

1 **Stripping back the Modern to reveal the Cenomanian-Turonian climate and**  
2 **temperature gradient underneath**

3 Marie Laugié<sup>1</sup>, Yannick Donnadieu<sup>1</sup>, Jean-Baptiste Ladant<sup>2</sup>, Mattias Green<sup>3</sup>, Laurent Bopp<sup>4,5</sup> and François Raisson<sup>6</sup>.

4 <sup>1</sup>Aix Marseille Univ, CNRS, IRD, INRA, Coll. France, CEREGE, Aix-en-Provence, France

5 <sup>2</sup>Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA

6 <sup>3</sup>School of Ocean Sciences, Bangor University, Menai Bridge, UK

7 <sup>4</sup>Ecole Normale Supérieure (ENS Paris) - Département des Géosciences - France

8 <sup>5</sup>Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) - Université Pierre et Marie Curie -

9 Paris 6, Institut national des sciences de l'Univers, École Polytechnique, École des Ponts ParisTech,

10 Centre National de la Recherche Scientifique : UMR8539, École Normale Supérieure - Paris - France

11 <sup>6</sup>Total EP – R&D Frontier Exploration - France

12 **ABSTRACT**

13 During past geological times, the Earth experienced several intervals of global warmth, but their driving  
14 factors remain equivocal. A careful appraisal of the main processes controlling past warm events is essential to  
15 inform future climates and ultimately provide decision makers with a clear understanding of the processes at  
16 play in a warmer world. In this context, intervals of greenhouse climates, such as the thermal maximum of the  
17 Cenomanian-Turonian (~94 Ma) during the Cretaceous period, are of particular interest. Here we use the IPSL-  
18 CM5A2 Earth System Model to unravel the forcing parameters of the Cenomanian-Turonian greenhouse climate.  
19 We perform six simulations with an incremental change in five major boundary conditions in order to isolate  
20 their respective role on climate change between the Cenomanian-Turonian and the preindustrial. Starting with a  
21 preindustrial simulation, we implement the following changes in boundary conditions: (1) the absence of polar  
22 ice sheets, (2) the increase in atmospheric  $p\text{CO}_2$  to 1120 ppm, (3) the change of vegetation and soil parameters,  
23 (4) the 1% decrease in the Cenomanian-Turonian value of the solar constant and (5) the Cenomanian-Turonian  
24 paleogeography. Between the preindustrial simulation and the Cretaceous simulation, the model simulates a  
25 global warming of more than 11°C. Most of this warming is driven by the increase in atmospheric  $p\text{CO}_2$  to 1120  
26 ppm. Paleogeographic changes represent the second major contributor to global warming, whereas the  
27 reduction in the solar constant counteracts most of geographically-driven warming. We further demonstrate that  
28 the implementation of Cenomanian-Turonian boundary conditions flattens meridional temperature gradients  
29 compared to the preindustrial simulation. Interestingly, we show that paleogeography is the major driver of the  
30 flattening in the low- to mid-latitudes, whereas  $p\text{CO}_2$  rise and polar ice sheet retreat dominate the high-latitude  
31 response.

32           1. INTRODUCTION

33           The Cretaceous period is of particular interest to understand drivers of past greenhouse climates  
34           because intervals of prolonged global warmth (O'Brien et al. 2017, Huber et al. 2018) and elevated atmospheric  
35           CO<sub>2</sub> levels (Wang et al., 2014), possibly similar to future levels, have been documented in the proxy record. The  
36           thermal maximum of the Cenomanian-Turonian (CT) interval (94 Ma) represents the acme of Cretaceous  
37           warmth, during which one of the most important carbon cycle perturbation of the Phanerozoic occurred: the  
38           oceanic anoxic event 2 (OAE2; Jenkyns, 2010; Huber et al., 2018). Valuable understanding of what controls large-  
39           scale climate processes can hence be drawn from investigations of the mechanisms responsible for the CT  
40           thermal maximum and carbon cycle perturbation.

41           Proxy-based reconstructions and model simulations of sea-surface temperatures (SST) for the CT reveal  
42           that during OAE2 the equatorial Atlantic was 4-6° warmer than today (Norris et al., 2002; Bice et al., 2006; Pucéat  
43           et al., 2007; Tabor et al., 2016), and possibly even warmer than that (6-9° - Forster et al., 2007). This short and  
44           abrupt episode of major climatic, oceanographic, and global carbon cycle perturbations occurred at the CT  
45           Boundary and was superimposed on a long period of global warmth (Jenkyns, 2010). The high latitudes were also  
46           much warmer than today (Herman and Spicer, 2010; Spicer and Herman, 2010), as was the abyssal ocean which  
47           experienced bottom temperatures reaching up to 20°C during the CT (Huber et al., 2002; Littler et al., 2011;  
48           Friedrich et al., 2012). Paleobotanical studies suggest that the atmosphere was also much warmer (Herman and  
49           Spicer, 1996), with high-latitude temperatures up to 17°C higher than today (Herman and Spicer, 2010) and  
50           possibly reaching annual means of 10-12°C in Antarctica (Huber et al., 1999).

51           The steepness of the equator-to-pole gradient is still a matter of debate, in particular because of  
52           inconsistencies between data and models as the latter usually predict steeper gradients than those  
53           reconstructed from proxy data (Barron, 1993; Huber et al., 1995; Heinemann et al., 2009; Tabor et al., 2016).  
54           Models and data generally agree, however, that Cretaceous sea-surface temperature (SST) gradients were  
55           reduced compared to today (Sellwood et al., 1994; Huber et al., 1995; Jenkyns et al., 2004; O'Brien et al., 2017;  
56           Robinson et al., 2019).

57           The main factor generally considered responsible for the Cretaceous global warm climate is the higher  
58           atmospheric CO<sub>2</sub> concentration (Barron et al., 1995; Crowley and Berner, 2001; Royer et al., 2007; Wang et al.,  
59           2014; Foster et al., 2017). This has been determined by proxy-data reconstructions of the Cretaceous pCO<sub>2</sub> using  
60           various techniques, including analysis of paleosols  $\delta^{13}\text{C}$  (Sandler and Harlavan, 2006; Leier et al., 2009; Hong and

61 Lee, 2012), liverworts  $\delta^{13}\text{C}$  (Fletcher et al., 2006) or phytane  $\delta^{13}\text{C}$  (Damsté et al., 2008; Van Bentum et al., 2012)  
62 and leaf stomata analysis (Barclay et al., 2010; Mays et al., 2015; Retallack and Conde, 2020). Modelling studies  
63 have also focused on estimating Cretaceous atmospheric  $\text{CO}_2$  levels (Barron et al., 1995; Poulsen et al., 2001,  
64 2007; Berner, 2006; Bice et al., 2006; Monteiro et al., 2012) in an attempt to refine the large spread in values  
65 inferred from proxy data (from less than 900 ppm to over 5000 ppm). The typical atmospheric  $p\text{CO}_2$   
66 concentration resulting from these studies for the CT averages around a long-term value of 1120 ppm (Barron et  
67 al., 1995; Bice and Norris, 2003; Royer, 2013; Wang et al., 2014), e.g., four times the preindustrial value (280 ppm  
68 = 1 P.A.L : "Preindustrial Atmospheric Level"). Atmospheric  $p\text{CO}_2$  levels are, however, known to vary on shorter  
69 timescales during the period, in particular during OAE2. It has indeed been suggested that this event may have  
70 been caused by a large increase in atmospheric  $p\text{CO}_2$  concentration, possibly reaching 2000 ppm or even higher,  
71 because of volcanic activity in large igneous provinces (Kerr and Kerr, 1998; Turgeon and Creaser, 2008; Jenkyns,  
72 2010). The proxy records suggest that the  $p\text{CO}_2$  levels may have dropped down to 900 ppm after carbon  
73 sequestration into organic-rich marine sediments (Van Bentum et al., 2012).

