Articles | Volume 16, issue 3
https://doi.org/10.5194/cp-16-953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath
Aix-Marseille Univ, CNRS, IRD, INRA, Coll. France, CEREGE,
Aix-en-Provence, France
Yannick Donnadieu
Aix-Marseille Univ, CNRS, IRD, INRA, Coll. France, CEREGE,
Aix-en-Provence, France
Jean-Baptiste Ladant
Department of Earth and Environmental Sciences, University of
Michigan, Ann Arbor, MI, USA
J. A. Mattias Green
School of Ocean Sciences, Bangor University, Menai Bridge, UK
Laurent Bopp
Département des Géosciences, Ecole Normale Supérieure (ENS Paris), Paris, France
Laboratoire de Météorologie Dynamique, Sorbonne Université/CNRS/École Normale Supérieure, Paris, France
François Raisson
Total EP, R&D Frontier Exploration, Pau, France
Related authors
No articles found.
Mathieu Delteil, Marina Lévy, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2805, https://doi.org/10.5194/egusphere-2025-2805, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean is losing oxygen due to climate change, threatening ecosystems, especially in naturally low-oxygen areas called Oxygen Minimum Zones (OMZs). Using the IPSL-CM6A-LR Large Ensemble, this study identifies when climate-driven changes in OMZ volumes and regional deoxygenation emerge from natural variability. We highlight hemispheric asymmetries due to ocean ventilation and provide model-based estimates for the timing of detectable OMZ evolution.
Alex Nalivaev, Francesco d'Ovidio, Laurent Bopp, Maristella Berta, Louise Rousselet, Clara Azarian, and Stéphane Blain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2145, https://doi.org/10.5194/egusphere-2025-2145, 2025
Short summary
Short summary
The Kerguelen region hosts a phytoplankton bloom influenced by several iron sources. In particular, glaciers supply iron to the coastal waters. However, the importance of glacial iron for the bloom is not known. Here we calculate iron transport pathways from glaciers to the open ocean using in situ and satellite data, showing that one third of the offshore bloom is reached by glacial iron. These results are important in the context of the melting of the Kerguelen ice cap under climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Alban Planchat, Laurent Bopp, and Lester Kwiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-523, https://doi.org/10.5194/egusphere-2025-523, 2025
Short summary
Short summary
Disparities in ocean carbon sink estimates derived from observations and models raise questions about our ability to accurately assess its magnitude and trend. Essential for isolating the anthropogenic component of the total air-sea carbon flux estimated from observations, the pre-industrial air-sea carbon flux is a key source of uncertainty. Thus, we take a fresh look at this flux using the alkalinity budget, alongside the carbon budget which had previously been considered alone.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-220, https://doi.org/10.5194/gmd-2024-220, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million years timescale, including carbon and oxygen cycles, CO2 and climate. GEOCLIM is associated to a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations, around 94 million years ago.
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024, https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
Short summary
We use a numerical ice-flow model to simulate the response of a 1940s Pine Island Glacier to changes in melting beneath its ice shelf. A decadal period of warm forcing is sufficient to push the glacier into an unstable, irreversible retreat from its long-term position on a subglacial ridge to an upstream ice plain. This retreat can only be stopped when unrealistic cold forcing is applied. These results show that short warm anomalies can lead to quick and substantial increases in ice flux.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Alban Planchat, Laurent Bopp, Lester Kwiatkowski, and Olivier Torres
Earth Syst. Dynam., 15, 565–588, https://doi.org/10.5194/esd-15-565-2024, https://doi.org/10.5194/esd-15-565-2024, 2024
Short summary
Short summary
Ocean acidification is likely to impact all stages of the ocean carbonate pump. We show divergent responses of CaCO3 export throughout this century in earth system models, with anomalies by 2100 ranging from −74 % to +23 % under a high-emission scenario. While we confirm the limited impact of carbonate pump anomalies on 21st century ocean carbon uptake and acidification, we highlight a potentially abrupt shift in CaCO3 dissolution from deep to subsurface waters beyond 2100.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Philip L. Woodworth, J. A. Mattias Green, Richard D. Ray, and John M. Huthnance
Ocean Sci., 17, 809–818, https://doi.org/10.5194/os-17-809-2021, https://doi.org/10.5194/os-17-809-2021, 2021
Short summary
Short summary
This special issue marks the 100th anniversary of the founding of the Liverpool Tidal Institute (LTI). The preface gives a history of the LTI founding and of its first two directors. It also gives an overview of LTI research on tides. Summaries are given of the 26 papers in the special issue. Their topics could be thought of as providing a continuation of the research first undertaken at the LTI. They provide an interesting snapshot of work on tides now being made by groups around the world.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
J. A. Mattias Green and David T. Pugh
Ocean Sci., 16, 1337–1345, https://doi.org/10.5194/os-16-1337-2020, https://doi.org/10.5194/os-16-1337-2020, 2020
Short summary
Short summary
Bardsey Island lies 3 km offshore the western end of the Llŷn Peninsula in northwestern Wales. However, the island is too small to show up in tidal databases based on satellite data, and thus they may not provide the correct local tides. Our new sea level data shows that the tidal currents in the satellite databases are one-third of the observed currents. Any investigation of other coastal activities, e.g. renewable energy installations, must use local observations to get the correct tides.
