulation dome ice
core, Southeast Greenland, J. Geophys. Res., 123, 574–589,
https://doi.org/10.1002/2017JD026733, 2018.
Ito, A. and Wagai, R.: Global distribution of clay-size minerals on land
surface for biogeochemical and climatological studies, Sci. Data, 4,
170103, https://doi.org/10.1038/sdata.2017.103, 2017.
Kemp, S. J., Ellis, M. A., Mounteney, I., and Kender, S.: Palaeoclimatic
implications of high-resolution clay mineral assemblages preceding and
across the onset of the Palaeocene–Eocene thermal maximum, North Sea Basin,
Clay Miner., 51, 793–813, https://doi.org/10.1180/claymin.2016.051.5.08, 2016.
Kim, H.: Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions
(Experiment 1), Data Integration and Analysis System (DIAS) [data set],
https://doi.org/10.20783/DIAS.501, 2017.
Kobashi, T., Kawamura, K., Severinghaus, J. P., Barnola, J.-M., Nakaegawa,
T., Vinther, B. M., Johnsen, S. J., and Box, J. E.: High variability of
Greenland surface temperature over the past 4000 years estimated from
trapped air in an ice core, Geophys. Res. Lett., 38, L21501,
https://doi.org/10.1029/2011GL049444, 2011.
Koide, M., Michel, R., Goldberg, E., Herron, M. M., and Langway, C. C.:
Characterization of radioactive fallout from pre- and post-moratorium tests
to polar ice caps, Nature, 296, 544–547, https://doi.org/10.1038/296544a0, 1982.
Kuramoto, T., Goto-Azuma, K., Hirabayashi, M., Miyake, T., Motoyama, H.,
Dahl-Jensen, D., and Steffensen, J. P.: Seasonal variations of snow
chemistry at NEEM, Greenland, Ann. Glaciol., 52, 193–200,
https://doi.org/10.3189/172756411797252365, 2011.
Kurosaki, Y. and Mikami, M.: Recent frequent dust events and their relation
to surface wind in East Asia, Geophys. Res. Lett., 30, 1736,
https://doi.org/10.1029/2003GL017261, 2003.
Kurosaki, Y., Matoba, S., Iizuka, Y., Niwano, M., Tanikawa, T., Ando, T.,
Hori, A., Miyamoto, A., Fujita, S., and Aoki, T.: Reconstruction of sea ice
concentration in northern Baffin Bay using deuterium excess in a coastal ice
core from the northwestern Greenland Ice Sheet, J. Geophys. Res.-Atmos.,
125, e2019JD031668, https://doi.org/10.1029/2019JD031668, 2020.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R.,
Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.:
Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice
core, Nature, 452, 616–619, https://doi.org/10.1038/nature06763, 2008.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: A review,
Rev. Geophys., 35, 219–243, https://doi.org/10.1029/96RG03527, 1997.
Lupker, M., Aciego, S. M., Bourdon, B., Schwander, J., and Stocker, T. F.:
Isotopic tracing (Sr, Nd, U and Hf) of continental and marine aerosols in an
18th century section of the Dye-3 ice core (Greenland), Earth Planet. Sc.
Lett., 295, 277–286, https://doi.org/10.1016/j.epsl.2010.04.010, 2010.
Maggi, V.: Mineralogy of atmospheric microparticles deposited along the
Greenland Ice Core Project ice core, J. Geophys. Res., 102, 26725–26734,
https://doi.org/10.1029/97JC00613, 1997.
Matoba, S., Narita, H., Motoyama, H., Kamiyama, K., and Watanabe, O.: Ice
core chemistry of Vestfonna Ice Cap in Svalbard, Norway, J. Geophys. Res.,
107, 4721, https://doi.org/10.1029/2002JD002205, 2002.
Matoba, S., Motoyama, H., Fujita, K., Yamasaki, T., Minowa, M., Onuma, Y.,
Komuro, Y., Aoki, T., Yamaguchi, S., Sugiyama, S., and Enomoto, H.:
Glaciological and meteorological observations at the SIGMA-D site,
northwestern Greenland Ice Sheet, Bull. Glaciol. Res., 33, 7–14, https://doi.org/10.5331/bgr.33.7, 2015.
Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S., Yang, Q.,
Lyons, W. B., and Prentice, M.: Major features and forcing of high-latitude
northern hemisphere atmospheric circulation using a 110,000-year-long
glaciochemical series, J. Geophys. Res., 102, 26345–26366,
https://doi.org/10.1029/96JC03365, 1997.
Mudroch, A., Zeman, A. J., and San, R.: Identification of mineral particles
in fine grained lacustrine sediments with transmission electron microscope
and x-ray energy dispersive spectroscopy, J. Sediment. Petrol., 47,
244–250, https://doi.org/10.1306/212F713F-2B24-11D7-8648000102C1865D, 1977.