74 Paleogeography is also considered as a major driver of climate change through geological times (Crowley  
75 et al., 1986; Gyllenhaal et al., 1991; Goddériss et al., 2014; Lunt et al., 2016). Several processes linked to  
76 paleogeographic changes have been shown to impact Cretaceous climates. These processes include albedo and  
77 evapotranspiration feedbacks from paleovegetation (Otto-bliesner and Upchurch, 1997), seasonality due to  
78 continental break-up or presence of epicontinental seas (Fluteau et al., 2007), atmospheric feedbacks due to  
79 water cycle modification (Donnadieu et al., 2006), Walker and Hadley cells changes after Gondwana break-up  
80 (Ohba and Ueda, 2011), or oceanic circulation changes due to gateways opening (Poulsen et al., 2001, 2003).  
81 Other potential controlling factors include the time-varying solar constant (Gough, 1981), whose impact on  
82 Cretaceous climate evolution was quantified by Lunt et al. (2016), and changes in the distribution of vegetation,  
83 which has been suggested to drive warming, especially in the high-latitudes with a temperature increase of up to  
84 4°-10°C in polar regions (Otto-bliesner and Upchurch, 1997; Brady et al., 1998; Upchurch, 1998; Deconto et al.,  
85 2000; Hunter et al., 2013).

86 Despite all these studies, there is no established consensus on the relative importance of each of the  
87 controlling factors on the CT climate. In particular, the primary driver of the Cretaceous climate has been  
88 suggested to be either  $p\text{CO}_2$  or paleogeography. Early studies suggested a negligible role of paleogeography on  
89 global climate compared to the high  $\text{CO}_2$  concentration (Barron et al., 1995) whereas others suggested that  $\text{CO}_2$

90 was not the primary control (Veizer et al., 2000) or that the impact of paleogeography on climate was as  
91 important as a doubling of  $p\text{CO}_2$  (Crowley et al., 1986). More recent modeling studies have also suggested that  
92 paleogeographic changes could affect global climate (Poulsen et al., 2003; Donnadieu et al., 2006; Fluteau et al.,  
93 2007) but their impact remain debated (Ladant and Donnadieu, 2016; Lunt et al., 2016; Tabor et al., 2016). For  
94 example, the simulations of Lunt et al. (2016) support a key role of paleogeography at the regional rather than  
95 global scale, and show that the global paleogeographic signal is cancelled by an opposite trend due to changes in  
96 the solar constant. Tabor et al. (2016) also suggest important regional climatic impacts of paleogeography, but  
97 argue that  $\text{CO}_2$  is the main driver of the Late Cretaceous climate evolution. In contrast, Ladant and Donnadieu  
98 (2016) find a large impact of paleogeography on the global mean Late Cretaceous temperatures; their signal is  
99 roughly comparable to a doubling of atmospheric  $p\text{CO}_2$ . Finally, the role of paleovegetation is also uncertain as  
00 some studies show a major role at high-latitude (Upchurch, 1998; Hunter et al., 2013), whereas a more recent  
01 study instead suggests limited impact at high latitudes ( $<2^\circ\text{C}$ ) with a cooling effect at low latitudes under high  
02  $p\text{CO}_2$  values (Zhou et al., 2012).

03 In this study, we investigate the forcing parameters of CT greenhouse climate by using a set of  
04 simulations run with the IPSL-CM5A2 Earth System Model. We perform six simulations, using both preindustrial  
05 and CT boundary conditions, where we incrementally modify the preindustrial boundary conditions to that of the  
06 CT. The changes are as follows: (1) the removal of polar ice sheets, (2) an increase in  $p\text{CO}_2$  to 1120 ppm, (3) the  
07 change of vegetation and soil parameters, (4) a 1% reduction in the value of the solar constant, and (5) the  
08 implementation of Cenomanian-Turonian paleogeography. We particularly focus on processes driving warming  
09 or cooling of atmospheric surface temperatures after each change in boundary condition change to study the  
10 relative importance of each parameter in the CT to preindustrial climate change. We also investigate how the SST  
11 gradient responds to boundary condition changes to understand the evolution of its steepness between the CT  
12 and the preindustrial.

13

## 14 2. MODEL DESCRIPTION & EXPERIMENTAL DESIGN

### 15 2.1 IPSL-CM5A2 MODEL

16 IPSL-CM5A2 is an updated version of the IPSL-CM5A-LR earth system model developed at IPSL (Institut  
17 Pierre-Simon Laplace) within the CMIP5 framework (Dufresne et al., 2013). It is a fully-coupled Earth System  
18 Model, which simulates the interactions between atmosphere, ocean, sea ice, and land surface. The model

19 includes the marine carbon and other key biogeochemical cycles (C, P, N, O, Fe and Si - See Aumont et al., 2015).  
20 Its former version, IPSL-CM5A-LR, has a rich history of applications, including present-day and future climates  
21 (Aumont and Bopp, 2006; Swingedouw et al., 2017) as well as preindustrial (Gastineau et al., 2013) and  
22 paleoclimate studies (Kageyama et al., 2013; Contoux et al., 2015; Bopp et al., 2017; Tan et al., 2017; Sarr et al.,  
23 2019). It was also part of IPCC AR5 and CMIP5 projects (Dufresne et al., 2013). IPSL-CM5A-LR has also been used  
24 to explore links between marine productivity and climate (Bopp et al., 2013; Le Mézo et al., 2017; Ladant et al.,  
25 2018), vegetation and climate (Contoux et al., 2013; Woillez et al., 2014), and topography and climate (Maffre et  
26 al., 2018), but also the role of nutrients in the global carbon cycle (Tagliabue et al., 2010) or the variability of  
27 oceanic circulation and upwelling (Ortega et al., 2015; Swingedouw et al., 2015). Building on recent technical  
28 developments, IPSL-CM5A2 provides enhanced computing performances compared to IPSL-CM5A-LR, allowing  
29 thousand year-long integrations required for deep-time paleoclimate applications or long-term future projections  
30 (Sepulchre et al., 2019). It thus reasonably simulates modern-day and historical climates (despite some biases in  
31 the tropics), whose complete description and evaluation can be found in Sepulchre et al., 2019.

32 IPSL-CM5A2 is composed of the LMDZ atmospheric model (Hourdin et al., 2013), the ORCHIDEE land  
33 surface and vegetation model (including the continental hydrological cycle, vegetation, and carbon cycle; Krinner  
34 et al., 2005) and the NEMO ocean model (Madec, 2012), including the LIM2 sea-ice model (Fichet and  
35 Maqueda, 1997) and the PISCES marine biogeochemistry model (Aumont et al., 2015). The OASIS coupler (Valcke  
36 et al., 2006) ensures a good synchronization of the different components and the XIOS input/output parallel  
37 library is used to read and write data. The LMDZ atmospheric component has a horizontal resolution of 96x95,  
38 (equivalent to 3.75° in longitude and 1.875° in latitude) and 39 uneven vertical levels. ORCHIDEE shares the same  
39 horizontal resolution whereas NEMO – the ocean component – has 31 uneven vertical levels (from 10 meters at  
40 the surface to 500 meters at the bottom), and a horizontal resolution of approximately 2°, enhanced to up to 0.5°  
41 in latitude in the tropics. NEMO uses the ORCA2.3 tripolar grid to overcome the North Pole singularity (Madec  
42 and Imbard, 1996).

43  
44 **2.2 EXPERIMENTAL DESIGN**  
45

46 Six simulations were performed for this study: one preindustrial control simulation, named piControl, and  
47 five simulations for which the boundary conditions were changed one at a time to progressively reconstruct the

48 CT climate (see Table 1 for details). The scenarios are called 1X-NOICE (with no polar ice sheets), 4X-NOICE (no  
49 polar ice sheets + pCO<sub>2</sub> at 1120 ppm), 4X-NOICE-PFT-SOIL (previous changes + implementation of idealized Plant  
50 Functional Types (PFTs) and mean parameters for soil), 4X-NOICE-PFT-SOIL-SOLAR (previous changes + reduction  
51 of the solar constant) and 4X-CRETACEOUS (previous changes + CT paleogeography). The piControl simulation  
52 has been run for 1800 years and the five others for 2000 years in order to reach near-surface equilibrium (see  
53 Fig.1).

54

### 55 2.2.1 BOUNDARY CONDITIONS

56

57 As most evidence suggests the absence of permanent polar ice sheets during the CT (MacLeod et al.,  
58 2013; Ladant and Donnadieu, 2016; Huber et al., 2018), we remove polar ice sheets in our simulations (except in  
59 piControl) and we adjust topography to account for isostatic rebound resulting from the loss of the land ice  
60 covering Greenland and Antarctica (See Supplementary Figure 1). Ice sheets are replaced with brown bare soil  
61 and the river routing stays unchanged.