Cited articles
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, 1–15,
https://doi.org/10.1029/2005GB002591, 2006.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Barclay, R. S., McElwain, J. C., and Sageman, B. B.: Carbon sequestration
activated by a volcanic CO2 pulse during Ocean Anoxic Event 2, Nat.
Geosci., 3, 205–208, https://doi.org/10.1038/ngeo757, 2010.
Barron, E. J.: Model simulations of Cretaceous climates: the role of
geography and carbon dioxide, Philos. T. Roy. Soc. B, 341, 307–316, 1993.
Barron, E. J., Fawcett, P. J., Peterson, W. H., Pollard, D., and Thompson, S.
L.: A “simulation” of Mid‐Cretaceous climate, Paleoceanography, 10, 953–962, https://doi.org/10.1029/95PA01624, 1995.
Berner, R. A.: GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2, Geochim. Cosmochim. Ac., 70, 5653–5664,
https://doi.org/10.1016/j.gca.2005.11.032, 2006.
Bice, K. L. and Norris, R. D.: Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian), Paleoceanography, 17,
1070, https://doi.org/10.1029/2002pa000778, 2003.
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K. U., and
Norris, R. D.: A multiple proxy and model study of Cretaceous upper ocean
temperatures and atmospheric CO2 concentrations, Paleoceanography, 21, PA2002, https://doi.org/10.1029/2005PA001203, 2006.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P., and Kageyama, M.: Ocean
(de)oxygenation from the Last Glacial Maximum to the twenty-first century:
Insights from Earth System models, Philos. T. Roy. Soc. A, 375, 20160323, https://doi.org/10.1098/rsta.2016.0323, 2017.
Brady, E. C., Deconto, R. M., and Thompson, S. L.: Deep Water Formation and
Poleward Ocean Heat Transport in the Warm Climate Extreme of the Cretaceous
(80 Ma), Geophys. Res. Lett., 25, 4205–4208, 1998.
Broccoli, A. J. and Manabe, S.: The influence of continental ice,
atmospheric CO2, and land albedo on the climate of the last glacial maximum, Clim. Dynam., 1, 87–99, https://doi.org/10.1007/BF01054478, 1987.
Bush, A. B. G., George, S., and Philander, H.: The late Cretaceous:
Simulation with a coupled atmosphere-ocean general circulation model, Paleoceanography, 12, 495–516, https://doi.org/10.1029/97PA00721, 1997.
Charney, J. G., Arakawa, A., Baker, D. J., Bolin, B., Dickinson, R. E.,
Goody, R. M., Leith, C. E., Stommel, H. M., and Wunsch, C. I.: Carbon Dioxide and Climate, National Academies Press, Washington, DC, 1979.
Contoux, C., Jost, A., Ramstein, G., Sepulchre, P., Krinner, G., and Schuster, M.: Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene, Clim. Past, 9, 1417–1430, https://doi.org/10.5194/cp-9-1417-2013, 2013.
Contoux, C., Dumas, C., Ramstein, G., Jost, A., and Dolan, A. M.: Modelling
Greenland ice sheet inception and sustainability during the Late Pliocene,
Earth Planet. Sc. Lett., 424, 295–305, https://doi.org/10.1016/j.epsl.2015.05.018,
2015.
Crowley, T. J. and Berner, R. A.: CO2 and climate change, Science, 292, 870–872, https://doi.org/10.1126/science.1061664, 2001.
Crowley, T. J. and Zachos, J. C.: Comparison of zonal temperature profiles
for past warm time periods, in: Warm Climates in Earth History, edited by: Huber, B. T., Macleod, K. G., and Wing, S. L., Cambridge University
Press, Cambridge, 50–76, https://doi.org/10.1017/CBO9780511564512.004, 1999.
Crowley, T. J., Short, D. A., Mengel, J. G., and North, G. R.: Role of
seasonality in the evolution of climate during the last 100 million years,
Science, 231, 579–584, https://doi.org/10.1126/science.231.4738.579, 1986.
