Articles | Volume 17, issue 3
https://doi.org/10.5194/cp-17-1341-2021
https://doi.org/10.5194/cp-17-1341-2021
Research article
 | 
21 Jun 2021
Research article |  | 21 Jun 2021

Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years

Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Remi Dallmayr, Moe Kadota, Motohiro Hirabayashi, Jun Ogata, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki

Related authors

Regional variations in mineralogy of dust in ice cores obtained from northeastern and northwestern Greenland over the past 100 years
Naoko Nagatsuka, Kumiko Goto-Azuma, Koji Fujita, Yuki Komuro, Motohiro Hirabayashi, Jun Ogata, Kaori Fukuda, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Ayaka Yonekura, Fumio Nakazawa, Yukihiko Onuma, Naoyuki Kurita, Sune Olander Rasmussen, Giulia Sinnl, Trevor James Popp, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1666,https://doi.org/10.5194/egusphere-2023-1666, 2023
Preprint archived
Short summary
Physically based model of the contribution of red snow algal cells to temporal changes in albedo in northwest Greenland
Yukihiko Onuma, Nozomu Takeuchi, Sota Tanaka, Naoko Nagatsuka, Masashi Niwano, and Teruo Aoki
The Cryosphere, 14, 2087–2101, https://doi.org/10.5194/tc-14-2087-2020,https://doi.org/10.5194/tc-14-2087-2020, 2020
Short summary
Observations and modelling of algal growth on a snowpack in north-western Greenland
Yukihiko Onuma, Nozomu Takeuchi, Sota Tanaka, Naoko Nagatsuka, Masashi Niwano, and Teruo Aoki
The Cryosphere, 12, 2147–2158, https://doi.org/10.5194/tc-12-2147-2018,https://doi.org/10.5194/tc-12-2147-2018, 2018
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Ice Cores | Timescale: Holocene
An annually resolved chronology for the Mount Brown South ice cores, East Antarctica
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024,https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
An age scale for new climate records from Sherman Island, West Antarctica
Isobel Rowell, Carlos Martin, Robert Mulvaney, Helena Pryer, Dieter Tetzner, Emily Doyle, Hara Madhav Talasila, Jilu Li, and Eric Wolff
Clim. Past, 19, 1699–1714, https://doi.org/10.5194/cp-19-1699-2023,https://doi.org/10.5194/cp-19-1699-2023, 2023
Short summary
The new Kr-86 excess ice core proxy for synoptic activity: West Antarctic storminess possibly linked to Intertropical Convergence Zone (ITCZ) movement through the last deglaciation
Christo Buizert, Sarah Shackleton, Jeffrey P. Severinghaus, William H. G. Roberts, Alan Seltzer, Bernhard Bereiter, Kenji Kawamura, Daniel Baggenstos, Anaïs J. Orsi, Ikumi Oyabu, Benjamin Birner, Jacob D. Morgan, Edward J. Brook, David M. Etheridge, David Thornton, Nancy Bertler, Rebecca L. Pyne, Robert Mulvaney, Ellen Mosley-Thompson, Peter D. Neff, and Vasilii V. Petrenko
Clim. Past, 19, 579–606, https://doi.org/10.5194/cp-19-579-2023,https://doi.org/10.5194/cp-19-579-2023, 2023
Short summary
A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800 years: GICC21
Giulia Sinnl, Mai Winstrup, Tobias Erhardt, Eliza Cook, Camilla Marie Jensen, Anders Svensson, Bo Møllesøe Vinther, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 18, 1125–1150, https://doi.org/10.5194/cp-18-1125-2022,https://doi.org/10.5194/cp-18-1125-2022, 2022
Short summary
How precipitation intermittency sets an optimal sampling distance for temperature reconstructions from Antarctic ice cores
Thomas Münch, Martin Werner, and Thomas Laepple
Clim. Past, 17, 1587–1605, https://doi.org/10.5194/cp-17-1587-2021,https://doi.org/10.5194/cp-17-1587-2021, 2021
Short summary

Cited articles

Allen, V. T. and Johns, W. D.: Clays and clay minerals of New England and Eastern Canada, GSA Bulletin, 71, 75–86, https://doi.org/10.1130/0016-7606(1960)71[75:CACMON]2.0.CO;2, 1960. 
Amino, T., Iizuka, Y., Matoba, S., Shimada, R., Oshima, N., Suzuki, T., Ando, T., Aoki, T., and Fujita, K.: Increasing dust emission from ice free terrain in southeastern Greenland since 2000, Polar Sci., 27, 100599, https://doi.org/10.1016/j.polar.2020.100599, 2021. 
Bendixen, M., Iversen, L. L., Bjørk, A. A., Elberling, B., Westergaard-Nielsen, A., Overeem, I., Barnhart, K. R., Khan, S. A., Box, J. E., and Abermann, J.: Delta progradation in Greenland driven by increasing glacial mass loss, Nature, 550, 101–104, https://doi.org/10.1038/nature23873, 2017. 
Bergaya, F., Theng, B. K. G., and Legaly, G. (Eds.): Handbook of Clay Science. Development in Clay Science, Elsevier, Amsterdam, 2006. 
Biscaye, P. E.: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans, GSA Bulletin, 76, 803–832, https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2, 1965. 
Download
Short summary
Here we present a first high-temporal-resolution record of mineral composition in a Greenland ice core (SIGMA-D) over the past 100 years using SEM–EDS analysis. Our results show that the ice core dust composition varied on multi-decadal scales, which was likely affected by local temperature changes. We suggest that the ice core dust was constantly supplied from distant sources (mainly northern Canada) as well as local ice-free areas in warm periods (1915 to 1949 and 2005 to 2013).