62 In the 4X simulations (i.e., all except piControl and 1X-NOICE), pCO<sub>2</sub> is fixed to 1120 ppm (4 P.A.L), a value  
63 reasonably close to the mean suggested by a recent compilation of CT pCO<sub>2</sub> reconstructions (Wang et al., 2014).

64 In the 4X-NOICE-PFT-SOIL simulation, the distribution of the 13 standard PFTs defined in ORCHIDEE is  
65 uniformly reassigned along latitudinal bands, based on a rough comparison with the preindustrial distribution of  
66 vegetation, in order to obtain a theoretical latitudinal distribution usable for any geological period. The list of  
67 PFTs and associated latitudinal distribution and fractions are described in Supplementary Table 1. Mean soil  
68 parameters, i.e., mean soil color and texture (rugosity), are calculated from preindustrial maps (Zobler, 1999;  
69 Wilson and Henderson-sellers, 2003) and uniformly prescribed on all continents. The impact of these idealized  
70 PFTs and mean parameters is discussed in the results.

71 The 4X-NOICE-PFT-SOIL-SOLAR simulation is initialized from the same conditions as 4X-NOICE-PFT-SOIL  
72 except that the solar constant is reduced to its CT value (Gough, 1981). We use here the value of 1353.36 W/m<sup>2</sup>  
73 (98.9% of the modern solar luminosity, calculated for an age of 90 My).

74 The 4X-CRETACEOUS simulation, finally, incorporates the previous modifications plus the implementation  
75 of the CT paleogeography. The land-sea configuration used here is that proposed by Sewall (2007), in which we  
76 have implemented the bathymetry from Müller (2008) (see Fig. 2). These bathymetric changes are done to  
77 represent deep oceanic topographic features, such as ridges, that are absent from the Sewall paleogeographic

78 configuration. In this simulation, the mean soil color and rugosity as well as the theoretical latitudinal PFTs  
79 distribution are adapted to the new land-sea mask and the river routing is recalculated from the new topography.  
80 We also modify the tidally driven mixing associated with dissipation of internal wave energy for the M2 and K1  
81 tidal components from present day values (de Lavergne et al., 2019). The parameterization used for simulations  
82 with the modern geography follows Simmons et al. (2004), with refinements in the modern Indonesian Through  
83 Flow (ITF) region according to Koch-Larrouy et al. (2007). To create a Cenomanian-Turonian tidal dissipation  
84 forcing, we calculate an M2 tidal dissipation field using the Oregon State University Tidal Inversion System  
85 (OTIS, Egbert et al., 2004; Green and Huber, 2013). The M2 field is computed using our Cenomanian-Turonian  
86 bathymetry and an ocean stratification taken from an unpublished equilibrated Cenomanian-Turonian simulation  
87 realized with the IPSLCM5A2 with no M2 field. In the absence of any estimation for the CT, we prescribe the K1  
88 tidal dissipation field to 0. In addition, the parameterization of Koch-Larrouy et al. (2007) is not used here  
89 because the ITF does not exist in the Cretaceous.

90  
91 **2.2.2 INITIAL CONDITIONS**  
92

93 The piControl and 1X-NOICE simulations are initialized with conditions from the Atmospheric Model  
94 Intercomparison Project (AMIP) which were constrained by realistic sea surface temperature (SST) and sea ice  
95 from 1979 to near present (Gates et al., 1999). In an attempt to reduce the integration time required to reach  
96 near-equilibrium, the initial conditions of simulations with 4 PAL are taken from warm idealized conditions  
97 (higher SST and no sea ice) adapted from those described in Lunt et al. (2017). The constant initial salinity field is  
98 set to 34.7 PSU and ocean temperatures are initialized with a depth dependent distribution (see Sepulchre et al.,  
99 GMD 2020, in review). In waters deeper than 1000 m, the temperature,  $T=10^{\circ}\text{C}$ , whereas at depths shallower  
00 than 1000 m it follows

01 
$$T = 10 + \left( \frac{1000 - \text{depth}}{1000} \right) * 25 \cos(\text{latitude}) \quad (1)$$
  
02

203  
204

Table 1 : Description of the simulations. The parameters in bold indicate the specific change for the corresponding simulation. Simulations are run for 2000 years, except piControl which is run for 1000 years.

| Simulation                         | piControl   | 1X-NOICE                                       | 4X-NOICE                                       | 4X-NOICE-PFT-SOIL                   | 4X-NOICE-PFT-SOIL-SOLAR      | 4X-CRETACEOUS                                       |
|------------------------------------|-------------|------------------------------------------------|------------------------------------------------|-------------------------------------|------------------------------|-----------------------------------------------------|
| Polar Caps                         | Yes         | <b>No</b>                                      | No                                             | No                                  | No                           | No                                                  |
| CO <sub>2</sub> (ppm)              | 280         | 280                                            | <b>1120</b>                                    | 1120                                | 1120                         | 1120                                                |
| Vegetation                         | IPCC (1850) | IPCC (1850) + Bare soil instead of polar caps  | IPCC (1850) + Bare soil instead of polar caps  | <b>Theoretical latitudinal PFTs</b> | Theoretical latitudinal PFTs | Theoretical latitudinal PFTs                        |
| Soil Color/Texture                 | IPCC (1850) | IPCC (1850) + Brown soil instead of polar caps | IPCC (1850) + Brown soil instead of polar caps | <b>Uniform mean value</b>           | Uniform mean value           | Uniform mean value                                  |
| Solar constant (W/m <sup>2</sup> ) | 1365.6537   | 1365.6537                                      | 1365.6537                                      | 1365.6537                           | <b>1353.36</b>               | 1353.36                                             |
| Geographic configuration           | Modern      | Modern                                         | Modern                                         | Modern                              | Modern                       | <b>Cretaceous 90 Ma (Sewall 2007 + Müller 2008)</b> |

205

206           3. RESULTS

207           The simulated changes between the preindustrial (piControl) and the CT (4X-CRETACEOUS)  
208           simulations can be decomposed into five components based on our boundary condition changes: (1)  
209           Polar ice sheet removal ( $\Delta_{\text{ice}}$ ), (2)  $p\text{CO}_2$  ( $\Delta\text{CO}_2$ ), (3) PFT and Soil parameters ( $\Delta\text{PFT-SOIL}$ ), (4) Solar  
210           constant ( $\Delta_{\text{solar}}$ ) and (5) Paleogeography ( $\Delta_{\text{paleo}}$ ). Each contribution to the total climate change can  
211           be calculated by a linear factorization (Broccoli and Manabe, 1987; Von Deimling et al., 2006), which  
212           simply corresponds to the anomaly between two consecutive simulations. The choice of applying a  
213           linear factorization approach was made due to computing time and cost. We appreciate that another  
214           sequence of changes could lead to different intermediate states and could modulate the intensity of  
215           warming or cooling associated to each change. The computational costs would be too high for this  
216           study to explore this further here; it is an interesting problem that we leave for a future investigation.  
217           The results presented in the following are averages calculated over the last 100 simulated years.

219           3.1 GLOBAL CHANGES

220           The progressive change of parameters made to reconstruct the CT climate induces a general  
221           global warming (Table 2, Fig. 3). The annual global atmospheric temperature at 2 meters above the  
222           surface (T2M) rises from 13.25°C to 24.35 °C between the preindustrial and CT simulations. All  
223           changes in boundary conditions generates a warming signal on a global scale, with the exception of  
224           the decrease in solar constant which generates a cooling. Most of the warming is due to the fourfold  
225           increase in atmospheric  $p\text{CO}_2$ , which alone increases the global mean temperature by 9°C.  
226           Paleogeographic changes also represent a major contributor to the warming, leading to an increase in  
227           T2M of 2.6°C. In contrast, the decrease in solar constant leads to a cooling of 1.8°C at the global scale.  
228           Finally, changes in the soil parameters and PFTs, as well as the retreat of polar caps, have smaller  
229           impacts, leading to increases in global mean T2M of 0.8°C and 0.5°C respectively.