Damsté, J. S. S., Kuypers, M. M. M., Pancost, R. D., and Schouten, S.:
The carbon isotopic response of algae, (cyano)bacteria, archaea and higher
plants to the late Cenomanian perturbation of the global carbon cycle:
Insights from biomarkers in black shales from the Cape Verde Basin (DSDP
Site 367), Org. Geochem., 39, 1703–1718, https://doi.org/10.1016/j.orggeochem.2008.01.012, 2008.
Deconto, R. M., Brady, E. C., Bergengren, J., and Hay, W. W.: Late Cretaceous
climate, vegetation, and ocean interactions, in: Warm Climates in Earth History, edited by: Huber, B., Macleod, K., and Wing, S., Cambridge University Press, chap. 9, 275–296, https://doi.org/10.1017/cbo9780511564512.010, 2000.
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic,
C.: Toward global maps of internal tide energy sinks, Ocean Model.,
137, 52–75, https://doi.org/10.1016/j.ocemod.2019.03.010, 2019.
Donnadieu, Y., Pierrehumbert, R., Jacob, R., and Fluteau, F.: Modelling the
primary control of paleogeography on Cretaceous climate, Earth Planet. Sc.
Lett., 248, 411–422, https://doi.org/10.1016/j.epsl.2006.06.007, 2006.
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: From CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Egbert, G. D., Ray, R. D., and Bills, B. G.: Numerical modeling of the global
semidiurnal tide in the present day and in the last glacial maximum, J.
Geophys. Res., 109, C03003, https://doi.org/10.1029/2003jc001973, 2004.
Enderton, D. and Marshall, J.: Explorations of Atmosphere–Ocean–Ice
Climates on an Aquaplanet and Their Meridional Energy Transports, J. Atmos.
Sci., 66, 1593–1611, https://doi.org/10.1175/2008jas2680.1, 2008.
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997.
Fletcher, B. J., Brentnall, S. J., Quick, W. P., and Beerling, D. J.: BRYOCARB: A process-based model of thallose liverwort carbon isotope fractionation in response to CO2, O2, light and temperature, Geochim. Cosmochim. Ac., 70, 5676–5691, https://doi.org/10.1016/j.gca.2006.01.031, 2006.
Fluteau, F., Ramstein, G., Besse, J., Guiraud, R., and Masse, J. P.: Impacts
of palaeogeography and sea level changes on Mid-Cretaceous climate,
Palaeogeogr. Palaeocl., 247, 357–381, https://doi.org/10.1016/j.palaeo.2006.11.016, 2007.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun.,
8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to late
Cretaceous oceans–A 55 m.y. Record of Earth's temperature and carbon cycle,
Geology, 40, 107–110, https://doi.org/10.1130/G32701.1, 2012.
Gastineau, G., D'Andrea, F., and Frankignoul, C.: Atmospheric response to the
North Atlantic Ocean variability on seasonal to decadal time scales, Clim.
Dynam., 40, 2311–2330, https://doi.org/10.1007/s00382-012-1333-0, 2013.
Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M.,
Drach, R. S., Fiorino, M., Gleckler, P. J., Hnilo, J. J., Marlais, S. M.,
Phillips, T. J., Potter, G. L., Santer, B. D., Sperber, K. R., Taylor, K. E.,
and Williams, D. N.: An Overview of the Results of the Atmospheric Model
Intercomparison Project (AMIP I), B. Am. Meteorol. Soc., 80, 29–55, 1999.
Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., and Nardin, E.:
The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate, Earth-Sci. Rev., 128, 122–138,
https://doi.org/10.1016/j.earscirev.2013.11.004, 2014.
Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M.
A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J.
G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hunke, E. C.,
Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D.,
Klein, S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W. H.,
Ma, P., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy,
R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J.
E. J., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L.,
Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A.,
Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S.,
Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J.,
Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y.,
Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1:
Overview and evaluation at standard resolution, J. Adv. Model. Earth Sy., 11,
2089–2129, https://doi.org/10.1029/2018ms001603, 2019.
Goldner, A., Herold, N., and Huber, M.: Antarctic glaciation caused ocean
circulation changes at the Eocene-Oligocene transition, Nature, 511, 574–577, https://doi.org/10.1038/nature13597, 2014.
Gough, D. O.: Solar interior structure variations and luminosity variations, Sol. Phys., 74, 21–34, 1981.
Green, J. A. M. and Huber, M.: Tidal dissipation in the early Eocene and
implications for ocean mixing, Geophys. Res. Lett., 40, 2707–2713,
https://doi.org/10.1002/grl.50510, 2013.