Mueller, J. P. and Bocquier, G.: Dissolution of kaolinites and accumulation
of iron oxides in lateritic-ferruginous nodules: Mineralogical and
microstructural transformations, Geoderma, 37, 113–116,
https://doi.org/10.1016/0016-7061(86)90025-X, 1986.
Nagatsuka, N., Takeuchi, N., Uetake, J., and Shimada, R.: Mineralogical
composition of cryoconite on glaciers in northwest Greenland, Bull. Glaciol. Res., 32, 107–114, https://doi.org/10.5331/bgr.32.107, 2014.
Nagatsuka, N., Matoba, S., Kadota, M., Fujita, K., Tsushima, A., Dallmayr, R., Hirabayashi, M., Ogata, J., Ogawa-Tsukagawa, Y., and Goto-Azuma, K.: Stable isotope, ion concentrations, and mineral dust data from northwestern Greenland ice core (SIGMA-D), 1.00, Arctic Data archive System (ADS) [data set], Japan, https://doi.org/10.17592/001.2021052501, 2021.
Nahon, D. B.: Introduction to the Petrology of Soils and Chemical
Weathering, John Wiley, New York, 1991.
Onuma, Y. and Kim, H.: MIROC6 model output prepared for CMIP6 LS3MIP
land-hist, Version 20200423, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.5622, 2020a.
Onuma, Y. and Kim, H.: MIROC6 model output prepared for CMIP6 LS3MIP
land-hist-cruNcep, Version 20200918, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5627, 2020b.
Onuma, Y. and Kim, H.: MIROC6 model output prepared for CMIP6 LS3MIP
land-hist-princeton, Version 20200918, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5628, 2020c.
Onuma, Y. and Kim, H.: MIROC6 model output prepared for CMIP6 LS3MIP
land-hist-wfdei, Version 20200727, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5629, 2020d.
Oyabu, I., Matoba, S., Yamasaki, T., Kadota, M., and Iizuka, Y.: Seasonal
variations in the major chemical species of snow at the South East Dome in
Greenland, Polar Sci., 10, 36–42, https://doi.org/10.1016/j.polar.2016.01.003, 2016.
Pallister, J. S., Hoblitt, R. P., and Reyes, A. G.: A basalt trigger for the
1991 eruptions of Pinatubo volcano?, Nature, 356, 426–428,
https://doi.org/10.1038/356426a0, 1992.
Parvin, F., Seki, O. Fujita, K., Iizuka, Y., Matoba, S., and Ando, T.:
Assessment for paleoclimatic utility of biomass burning tracers in SE-Dome
ice core, Greenland, Atmos. Environ., 196, 86–94,
https://doi.org/10.1016/j.atmosenv.2018.10.012, 2019.
Petit, J. R., Mounier, L., Jouzel, J., Korotkevich, Y. S., Kotlyakov, V. I.,
and Lorius, C.: Palaeoclimatological and chronological implications of the
Vostok core dust record, Nature, 343, 56–58, https://doi.org/10.1038/343056a0, 1990.
Pye, K.: Aeolian Dust and Dust Deposits, Academic, San Diego, USA, 1987.
Ram, M. and Koenig, G.: Continuous dust concentration profile of
pre-Holocene ice from the Greenland Ice Sheet Project 2 ice core: Dust
stadials, interstadials and the Eemian, J. Geophys. Res., 102, 26641–26648,
https://doi.org/10.1029/96JC03548, 1997.
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous
record of microparticle concentration and size distribution in the central
Greenland NGRIP ice core during the last glacial period, J. Geophys. Res.,
108, 4098, https://doi.org/10.1029/2002jd002376, 2003.
Schüpbach, S., Fischer, H., Bigler, M., Erhardt, T., Gfeller, G.,
Leuenberger, D., Mini, O., Mulvaney, R., Abram, N. J., Fleet, L., Frey, M.
M., Thomas, E., Svensson, A., Dahl-Jensen, D., Kettner, E., Kjaer, H.,
Seierstad, I., Steffensen, J. P., Rasmussen, S. O., Vallelonga, P.,
Winstrup, M., Wegner, A., Twarloh, B., Wolff, K., Schmidt, K., Goto-Azuma,
K., Kuramoto, T., Hirabayashi, M., Uetake, J., Zheng, J., Bourgeois, J.,
Fisher, D., Zhiheng, D., Xiao, C., Legrand, M., Spolaor, A., Gabrieli, J.,
Barbante, C., Kang, J.-H., Hur, S. D., Hong, S. B., Hwang, H. J., Hong, S.,
Hansson, M., Iizuka, Y., Oyabu, I., Muscheler, R., Adolphi, F., Maselli, O.,
McConnell J., and Wolff, E. W.: Greenland records of aerosol source and
atmospheric lifetime changes from the Eemian to the Holocene, Nat. Commun.,
9, 1476, https://doi.org/10.1038/s41467-018-03924-3, 2018.