230           Temperature changes exhibit different geographic patterns (Fig. 4) depending on which  
231           parameter is changed. These patterns range from global and uniform cooling ( $\Delta_{\text{solar}}$  – Fig 4e) to a  
232           global, polar-amplified, warming ( $\Delta p\text{CO}_2$  – Fig 4c), as well as heterogeneous regional responses ( $\Delta_{\text{ice}}$  or  
233            $\Delta_{\text{paleo}}$  – Fig 4b and 4f). In the next section, we describe the main patterns of change and the main  
234           feedbacks arising.

235

236

|                      | piControl | 1X-NOICE | 4X-NOICE | 4X-NOICE-<br>PFT-SOIL-<br>SOLAR | 4X-<br>CRETACEOUS |
|----------------------|-----------|----------|----------|---------------------------------|-------------------|
| T2M (°C)             | 13.25     | 13.75    | 22.75    | 23.55                           | 21.75             |
| Planetary Albedo (%) | 33.1      | 32.6     | 28.8     | 28.3                            | 28.7              |
| Surface Albedo (%)   | 20.1      | 19       | 16.6     | 15.5                            | 15.3              |
| Emissivity (%)       | 62        | 61.7     | 57.5     | 57.1                            | 57.8              |

237 *Table 2: Simulations results (Global annual mean over last 100 years of simulation.*

238

239 3.2 The major contributor to global warming -  $\Delta\text{CO}_2$

240 As mentioned above, the fourfold increase in  $p\text{CO}_2$  leads to a global warming of 9°C (Table 3,  
241 Fig. 3) between the 1X-NOICE and the 4X-NOICE simulations. The whole Earth warms, with an  
242 amplification located over the Arctic and Austral oceans and a warming generally larger over  
243 continents than over oceans (Fig 4c). The warming is due to a general decrease of planetary albedo  
244 and of the atmosphere's emissivity (see Supplementary Figure 2). The decrease in the atmosphere's  
245 emissivity is directly driven by the increase in  $\text{CO}_2$ , and thus greenhouse trapping in the atmosphere. It  
246 is also amplified by an increase in high-altitude cloudiness (defined as cloudiness at atmospheric  
247 pressure < 440 hPa) over the Antarctic continent (Fig 5a, b). The decrease in planetary albedo is due to  
248 two major processes. First, a decrease of sea ice and snow cover (especially over Northern  
249 Hemisphere continents and along the coasts of Antarctica), leading to surface albedo decrease,  
250 explains the warming amplification over polar oceans and continents. Second, a decrease in low-  
251 altitude cloudiness (defined as cloudiness at atmospheric pressure > 680 hPa) at all latitudes except  
252 over the Arctic (Fig 5a, b) leads to an increase in absorbed solar radiation.

253 The contrast in the atmospheric response over continents and oceans is due to the impact of  
254 the evapo-transpiration feedback. Oceanic warming drives an increase in evaporation, which acts as a  
255 negative feedback and moderates the warming by consuming more latent heat at the ocean surface.  
256 In contrast, high temperatures resulting from continental warming tend to inhibit vegetation  
257 development, which acts as positive feedback and enhances the warming due to reduced  
258 transpiration and reduced latent heat consumption.

259

260 3.3 Boundary conditions with the smallest global impact –  $\Delta\text{ice}$ ,  $\Delta\text{PFT-SOIL}$ ,  $\Delta\text{solar}$

261 The removal of polar ice sheets in the 1X-NOICE simulation leads to a weak global warming of  
262 0.5°C but a strong regional warming observed over areas previously covered by the Antarctic and  
263 Greenland ice sheets (Fig 4a, b). This signal is due to the combination of a decrease in elevation (i.e.,  
264 lapse rate feedback – Supplementary Figure S3) and in surface albedo, which is directly linked to the

265 shift from a reflective ice surface to a darker bare soil surface. Unexpected cooling is also simulated in  
266 specific areas, such as the margins of the Arctic Ocean and the southwestern Pacific. These contrasted  
267 climatic responses to the impact of ice sheets on sea surface temperatures are consistent with  
268 previous modeling studies (Goldner et al., 2014; Knorr and Lohmann, 2014; Kennedy et al., 2015).  
269 Their origin is still unclear but changes in winds in the Southern Ocean, due to topographic changes  
270 after polar ice sheet removal, may locally impact oceanic currents, deep-water formation, and thus  
271 oceanic heat transport and temperature distribution. In the Northern Hemisphere, the observed  
272 cooling over Eurasia could be linked to stationary wave feedbacks following changes in topography  
273 after Greenland ice sheet removal (Supplementary Figure S4; see also Maffre et al., 2018).

274 The change in soil parameters and the implementation of theoretical zonal PFTs in the 4X-  
275 NOICE-PFT-SOIL simulation drive a warming of 0.8 °C. This warming is essentially located above arid  
276 areas, such as the Sahara, Australia, or Middle East, and polar latitudes (Antarctica/Greenland) (Fig  
277 4d), and is mostly caused by the implementation of a mean uniform soil color, which drives a surface  
278 albedo decrease over deserts that normally have a lighter color. The warming at high-latitudes is  
279 linked to vegetation change: bare soil that characterizes continental regions previously covered with  
280 ice is replaced by boreal vegetation with a lower surface albedo. The presence of vegetation at such  
281 high-latitudes is consistent with high-latitude paleobotanical data and temperature records during the  
282 Cretaceous (Otto-bliesner and Upchurch, 1997; Herman and Spicer, 2010; Spicer and Herman, 2010).

283 Finally, the change in solar constant from 1365 W/m<sup>2</sup> to 1353 W/m<sup>2</sup> (Gough 1981) directly  
284 drives a cooling of 1.8 °C evenly distributed over the planet (Fig 4e).

285

### 286 3.4 The most complex response - Δpaleogeography

287 The paleogeographic change drives a global warming of 2.6 °C. This is seen year-round in the  
288 Southern Hemisphere, while the Northern Hemisphere experiences a warming during winter and  
289 cooling during summer compared to the 4X-NI-PFT-SOIL-SOLAR simulation (Fig 6). These temperature  
290 changes are linked to a general decrease in planetary albedo and/or emissivity, although the Northern  
291 Hemisphere sometimes exhibits increased albedo, due to the increase in low-altitude cloudiness. This  
292 increase in albedo is compensated by a strong atmosphere emissivity decrease during winter but not  
293 during summer, which leads to the seasonal pattern of cooling and warming (Supplementary Figure  
294 S5).

295 The albedo and emissivity changes are linked to atmospheric and oceanic circulation  
296 modifications driven by four major features of the CT paleogeography (Fig 2):

297 (1) Equatorial oceanic gateway opening (Central American Seaway/Neotethys)  
298 (2) Polar gateway closure (Drake/Tasman)

### (3) Increase in oceanic area in the North Hemisphere (Fig 2)

#### (4) Decrease in oceanic area in the South Hemisphere (Fig 2)

In the CT simulation, we observe an intensification of the meridional surface circulation and on towards higher latitudes compared to the simulation with the modern geography (Fig 8a-b), as an intensification of subtropical gyres, especially in the Pacific (Supplementary Figure S6), are responsible for an increase in poleward oceanic heat transport (OHT – Fig 8c). Such locations can be linked to the opening of equatorial gateways that creates a zonal connection between the Pacific, Atlantic and Neotethys oceans (Enderton and Marshall, 2008; Hotinski and Eiler, 2003) and that leads to the formation of a strong circumglobal equatorial current (Fig 7b). This connection permits the existence of stronger easterly winds that enhance equatorial upwelling and increased export of water and heat from low latitudes to polar regions. In the Southern Hemisphere, the Drake Passage is only open to shallow flow, and the Tasman gateway has not yet closed. The closure of these zonal connections leads to the disappearance of the modern Antarctic Polar Current (ACC) during the Cretaceous (Fig 7c-d). Notwithstanding, the observed increase in poleward OHT between 40° and 60°S (Fig 8c) is explained by the absence of significant zonal restrictions in the Southern Ocean, which allows for the buildup of polar gyres in the CT simulation (Supplementary Figure S6).