Gyllenhaal, E. D., Engberts, C. J., Markwick, P. J., Smith, L. H., and
Patzkowsky, M. E.: The Fujita-Ziegler model: a new semi-quantitative
technique for estimating paleoclimate from paleogeographic maps,
Palaeogeogr. Palaeocl., 86, 41–66, https://doi.org/10.1016/0031-0182(91)90005-C, 1991.
Hay, W. W., DeConto, R. M., de Boer, P., Flögel, S., Song, Y., and
Stepashko, A.: Possible solutions to several enigmas of Cretaceous climate,
Springer, Berlin Heidelberg, 2019.
Heinemann, M., Jungclaus, J. H., and Marotzke, J.: Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM, Clim. Past, 5, 785–802, https://doi.org/10.5194/cp-5-785-2009, 2009.
Herman, A. B. and Spicer, R. A.: Palaeobotanical evidence for a warm
Cretaceous Arctic Ocean, Nature, 380, 330–333, https://doi.org/10.1038/380330a0,
1996.
Herman, A. B. and Spicer, R. A.: Mid-Cretaceous floras and climate of the
Russian high Arctic (Novosibirsk Islands, Northern Yakutiya), Palaeogeogr.
Palaeocl., 295, 409–422, https://doi.org/10.1016/j.palaeo.2010.02.034, 2010.
Herweijer, C., Seager, R., Winton, M., and Clement, A.: Why ocean heat
transport warms the global mean climate, Tellus A, 57, 662–675, https://doi.org/10.1111/j.1600-0870.2005.00121.x, 2005.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M.,
Creech, J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J.
S., Gibbs, S., Pearson, P. N., and Zachos, J. C.: Early Paleogene temperature
history of the Southwest Pacific Ocean: Reconciling proxies and models,
Earth Planet. Sc. Lett., 349–350, 53–66, https://doi.org/10.1016/j.epsl.2012.06.024,
2012.
Hong, S. K. and Lee, Y. I.: Evaluation of atmospheric carbon dioxide
concentrations during the Cretaceous, Earth Planet. Sci. Let., 327–328,
23–28, https://doi.org/10.1016/j.epsl.2012.01.014, 2012.
Hotinski, R. M. and Toggweiler, J. R.: Impact of a Tethyan circumglobal
passage on ocean heat transport and “equable” climates, Paleoceanography,
18, 1007, https://doi.org/10.1029/2001PA000730, 2003.
Hourdin, F., Foujols, M. A., Codron, F., Guemas, V., Dufresne, J. L., Bony,
S., Denvil, S., Guez, L., Lott, F., Ghattas, J., Braconnot, P., Marti, O.,
Meurdesoif, Y., and Bopp, L.: Impact of the LMDZ atmospheric grid
configuration on the climate and sensitivity of the IPSL-CM5A coupled model,
Clim. Dynam., 40, 2167–2192, https://doi.org/10.1007/s00382-012-1411-3, 2013.
Huber, B. T., Hodell, D. A., and Hamilton, C. P.: Middle–Late
Cretaceous climate of the southern high latitudes: Stable isotopic evidence
for minimal equator-to-pole thermal gradients, Geol. Soc. Am. Bull., 107, 1164–1191, https://doi.org/10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2, 1995.
Huber, B. T., Leckie, R. M., Norris, R. D., Bralower, T. J., and CoBabe, E.:
Foraminiferal assemblage and stable isotopic change across the
Cenomanian-Turonian boundary in the Subtropical North Atlantic, J.
Foramin. Res., 29, 392–417, 1999.
Huber, B. T., Norris, R. D., and MacLeod, K. G.: Deep-sea paleotemperature
record of extreme warmth during the Cretaceous, Geology, 30, 123–126,
https://doi.org/10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2, 2002.
Huber, B. T., MacLeod, K. G., Watkins, D. K., and Coffin, M. F.: The rise and
fall of the Cretaceous Hot Greenhouse climate, Global Planet. Change,
167, 1–23, https://doi.org/10.1016/j.gloplacha.2018.04.004, 2018.
Huber, M.: Progress in Greenhouse Climate Modeling, The Paleontological Society Papers, 18, 213–262, https://doi.org/10.1017/s108933260000262x, 2012.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Hunter, S. J., Haywood, A. M., Valdes, P. J., Francis, J. E., and Pound, M.
J.: Modelling equable climates of the Late Cretaceous: Can new boundary
conditions resolve data-model discrepancies?, Palaeogeogr. Palaeocl., 392, 41–51, https://doi.org/10.1016/j.palaeo.2013.08.009, 2013.
Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, 2018.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
IPSL Climate Modelling Centre: IPSL-CM5A-VLR, available at: http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Config/IPSLCM5A2, last access: 25 May 2020.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Jenkyns, H. C., Forster, A., Schouten, S., and Sinninghe Damsté, J. S.:
High temperatures in the Late Cretaceous Arctic Ocean, Nature, 432, 888–892, https://doi.org/10.1038/nature03143, 2004.