Severin, K. P.: Energy dispersive spectrometry of common rock forming
minerals, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2004.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land Surface
Modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Simonsen, M. F., Baccolo, G., Blunier, T., Borunda, A., Delmonte, B., Frei,
R., Goldstein, S., Grinsted, A., Kjær, H. A., Sowers, T., Svensson, A.,
Vinther, B., Vladimirova, D., Winckler, G., Winstrup, M., and Vallelonga,
P.: East Greenland ice core dust record reveals timing of Greenland ice
sheet advance and retreat, Nat. Commun., 10, 4494,
https://doi.org/10.1038/s41467-019-12546-2, 2019.
Steffensen, J.: The size distribution of microparticles from selected
segments of the Greenland Ice Core Project ice core representing different
climatic periods, J. Geophys. Res., 102, 26755–26763, https://doi.org/10.1029/97JC01490, 1997.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Svensson, A., Biscaye, P. E., and Grousset, F. E.: Characterization of late
glacial continental dust in the greenland ice core project ice core, J.
Geophys. Res., 105, 4637–4656, https://doi.org/10.1029/1999JD901093, 2000.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.
Taylor, H. E. and Lichte, F. E.: Chemical composition of Mount St. Helens
volcanic ash, Geophys. Res. Lett., 7, 949–952, https://doi.org/10.1029/GL007i011p00949, 1980.
Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., daCosta
Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly,
G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson,
E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van de Berg, L., Bidlot,
J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M.,
Fisher, M., Fuentes, M., Hagemann, S., Holm, E., Hoskins, B. J., Isaksen,
L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J. F.,
Morcrette, J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A.,
Trenberth, K. E., Untech, A., Vasiljevic, D., Viterbo, P., and Woollen, J.:
The ERA-40 Reanalysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012,
https://doi.org/10.1256/qj.04.176, 2005.
Újvári, G., Stevens, T., Svensson, A., Klötzli, U. S., Manning, C., Németh, T., Kovaìcs, J., Sweeney, M. R., Gocke, M., Wiesenberg, G. L. B., Markovic, S. B., and Zech, M.: Two possible source regions for central
Greenland last glacial dust, Geophys. Res. Lett., 42, 10399–10408,
https://doi.org/10.1002/2015GL066153, 2015.
van den Broeke, M., Bamber, M. J., Ettema, J., Rignot, E., Schrama, E., van
de Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.:
Partitioning recent Greenland mass loss, Science, 326, 984–986,
https://doi.org/10.1126/science.1178176, 2009.
van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville, H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W., Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S., Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M., and Sheffield, J.: LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome, Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, 2016.
Velde, B.: Origin and Mineralogy of Clays: Clays and Environment,
Springer-Verlag, New York, 1995.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Whitlow, S., Mayewski, P. A., and Dibb, J. E.: A comparison of major
chemical species seasonal concentration and accumulation at the South Pole
and Summit, Greenland, Atmos. Environ., 26A, 2045–2054,
https://doi.org/10.1016/0960-1686(92)90089-4, 1992.
Wilson, T. R. S.: Salinity and the major elements of sea water, Chap. 6, in:
Chemical Oceanography, 2nd edn., edited by: Riley, J. P. and Skirrow, G.,
Academic Press, Orland, 1, 365–413, 1975.
Woollings, T., Hannachi, A., Hoskins, B., and Turner, A.: A regime view of
the North Atlantic Oscillation and its response to anthropogenic forcing, J.
Climate, 23, 1291–1307, https://doi.org/10.1175/2009JCLI3087.1, 2010.
Wu, G., Zhang, X., Zhang, C., and Xu, T.: Mineralogical and morphological
properties of individual dust particles in ice cores from the Tibetan
Plateau, J. Glaciol., 62, 46–53, https://doi.org/10.1017/jog.2016.8, 2016.
Yokoo, Y., Nakano, T., Nishikawa, M., and Quan, H.: Mineralogical variation
of Sr—Nd isotopic and elemental compositions in loess and desert sand from
the central Loess Plateau in China as a provenance tracer of wet and dry
deposition in the northwestern Pacific, Chem. Geol., 204, 45–62,
https://doi.org/10.1016/j.chemgeo.2003.11.004, 2004.
Zhang, P., Jeong, J. H., Yoon, J. H., Kim, H., Wang, S. Y. S., Linderholm,
H. W., Fang, K., Wu, X., and Chen, D.: Abrupt shift to hotter and drier
climate over inner East Asia beyond the tipping point, Science, 370,
1095–1099, https://doi.org/10.1126/science.abb3368, 2020.
Short summary
Here we present a first high-temporal-resolution record of mineral composition in a Greenland ice core (SIGMA-D) over the past 100 years using SEM–EDS analysis. Our results show that the ice core dust composition varied on multi-decadal scales, which was likely affected by local temperature changes. We suggest that the ice core dust was constantly supplied from distant sources (mainly northern Canada) as well as local ice-free areas in warm periods (1915 to 1949 and 2005 to 2013).
Here we present a first high-temporal-resolution record of mineral composition in a Greenland...