The increase in OHT is associated with a meridional expansion of high sea-surface temperatures leading to an intensification of evaporation between the tropics and a poleward shift of ending branches of the Hadley cells. The combination of these two processes results in a net injection of moisture into the atmosphere between the tropics (Supplementary Figure S7). Consequently, the high-altitude cloudiness increases and spreads towards the tropics, leading to an enhanced greenhouse effect. This process is the main driver of the intertropical warming (Herweijer et al., 2015; Levine and Schneider, 2010; Rose and Ferreira, 2013).

The atmosphere's response to the paleogeographic changes in the mid- and high-latitudes is different in the Southern and Northern Hemispheres because the ocean to land ratio varies between configuration and the modern. In the Southern Hemisphere, the reduced ocean surface area in simulation (Fig 2) limits evaporation and moisture injection into the atmosphere, which in turn leads to a decrease in relative humidity and low-altitude cloudiness (Supplementary Fig S8) and limited year-round warming due to reduced planetary albedo. In the Northern Hemisphere, oceanic surface area increases (Fig 2) and results in a strong increase in evaporation and moisture injection into the atmosphere. Low-altitude cloudiness and planetary albedo increase and lead to summer cooling, as discussed above (Fig 6). During winter an increase in high-altitude cloudiness leads to an enhanced greenhouse effect and counteracts the larger albedo. This high-altitude cloudiness

334 increase is consistent with the simulated increase in extratropical OHT (Fig. 8). Mid-latitude  
335 convection and moist air injection into the upper troposphere is consequently enhanced and  
336 efficiently transported poleward (Rose and Ferreira, 2013; Ladant and Donnadieu, 2016). In addition,  
337 increased continental fragmentation in the CT paleogeography relative to the preindustrial decreases  
338 the effect of continentality (Donnadieu et al. 2006) because thermal inertia is greater in the ocean  
339 than over continents.

340

### 341 3.5 Temperature Gradients

#### 342 3.5.1 Ocean

343 The mean annual global SST increases as much as 9.8°C (from 17.9°C to 27.7 °C) across the  
344 simulations. The SST warming is slightly weaker than that of the mean annual global atmospheric  
345 temperature at 2m discussed above, and most likely occurs because of evaporation processes due to  
346 the weaker atmospheric warming simulated above oceans compared to that simulated above  
347 continents. Unsurprisingly, as for the atmospheric temperatures,  $p\text{CO}_2$  is the major controlling  
348 parameter of the ocean warming (7°C), followed by paleogeography (4.5°C) and changes in the solar  
349 constant (2.3°C), although the latter induces a cooling rather than a warming. PFT and soil parameter  
350 changes and the removal of polar ice sheets have a minor impact at the global SST (0.6 °C and 0°C  
351 respectively). It is interesting to note the increased contribution of paleogeography to the simulated  
352 SST warming compared to its contribution to the simulated atmospheric warming, which is probably  
353 driven by the major changes simulated in surface ocean circulation (Fig. 7).

354 Mean annual SST in the preindustrial simulation reach ~ 26°C in the tropics (calculated as the  
355 zonal average between 30°S and 30°N) and ~ -1.5°C at the poles (beyond 70° N - Fig 9a). In this work,  
356 we define the meridional temperature gradients as the linear temperature change per 1° of latitude  
357 between 30° and 80°. The gradients in the piControl experiment then amount to 0.45°C/°latitude and  
358 0.44°C/°latitude for the Northern and Southern Hemispheres, respectively. In the CT simulation, the  
359 mean annual SST reach ~ 33.3°C in the tropics, and ~5°C and 10°C in the Arctic and Southern Ocean  
360 respectively, and the simulated CT meridional gradients are 0.45°C/°latitude and 0.39°C/°latitude for  
361 the Northern and Southern Hemispheres, respectively.

362 The progressive flattening of the SST gradient can be visualized by superimposing the zonal  
363 mean temperatures of the different simulations and by adjusting them at the Equator (Fig 9b). Two  
364 major observations can be drawn from these results. First, paleogeography has a strong impact on the  
365 low-latitudes (< 30° of latitude) SST gradient because it widens the latitudinal band of relatively  
366 homogeneous warm tropical SST as a result of the opening of equatorial gateways. Second, poleward  
367 of 40° in latitude, the paleogeography and the increase in atmospheric  $p\text{CO}_2$  both contribute to the

368 flattening of the SST gradient with a larger influence from paleogeography than from atmospheric  
369  $pCO_2$ .

370

371 3.5.2 Atmosphere

372 In the preindustrial simulation, mean tropical atmospheric temperatures reach  $\sim 23.6^\circ C$   
373 whereas polar temperatures (calculated as the average between  $80^\circ$  and  $90^\circ$  of latitude) in the  
374 Northern and Southern Hemispheres reach around  $-16.8^\circ C$  and  $-37^\circ C$  respectively. The northern  
375 meridional temperature gradient is  $0.69^\circ C/\text{latitude}$  while the southern latitudinal temperature  
376 gradient is  $1.07^\circ C/\text{latitude}$  (Fig 9c). This significant difference is explained by the very negative mean  
377 annual temperatures over Antarctica linked to the presence of the ice sheet.

378 In the CT simulation, mean tropical atmospheric temperatures reach  $\sim 32.3^\circ C$  whereas polar  
379 temperatures reach  $\sim 3.4^\circ C$  in the Northern Hemisphere and  $\sim -0.5^\circ C$  in the Southern Hemisphere,  
380 thereby yielding latitudinal temperature gradients of  $0.49^\circ C/\text{latitude}$  and  $0.54^\circ C/\text{latitude}$ ,  
381 respectively. The gradients are reduced compared to the preindustrial because the absence of year-  
382 round sea and land ice at the poles leads to far higher polar temperatures.

383 As for the SST gradients, we plot atmospheric meridional gradients by adjusting temperature  
384 values so that temperatures at the Equator are equal for each simulation (Fig 9d). This normalization  
385 reveals that the mechanisms responsible for the flattening of the gradients are different for each  
386 hemisphere. In the Southern Hemisphere high-latitudes ( $> 60^\circ$  of latitude), three parameters  
387 contribute to reducing the equator-to-pole temperature gradient in the following order of  
388 importance: removal of polar ice sheets, paleogeography and increase in atmospheric  $pCO_2$ . In  
389 contrast, the reduction in the gradient steepness in the Northern Hemisphere high-latitudes is  
390 exclusively explained by the increase in atmospheric  $pCO_2$ . In the low- and mid-latitudes, this  
391 temperature gradient reduction is essentially explained by paleogeography in the Southern  
392 Hemisphere and by a similar contribution of paleogeographic changes and increase in atmospheric  
393  $pCO_2$  in the Northern Hemisphere.

394 4. DISCUSSION

395

396 4.1 CENOMANIAN-TURONIAN MODEL/DATA COMPARISON

397 The results predicted by our CT simulation can be compared to reconstructions of  
398 atmospheric and oceanic paleotemperatures inferred from proxy data (Fig 10a, b). Our SST data  
399 compilation is modified version of Tabor et al (2016), with additional data from more recent studies  
400 (see our Supplementary data). We also compiled atmospheric temperature data obtained from

401 paleobotanical and paleosoil studies (see Supplementary data for the complete database and  
402 references).