Kageyama, M., Braconnot, P., Bopp, L., Caubel, A., Foujols, M. A.,
Guilyardi, E., Khodri, M., Lloyd, J., Lombard, F., Mariotti, V., Marti, O.,
Roy, T., and Woillez, M. N.: Mid-Holocene and Last Glacial Maximum climate
simulations with the IPSL model-part I: Comparing IPSL_CM5A
to IPSL_CM4, Clim. Dynam., 40, 2447–2468,
https://doi.org/10.1007/s00382-012-1488-8, 2013.
Kennedy, A. T., Farnsworth, A., Lunt, D. J., Lear, C. H., and Markwick, P.
J.: Atmospheric and oceanic impacts of Antarctic glaciation across the
Eocene-Oligocene transition, Philos. T. Roy. Soc. A, 373, 20140419, https://doi.org/10.1098/rsta.2014.0419, 2015.
Kerr, A. C.: Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian – Turonian boundary?, J. Geol. Soc. London, 155, 619, https://doi.org/10.1144/gsjgs.155.4.0619, 1998.
Knorr, G. and Lohmann, G.: Climate warming during antarctic ice sheet
expansion at the middle miocene transition, Nat. Geosci., 7, 376–381,
https://doi.org/10.1038/ngeo2119, 2014.
Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T.,
Bessières, L., and Molcard, R.: On the transformation of Pacific Water
into Indonesian Throughflow Water by internal tidal mixing, Geophys. Res.
Lett., 34, L04604, https://doi.org/10.1029/2006GL028405, 2007.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199,
2005.
Ladant, J. B. and Donnadieu, Y.: Palaeogeographic regulation of glacial
events during the Cretaceous supergreenhouse, Nat. Commun., 7, 12771, https://doi.org/10.1038/ncomms12771, 2016.
Ladant, J. B., Donnadieu, Y., Bopp, L., Lear, C. H., and Wilson, P. A.:
Meridional Contrasts in Productivity Changes Driven by the Opening of Drake
Passage, Paleoceanogr. Paleocl., 302–317, https://doi.org/10.1002/2017PA003211,
2018.
Leier, A., Quade, J., DeCelles, P., and Kapp, P.: Stable isotopic results
from paleosol carbonate in South Asia: Paleoenvironmental reconstructions
and selective alteration, Earth Planet. Sc. Lett., 279, 242–254,
https://doi.org/10.1016/j.epsl.2008.12.044, 2009.
Le Mézo, P., Beaufort, L., Bopp, L., Braconnot, P., and Kageyama, M.: From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates, Clim. Past, 13, 759–778, https://doi.org/10.5194/cp-13-759-2017, 2017.
Levine, X. J. and Schneider, T.: Response of the Hadley Circulation to
Climate Change in an Aquaplanet GCM Coupled to a Simple Representation of
Ocean Heat Transport, J. Atmos. Sci., 68, 769–783, https://doi.org/10.1175/2010jas3553.1, 2010.
Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J., and Pancost, R.
D.: High sea-surface temperatures during the Early Cretaceous Epoch, Nat.
Geosci., 4, 169–172, https://doi.org/10.1038/ngeo1081, 2011.
Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A., Winguth, A., Loptson, C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes, P., and Winguth, C.: A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP, Clim. Past, 8, 1717–1736, https://doi.org/10.5194/cp-8-1717-2012, 2012a.
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J.,
Dowsett, H. J., and Loptson, C. A.: On the causes of mid-Pliocene warmth and
polar amplification, Earth Planet. Sc. Lett., 321–322, 128–138,
https://doi.org/10.1016/j.epsl.2011.12.042, 2012b.
Lunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P., O'Brien, C. L., Pancost, R. D., Robinson, S. A., and Wrobel, N.: Palaeogeographic controls on climate and proxy interpretation, Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, 2016.
Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., von der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J.-B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C., and Zeebe, R. E.: The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0), Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, 2017.
MacLeod, K. G., Huber, B. T., Berrocoso, Á. J., and Wendler, I.: A stable
and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera, Geology, 41, 1083–1086,
https://doi.org/10.1130/G34510.1, 2013.
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole
singularity, Clim. Dynam., 12, 381–388, https://doi.org/10.1007/BF00211684, 1996.
Madec, G. and the NEMO team: NEMO ocean engine, Institut Pierre-Simon Laplace (IPSL), France, No. 27, ISSN 1288-1619, 2008.
