Articles | Volume 16, issue 3
https://doi.org/10.5194/cp-16-953-2020
https://doi.org/10.5194/cp-16-953-2020
Research article
 | 
05 Jun 2020
Research article |  | 05 Jun 2020

Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath

Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (12 Apr 2020) by Martin Claussen
AR by Marie Laugié on behalf of the Authors (18 Apr 2020)  Author's response    Manuscript
ED: Publish subject to technical corrections (28 Apr 2020) by Martin Claussen
Download
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.