403 The Cretaceous equatorial and tropical SST have long been believed to be similar or even  
404 lower than those of today (Sellwood et al., 1994; Crowley and Zachos, 1999; Huber et al., 2002), thus  
405 feeding the problem of “tropical overheating” systematically observed in General Circulation Model  
406 simulations (Barron et al., 1995; Bush et al., 1997; Poulsen et al., 1998). This incongruence was based  
407 on the relatively low tropical temperatures reconstructed from foraminiferal calcite (25-30°C, Fig. 9a),  
408 but subsequent work suggested that these were underestimated because of diagenetic alteration  
409 (Pearson et al., 2001; Pucéat et al., 2007). Latest data compilations including temperature  
410 reconstructions from other proxies, such as TEX86, have provided support for high tropical SST in the  
411 Cenomanian-Turonian (Tabor et al., 2016; O’Brien et al., 2017) and our tropical SST are mostly  
412 consistent with existing paleotemperature reconstructions (Fig. 10a). In the mid-latitudes (30-60°),  
413 proxy records infer a wide range of possible SST, ranging from 10°C to more than 30°C. Simulated  
414 temperatures in our CT simulation reasonably agree with these reconstructions if seasonal variability,  
415 represented by local monthly maximum and minimum temperatures (grey shaded areas, Fig 10a), is  
416 considered. This congruence would imply that a seasonal bias may exist in temperatures  
417 reconstructed from proxies, which is suggested in previous studies (Sluijs et al., 2006; Hollis et al.,  
418 2012; Huber, 2012; Steinig et al., 2020) but still debated (Tierney, 2012). There are unfortunately only  
419 a few high-latitudes SST data points available, which render the model-data comparison difficult. In  
420 the Northern Hemisphere, the presence of crocodilian fossils (Vandermark et al., 2007) in the  
421 northern Labrador Sea (~70° of latitude) imply mean annual temperature of at least 14°C and  
422 temperature of the coldest month of at least 5°C. In comparison, simulated temperatures at the same  
423 latitude in the adjacent Western Interior Sea are very similar (13.5 °C for the annual mean and 7.9 °C  
424 for the coldest month). In the Southern Hemisphere, mean annual SST calculated from foraminiferal  
425 calcite at DSDP sites 511 and 258 are between 25° and 28°C (Huber et al., 2018). Simulated annual SST  
426 reach a monthly maximum of 28°C around the location of site DSDP 258. We speculate that a seasonal  
427 bias in the foraminiferal record may represent a possible cause for this difference; alternatively, local  
428 deviations of the regional seawater  $\delta^{18}\text{O}$  from the globally assumed -1‰ value may also reduce the  
429 model-data discrepancy (Zhou et al., 2008; Zhu et al., 2020).

430 To our knowledge, atmospheric temperature reconstructions from tropical latitudes are not  
431 available. In the mid-latitudes (30-60°), simulated atmospheric temperatures in the Southern  
432 Hemisphere reveal reasonable agreement with data whereas Northern Hemisphere mean zonal  
433 temperatures in our model are slightly warmer than that inferred from proxies (Fig 10b). At high-  
434 latitudes, the same trend is observed for atmospheric temperatures as it is for SST with data indicating  
435 higher temperatures than the model in both the Southern and Northern Hemispheres. This inter-

436 hemispheric symmetry in model-data discrepancy could indicate a systematic cool bias of the  
437 simulated temperatures.

#### 438 4.2 RECONSTRUCTED LATITUDINAL TEMPERATURE GRADIENTS

439 The simulated northern hemisphere latitudinal SST gradient of ( $\sim 0.45^{\circ}\text{C}/\text{latitude}$ ) is in good  
440 agreement with those reconstructed from paleoceanographic data in the Northern Hemisphere  
441 ( $\sim 0.42^{\circ}\text{C}/\text{latitude}$ ) whereas it is much larger in the Southern Hemisphere ( $\sim 0.39^{\circ}\text{C}/\text{latitude}$  vs  
442  $\sim 0.3^{\circ}\text{C}/\text{latitude}$ ) (Fig 11). This overestimate of the latitudinal gradient holds for the atmosphere as  
443 well, as gradients inferred from data are much lower (North= $0.2^{\circ}\text{C}/\text{latitude}$  and  
444 South= $0.18^{\circ}\text{C}/\text{latitude}$ ) than simulated gradients (North= $0.49^{\circ}\text{C}/\text{latitude}$  and  
445 South= $0.55^{\circ}\text{C}/\text{latitude}$ ), although the paucity of Cenomanian-Turonian continental temperatures  
446 proxy data is likely to significantly bias this comparison.

447 In the following, we compare our simulated gradients to those obtained in previous deep time  
448 modelling studies using recent earth system models. Because Earth system models studies focusing on  
449 the Cenomanian-Turonian are limited in numbers, we include simulations of the Early Eocene ( $\sim 55$   
450 Ma), which is another interval of global climatic warmth (Lunt et al., 2012a, 2017) (Fig. 11). The  
451 simulated SST latitudinal gradients range from  $0.32^{\circ}\text{C}/\text{latitude}$  to  $0.55^{\circ}\text{C}/\text{latitude}$  (Lunt et al., 2012;  
452 Tabor et al., 2016; Zhu et al., 2019; Fig. 11) and the atmospheric latitudinal gradients from  
453  $0.33^{\circ}\text{C}/\text{latitude}$  to  $0.78^{\circ}\text{C}/\text{latitude}$  (Huber and Caballero, 2011; Lunt et al., 2012; Niegodzki et al.,  
454 2017; Upchurch et al., 2015; Zhu et al., 2019; Fig. 11). For a single model and a single set of boundary  
455 conditions (Cretaceous or Eocene), the lowest latitudinal gradient is obtained for the highest  $p\text{CO}_2$   
456 value. However, when comparing different studies with the same model (Cretaceous vs Eocene using  
457 the ECHAM5 model; Lunt et al., 2012a; Niegodzki et al., 2017) it is not the case: the South  
458 Hemisphere atmospheric gradient obtained for the Eocene with the ECHAM5 model is always lower  
459 than those obtained for the Cretaceous with the same model, regardless of the  $p\text{CO}_2$  value (Fig. 11  
460 and Supplementary Data). These results show the major role of boundary conditions (in particular  
461 paleogeography) in defining the latitudinal temperature gradient. IPSL-CM5A2 predicts SST and  
462 atmosphere gradients that are well within the range of other models of comparable resolution and  
463 complexity. Models almost systematically simulate larger gradients than those obtained from data  
464 (Fig. 11, see also Huber, 2012). The reasons behind this incongruence are debated (Huber, 2012) but  
465 highlight the need for more data and for challenging the behavior of complex earth system models, in  
466 particular in the high latitudes. Studies have demonstrated that models are able to simulate lower  
467 latitudinal temperature gradients under specific conditions such as anomalously high  $\text{CO}_2$   
468 concentrations (Huber and Caballero, 2011), modified cloud properties and radiative  
469 parameterizations (Upchurch et al., 2015; Zhu et al., 2019) or lower paleo elevations and/or more

470 extensive wetlands (Hay et al., 2019). Finally, from a proxy perspective, it has been suggested that a  
471 sampling bias could exist, with a better record of temperatures during the warm season at high  
472 latitudes and during the cold season in low latitudes (Huber, 2012). Such possible biases would help  
473 reduce the model-data discrepancy, in particular for atmospheric temperatures (Fig 10b), as high-  
474 latitude reconstructed temperatures are more consistent with simulated summer temperatures  
475 whereas the consistency is better with simulated winter temperatures in the mid- to low-latitudes, but  
476 further work is required to unambiguously demonstrate the existence of these biases.

477

#### 478 4.3 PRIMARY CLIMATE CONTROLS

479

480 The earliest estimates of climate sensitivity (or the temperature change under a doubling of  
481 the atmospheric  $p\text{CO}_2$ ) predicted a 1.5 to 4.5°C temperature increase, with the most likely scenario  
482 providing an increase of 2.5°C (Charney et al., 1979; Barron et al., 1995; Sellers et al., 1996; IPCC,  
483 2014). Our modelling study predicts an atmospheric warming of 11.1°C for the CT. The signal is  
484 notably due to a 9°C warming in response to the fourfold increase in  $p\text{CO}_2$ , which converts to an  
485 increase of 4.5°C for a doubling of  $p\text{CO}_2$  (assuming a linear response). This climate sensitivity agrees  
486 with the higher end of the range of previous estimates (Charney et al., 1979; Barron et al., 1995;  
487 Sellers et al., 1996; IPCC, 2014). However, our simulated climate sensitivity could be slightly lower as  
488 the simulations are not completely equilibrated (Fig. 1). The latest generation of Earth system models  
489 used in deep-time paleoclimate also show an increasingly higher climate sensitivity to increased  $\text{CO}_2$   
490 (Hutchinson et al., 2018; Golaz et al., 2019; Zhu et al., 2019), suggesting that the sensitivity could have  
491 been underestimated in earlier studies. For example, the recent study of Zhu (2019), using an up-to-  
492 date parameterization of cloud microphysics in the CESM1.2 model, proposes an Eocene Climate  
493 Sensitivity of 6.6°C for a doubling of  $\text{CO}_2$  from 3 to 6 PAL.