Maffre, P., Ladant, J. B., Donnadieu, Y., Sepulchre, P., and Goddéris,
Y.: The influence of orography on modern ocean circulation, Clim. Dynam.,
50, 1277–1289, https://doi.org/10.1007/s00382-017-3683-0, 2018.
Mays, C., Steinthorsdottir, M., and Stilwell, J. D.: Climatic implications of
Ginkgoites waarrensis Douglas emend. from the south polar Tupuangi flora, Late Cretaceous (Cenomanian), Chatham Islands, Palaeogeogr. Palaeocl., 438, 308–326, https://doi.org/10.1016/j.palaeo.2015.08.011, 2015.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients
as the dominant control on the spread of anoxia and euxinia across the
Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison,
Paleoceanography, 27, PA4209, https://doi.org/10.1029/2012PA002351, 2012.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Niezgodzki, I., Knorr, G., Lohmann, G., Tyszka, J., and Markwick, P. J.: Late
Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: A model-data comparison, Paleoceanography, 32, 980–998, https://doi.org/10.1002/2016PA003055, 2017.
Norris, R. D., Bice, K. L., Magno, E. A., and Wilson, P. A.: Jiggling the
tropical thermostat in the Cretaceous hothouse, Geology, 30, 299–302,
https://doi.org/10.1130/0091-7613(2002)030<0299:JTTTIT>2.0.CO;2, 2002.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J.
S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C.,
Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N.,
Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A.,
Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond,
N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous
sea-surface temperature evolution: Constraints from TEX 86 and planktonic
foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
Ohba, M. and Ueda, H.: A GCM Study on Effects of Continental Drift on
Tropical Climate at the Early and Late Cretaceous, J. Meteorol. Soc. Jpn.,
88, 869–881, https://doi.org/10.2151/jmsj.2010-601, 2011.
Ortega, P., Mignot, J., Swingedouw, D., Sévellec, F., and Guilyardi, E.:
Reconciling two alternative mechanisms behind bi-decadal variability in the
North Atlantic, Prog. Oceanogr., 137, 237–249, https://doi.org/10.1016/j.pocean.2015.06.009, 2015.
Otto-Bliesner, B. L. and Upchurch Jr., G. R.: Vegetation-induced warming of high-latitude regions during the Late Cretaceous period, Nature,
385, 804–807, 1997.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Erratum: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 414, 470, https://doi.org/10.1038/35106617, 2001.
Poulsen, C. J., Seidov, D., Barron, E. J., and Peterson, W. H.: The impact of
paleogeographic evolution on the surface oceanic circulation and the marine
environment within the Mid-Cretaceous tethys, Paleoceanography, 13, 546–559, 1998.
Poulsen, C. J., Barron, E. J., Arthur, M. A., and Peterson, W. H.: Response
of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings, Paleoceanography, 16, 576–592, https://doi.org/10.1029/2000PA000579, 2001.
Poulsen, C. J., Gendaszek, A. S., and Jacob, R. L.: Did the rifting of the
Atlantic Ocean cause the Cretaceous thermal maximum?, Geology, 31,
115–118, https://doi.org/10.1130/0091-7613(2003)031<0115:DTROTA>2.0.CO;2, 2003.
Poulsen, C. J., Pollard, D., and White, T. S.: General circulation model
simulation of the δ18O content of continental precipitation in the middle Cretaceous: A model-proxy comparison, Geology, 35, 199–202,
https://doi.org/10.1130/G23343A.1, 2007.
Pucéat, E., Lécuyer, C., Donnadieu, Y., Naveau, P., Cappetta, H.,
Ramstein, G., Huber, B. T., and Kriwet, J.: Fish tooth δ18O revising Late Cretaceous meridional upper ocean water temperature gradients, Geology, 35, 107–110, https://doi.org/10.1130/G23103A.1, 2007.
Retallack, G. J. and Conde, G. D.: Deep time perspective on rising
atmospheric CO2, Global Planet. Change, 189, 103177,
https://doi.org/10.1016/j.gloplacha.2020.103177, 2020.
Robinson, S. A., Dickson, A. J., Pain, A., Jenkyns, H. C., O'Brien, C. L.,
Farnsworth, A., and Lunt, D. J.: Southern Hemisphere sea-surface temperatures
during the Cenomanian-Turonian: Implications for the termination of Oceanic
Anoxic Event 2, Geology, 47, 131–134, https://doi.org/10.1130/G45842.1, 2019.
Rose, B. E. J. and Ferreira, D.: Ocean heat transport and water vapor
greenhouse in a warm equable climate: A new look at the low gradient
paradox, J. Climate, 26, 2117–2136, https://doi.org/10.1175/JCLI-D-11-00547.1, 2013.
Royer, D. L.: Atmospheric CO2 and O2 During the Phanerozoic: Tools, Patterns, and Impacts, in: Treatise on Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 251–267, 2014.
Royer, D. L., Berner, R. A., and Park, J.: Climate sensitivity constrained by
CO2 concentrations over the past 420 million years, Nature, 446, 530–532, https://doi.org/10.1038/nature05699, 2007.
Sandler, A. and Harlavan, Y.: Early diagenetic illitization of
illite-smectite in Cretaceous sediments (Israel): evidence from K-Ar dating,
Clay Miner., 41, 637–658, https://doi.org/10.1180/0009855064120210, 2006.
Sarr, A. C., Sepulchre, P., and Husson, L.: Impact of the Sunda Shelf on the
Climate of the Maritime Continent, J. Geophys. Res.-Atmos., 124, 2574–2588,
https://doi.org/10.1029/2018JD029971, 2019.
Schmidt, G. A. and Mysak, L. A.: Can increased poleward oceanic heat flux
explain the warm Cretaceous climate?, Paleoceanography, 11, 579–593,
https://doi.org/10.1029/96PA01851, 1996.
Sellers, P. J., Bounoua, L., Collatz, G. J., Randall, D. A., Dazlich, D. A.,
Los, S. O., Berry, J. A., Fung, I., Tucker, C. J., Field, C. B., and Jensen,
T. G.: Comparison of Radiative and Physiological Effects of Doubled
Atmospheric CO2 on Climate, Science, 271, 1402–1406, 1996.
Sellwood, B. W., Price, G. D., and Valdest, P. J.: Cooler estimates of Cretaceous temperatures, Nature, 370, 453–455, 1994.
Sepulchre, P., Caubel, A., Ladant, J.-B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Estella-Perez, V., Ethé, C., Fluteau, F., Foujols, M.-A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., Marti, O., Meurdesoif, Y., Mignot, J., Sarr, A.-C., Servonnat, J., Swingedouw, D., Szopa, S., and Tardif, D.: IPSL-CM5A2. An Earth System Model designed for multi-millennial climate simulations, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-332, in review, 2019.
Sewall, J. O., van de Wal, R. S. W., van der Zwan, K., van Oosterhout, C., Dijkstra, H. A., and Scotese, C. R.: Climate model boundary conditions for four Cretaceous time slices, Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, 2007.
Simmons, H. L., Jayne, S. R., St. Laurent, L. C., and Weaver, A. J.: Tidally
driven mixing in a numerical model of the ocean general circulation, Ocean
Model., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., and Brinkhuis, H.:
Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 441, 610–613, https://doi.org/10.1038/nature04668, 2006.
Spicer, R. A. and Herman, A. B.: The Late Cretaceous environment of the
Arctic: A quantitative reassessment based on plant fossils, Palaeogeogr.
Palaeocl., 295, 423–442, https://doi.org/10.1016/j.palaeo.2010.02.025, 2010.
Steinig, S., Dummann, W., Park, W., Latif, M., Kusch, S., Hofmann, P., and
Flögel, S.: Evidence for a regional warm bias in the Early Cretaceous
TEX86 record, Earth Planet. Sc. Lett., 539, 116184,
https://doi.org/10.1016/j.epsl.2020.116184, 2020.
Swingedouw, D., Rodehacke, C. B., Olsen, S. M., Menary, M., Gao, Y.,
Mikolajewicz, U., and Mignot, J.: On the reduced sensitivity of the Atlantic
overturning to Greenland ice sheet melting in projections: a multi-model
assessment, Clim. Dynam., 44, 3261–3279, https://doi.org/10.1007/s00382-014-2270-x, 2015.
Swingedouw, D., Mignot, J., Guilyardi, E., Nguyen, S., and Ormières, L.:
Tentative reconstruction of the 1998–2012 hiatus in global temperature
warming using the IPSL–CM5A–LR climate model, C.R. Geosci., 349, 369–379, https://doi.org/10.1016/j.crte.2017.09.014, 2017.
Tabor, C. R., Poulsen, C. J., Lunt, D. J., Rosenbloom, N. A., Otto-Bliesner,
B. L., Markwick, P. J., Brady, E. C., Farnsworth, A., and Feng, R.: The cause
of Late Cretaceous cooling: A multimodel-proxy comparison, Geology, 44,
963–966, https://doi.org/10.1130/G38363.1, 2016.
Tagliabue, A., Bopp, L., Dutay, J. C., Bowie, A. R., Chever, F.,
Jean-Baptiste, P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G.,
Aumont, O., Gehlen, M., and Jeandel, C.: Hydrothermal contribution to the
oceanic dissolved iron inventory, Nat. Geosci., 3, 252–256,
https://doi.org/10.1038/ngeo818, 2010.