494 We have shown that  $p\text{CO}_2$  is the main controlling factor for atmospheric global warming  
495 whereas the effects of the paleogeography (warming) and reduced solar constant (cooling) nearly  
496 cancel each other out at the global scale (see also Lunt et al., 2016). These results agree with previous  
497 studies suggesting that  $p\text{CO}_2$  is the main factor controlling climate (Barron et al., 1995; Crowley and  
498 Berner, 2001; Royer et al., 2007; Foster et al., 2017). However, we also demonstrate that  
499 paleogeography plays a major role in the latitudinal distribution of temperatures and impacts oceanic  
500 temperatures (with a similar magnitude than a doubling of  $p\text{CO}_2$ ), thus confirming that it is also a  
501 critical driver of the Earth's climate (Poulsen et al., 2003; Donnadieu et al., 2006; Fluteau et al., 2007;  
502 Lunt et al., 2016). The large climatic influence of the continental configuration has not been reported  
503 for paleogeographic configurations closer to each other, e.g., the Maastrichtian and Cenomanian  
504 (Tabor et al., 2016). The main features influencing climate in our study (i.e. the configuration of

505 equatorial and polar zonal connections and the land/sea distribution) are indeed not fundamentally  
506 different in the two geological periods investigated by Tabor et al. (2016). Paleogeography is thus a  
507 first-order control on climate over long timescales.

508 Early work has suggested that high latitude warming can be amplified in deep time simulations  
509 by rising CO<sub>2</sub> via cloud and vegetation feedbacks (Otto-bliesner and Upchurch, 1997; Deconto et al.,  
510 2000) or by increasing ocean heat transport (Barron et al., 1995; Schmidt and Mysak, 1996; Brady et  
511 al., 1998), in particular when changing the paleogeography (Hotinski and Toggweiler, 2003). Our study  
512 confirms that the paleogeography is a primary control on the steepness of the oceanic meridional  
513 temperature gradient. Furthermore, paleogeography is the only process, among those investigated,  
514 that controls both the atmosphere and ocean temperature gradients in the tropics and it has a greater  
515 impact than atmospheric CO<sub>2</sub> on the reduction of the atmospheric temperature gradient at high  
516 latitudes in the Southern Hemisphere between the CT and the preindustrial. The increase in *p*CO<sub>2</sub>  
517 appears as the second most important parameter controlling the SST gradient at high latitudes and is  
518 the main control of the reduced atmospheric gradient in the Northern Hemisphere due to low cloud  
519 albedo feedback. The effect of paleovegetation on the reduced temperature gradient is marginal at  
520 high latitudes in our simulations, in contrast to the significant warming reported in early studies (Otto-  
521 bliesner and Upchurch, 1997; Upchurch, 1998; Deconto et al., 2000) but in agreement with more  
522 recent model simulations suggesting a limited influence of vegetation in the Cretaceous high-latitudes  
523 warmth (Zhou et al., 2012). However, our modeling setup prescribes boreal vegetation at latitudes  
524 higher than 50° whereas evidence exist to support the development of evergreen forests poleward of  
525 60° of latitude (Sewall et al., 2007; Hay et al., 2019) and of temperate forests up to 60° of latitude  
526 (Otto-bliesner and Upchurch, 1997). The presence of such vegetation types could change the albedo  
527 of continental regions but also heat and water vapor transfer by altered evapo-transpiration  
528 processes, thus leading to warming amplification at high-latitudes and reduced temperature gradients  
529 (Otto-bliesner and Upchurch, 1997; Hay et al., 2019). Based on these studies and on our results, we  
530 cannot exclude that different types of high-latitude could promote a greater impact of  
531 paleovegetation in reducing the temperature gradient.

532

## 533 5. CONCLUSIONS

534 To quantify the impact of major climate forcings on the Cenomanian-Turonian climate, we  
535 perform a series of 6 simulations using the IPSL-CM5A2 earth system model in which we incrementally  
536 implement changes in boundary conditions on a preindustrial simulation to obtain ultimately a  
537 simulation of the Cenomanian-Turonian stage of the Cretaceous. This study confirms the primary  
538 control exerted by atmospheric *p*CO<sub>2</sub> on atmospheric and sea-surface temperatures, followed by

539 paleogeography. In contrast, the flattening of meridional SST gradients between the preindustrial and  
540 the CT is mainly due to paleogeographic changes and to a lesser extent to the increase in  $pCO_2$ . The  
541 atmospheric gradient response is more complex because the flattening is controlled by several factors  
542 including paleogeography,  $pCO_2$  and polar ice sheet retreat. While predicted oceanic and atmospheric  
543 temperatures show reasonable agreement with data in the low and mid latitudes, predicted  
544 temperatures in the high latitudes are colder than paleotemperatures reconstructed from proxies,  
545 which leads to steeper equator-to-pole gradients in the model than those inferred from proxies.  
546 However, this mismatch, often observed in data-model comparison studies, has been reduced in the  
547 last decades and could be further resolved by considering possible sampling/seasonal biases in the  
548 proxies and by continuously improving model physics and parameterizations.  
549

## 550 DATA AVAILABILITY

551 Code availability:  
552 LMDZ, XIOS, NEMO and ORCHIDEE are released under the terms of the CeCILL license. OASIS-MCT is  
553 released under the terms of the Lesser GNU General Public License (LGPL). IPSL-CM5A2 code is  
554 publicly available through svn, with the following command lines: svn co  
555 [http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/branches/publications/IPSLCM5A2.1\\_11192019](http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/branches/publications/IPSLCM5A2.1_11192019)  
556 modipsl  
557 cd modipsl/util;./model IPSLCM5A2.1  
558 The mod.def file provides information regarding the different revisions used, namely:  
559 – NEMOGCM branch nemo\_v3\_6\_STABLE revision 6665  
560 – XIOS2 branchs/xios-2.5 revision 1763  
561 – IOIPSL/src svn tags/v2\_2\_2  
562 – LMDZ5 branches/IPSLCM5A2.1 rev 3591  
563 – branches/publications/ORCHIDEE\_IPSLCM5A2.1.r5307 rev 6336  
564 – OASIS3-MCT 2.0\_branch (rev 4775 IPSL server)  
565 The login/password combination requested at first use to download the ORCHIDEE component is  
566 anonymous/anonymous. We recommend to refer to the project website:  
567 [http://forge.ipsl.jussieu.fr/igcmg\\_doc/wiki/Doc/Config/IPSLCM5A2](http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Config/IPSLCM5A2) for a proper installation and  
568 compilation of the environment.  
569  
570 Data availability: Data that support the results of this study, as well as boundary condition files are  
571 available on request to the authors.

572 AUTHOR CONTRIBUTION

573 M.L performed and analyzed the numerical simulations, in close cooperation with Y.D and J.B.L, and  
574 led the writing. M.G run the OTIS model to provide the Cenonamian-Turonian tidal dissipation. All  
575 authors discussed the results and analyses presented in the final version of the manuscript.

576 COMPETING INTERESTS

577 The authors declare that they do not have competing interests.

578 ACKNOWLEDGMENTS

579 We express our thanks to Total E&P for funding the project and granting permission to publish. We  
580 thank the CEA/CCRT for providing access to the HPC resources of TGCC under the allocation 2018-  
581 GEN2212 made by GENCI. J.A.M.G receives funding from the Natural Environmental Research Council  
582 (grant NE/S009566/1, MATCH). We acknowledge use of the Ferret ([ferret.pmel.noaa.gov/Ferret/](http://ferret.pmel.noaa.gov/Ferret/))  
583 program for analysis and graphics in this paper.

584 FIGURES

585

Figure 1: Time series for mean annual oceanic temperatures. (a) Sea-surface temperature and (b) deep-ocean (2500 m) temperature. The piControl and 1X-NOICE simulations are perfectly equilibrated. The 4X simulations still have a small linear drift, around 0.1°C/century or less : 0.07, 0.08, 0.05 and 0.01°C/century during the last 500 years for SST of 4X-NOICE, 4X-NOICE-PFT-SOIL, 4X-NOICE-PFT-SOIL-SOLAR and 4X-CRETACEOUS respectively; 0.11, 0.08, 0.07 and 0.06°C/century during the last 500 years, for deep-ocean of 4X-NOICE, 4X-NOICE-PFT-SOIL, 4X-NOICE-PFT-SOIL-SOLAR and 4X-CRETACEOUS respectively.