Tan, N., Ramstein, G., Dumas, C., Contoux, C., Ladant, J. B., Sepulchre, P.,
Zhang, Z., and De Schepper, S.: Exploring the MIS M2 glaciation occurring
during a warm and high atmospheric CO2 Pliocene background climate, Earth Planet. Sc. Lett., 472, 266–276, https://doi.org/10.1016/j.epsl.2017.04.050, 2017.
Tierney, J. E.: GDGT Thermometry: Lipid Tools for Reconstructing
Paleotemperatures, The Paleontological Society Papers, 18, 115–132,
https://doi.org/10.1017/s1089332600002588, 2012.
Turgeon, S. C. and Creaser, R. A.: Cretaceous oceanic anoxic event 2
triggered by a massive magmatic episode, Nature, 454, 323–326,
https://doi.org/10.1038/nature07076, 2008.
Upchurch, G. R.: Vegetation-atmosphere interactions and their role in global
warming during the latest Cretaceous, Philos. T. Roy. Soc. B, 353, 97–112, https://doi.org/10.1098/rstb.1998.0194, 1998.
Upchurch, G. R., Kiehl, J., Shields, C., Scherer, J., and Scotese, C.:
Latitudinal temperature gradients and high-latitude temperatures during the
latest Cretaceous: Congruence of geologic data and climate models, Geology,
43, 683–686, https://doi.org/10.1130/G36802.1, 2015.
Valcke, S., Budich, R., Carter, M., Guilyardi, E., Lautenschlager, M.,
Redler, R., and Steenman-Clark, L.: The PRISM software framework and the
OASIS coupler, in: The Australian Community Climate Earth System Simulator (ACCESS) – Changes and Opportunities, edited by: Hollies, A. J. and Kariko, A. P., Bureau of Meteorology, Australia, BMRC Research Report, 132–140, 2006.
van Bentum, E. C., Reichart, G.-J., Forster, A., and Sinninghe Damsté, J. S.: Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity, Biogeosciences, 9, 717–731, https://doi.org/10.5194/bg-9-717-2012, 2012.
Vandermark, D., Tarduno, J. A., and Brinkman, D. B.: A fossil champsosaur
population from the high Arctic: Implications for Late Cretaceous
paleotemperatures, Palaeogeogr. Palaeocl., 248, 49–59, https://doi.org/10.1016/j.palaeo.2006.11.008, 2007.
Veizer, J., Godderis, Y., and François, L. M.: Evidence for decoupling of
atmospheric CO2 and global climate during the Phanerozoic eon, Nature, 408, 698–701, https://doi.org/10.1038/35047044, 2000.
Von Deimling, T. S., Ganopolski, A., Held, H., and Rahmstorf, S.: How cold
was the last Glacial maximum?, Geophys. Res. Lett., 33, L14709,
https://doi.org/10.1029/2006GL026484, 2006.
Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., and Lin, Z.: Paleo-CO2 variation trends and the Cretaceous greenhouse climate, Earth-Sci. Rev., 129, 136–147, https://doi.org/10.1016/j.earscirev.2013.11.001, 2014.
Wilson, M. F. and Henderson-Sellers, A.: LBA Regional Vegetation and Soils,
1-Degree (Wilson and Henderson-Sellers), ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/687, 2003.
Woillez, M.-N., Levavasseur, G., Daniau, A.-L., Kageyama, M., Urrego, D. H., Sánchez-Goñi, M.-F., and Hanquiez, V.: Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4, Clim. Past, 10, 1165–1182, https://doi.org/10.5194/cp-10-1165-2014, 2014.
Zhou, J., Poulsen, C. J., Pollard, D., and White, T. S.: Simulation of modern
and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model, Paleoceanography, 23, PA3223, https://doi.org/10.1029/2008PA001596, 2008.
Zhou, J., Poulsen, C. J., Rosenbloom, N., Shields, C., and Briegleb, B.: Vegetation-climate interactions in the warm mid-Cretaceous, Clim. Past, 8, 565–576, https://doi.org/10.5194/cp-8-565-2012, 2012.
Zhu, J., Poulsen, C. J., and Tierney, J. E.: Simulation of Eocene extreme
warmth and high climate sensitivity through cloud feedbacks, Science Advances, 5, eaax1874, https://doi.org/10.1126/sciadv.aax1874, 2019.
Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., and
Noone, D. C.: Simulation of early Eocene water isotopes using an Earth
system model and its implication for past climate reconstruction, Earth
Planet. Sc. Lett., 537, 116164, https://doi.org/10.1016/j.epsl.2020.116164, 2020.
Zobler, L.: Global Soil Types, 1-Degree Grid (Zobler), ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/418, 1999.
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system...