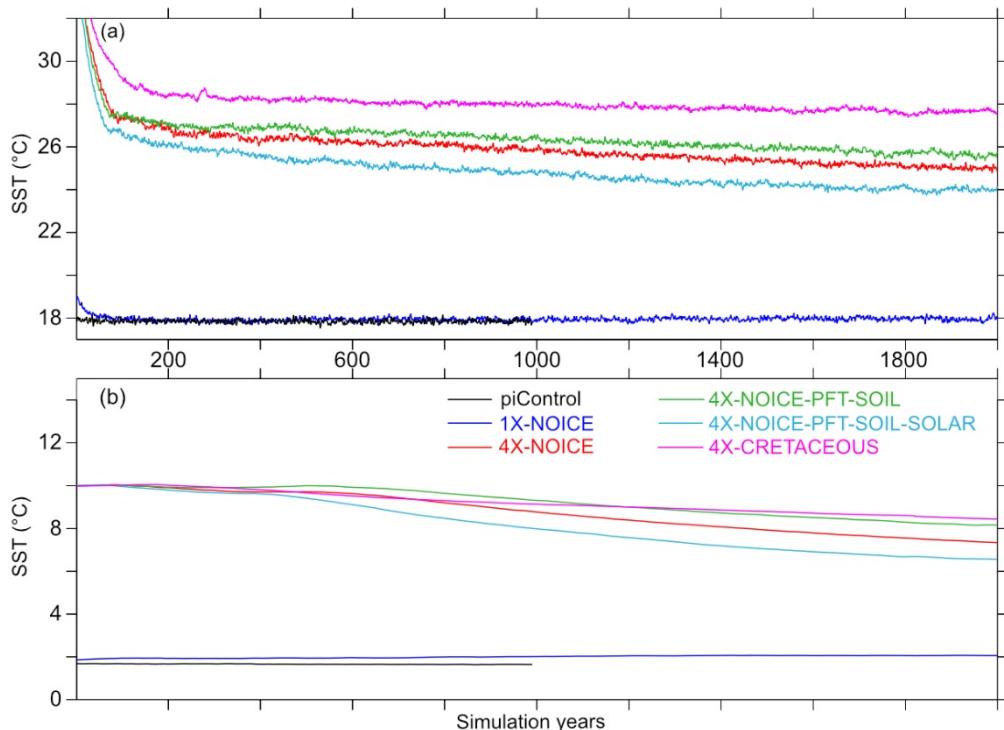



Figure 2: Modern and Cenomanian-Turonian geographic configurations used for the piControl and 4X-CRETACEOUS simulations respectively, and meridional oceanic area anomaly between Cretaceous paleogeography and Modern geography.

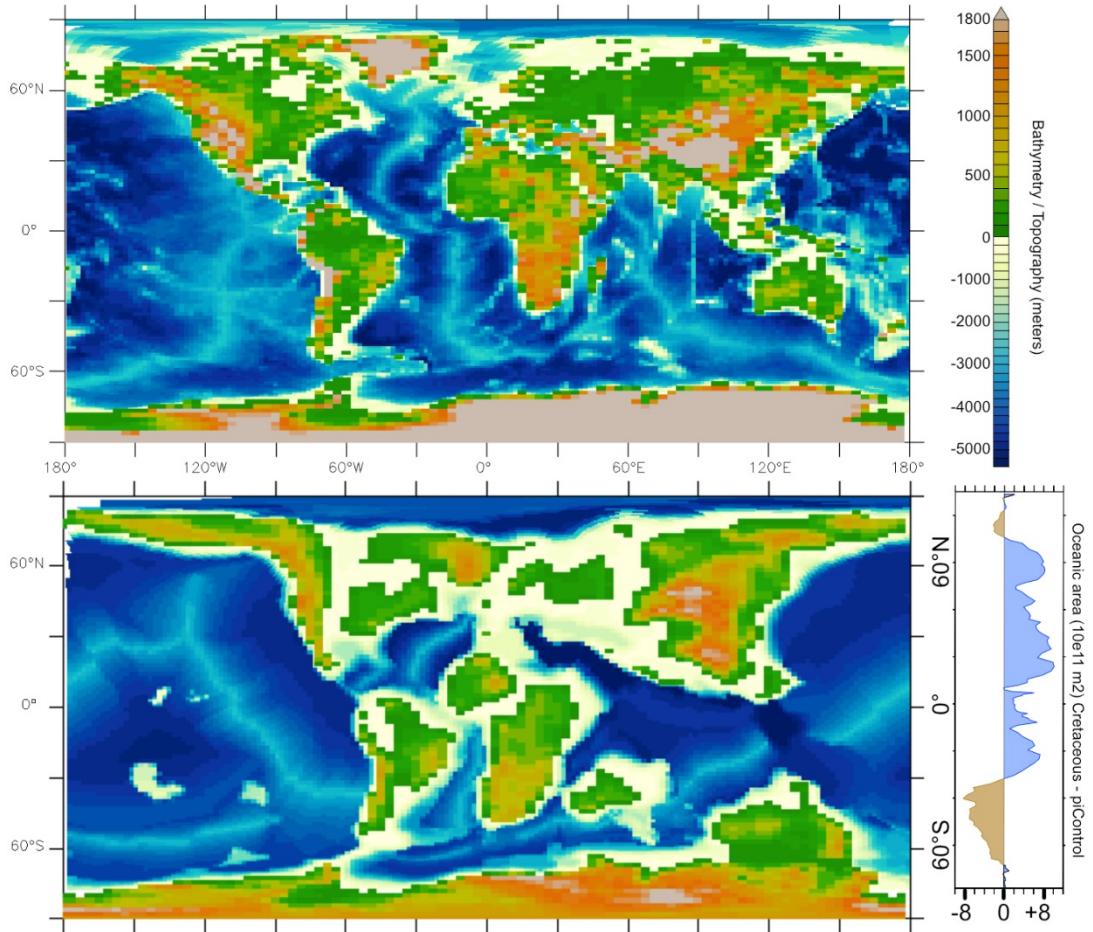



Figure 3: Evolution of Albedo (surface and planetary) and emissivity, in percentages and of T2M ( $^{\circ}\text{C}$ ) from piControl to 4X-CRETACEOUS simulations. The major change is always recorded with the change of  $\text{pCO}_2$  between 1X-NOICE and 4X-NOICE simulations.

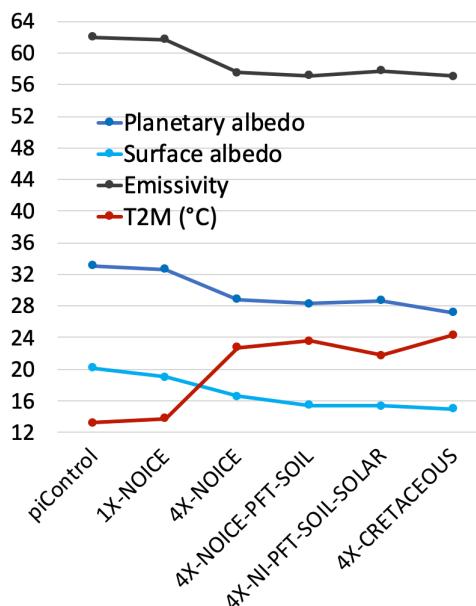



Figure 4:  $T2M$  ( $^{\circ}C$ ) for (a) *piControl* initial simulation and (g) *Cretaceous* final simulation, and anomalies ( $^{\circ}C$ ) for intermediate simulations: (b) *1X-NOICE-piControl*, (c) *4X-NOICE-1X-NOICE*, (d) *4X-NOICE-PFT-SOIL - 4X-NOICE*, (e) *4X-NOICE-PFT-SOIL-SOLAR - 4X-NOICE-PFT-SOIL*, (f) *4X-CRETACEOUS - 4X-NOICE-PFT-SOIL*. White color (not represented in the colourbar) correspond to areas where the anomaly is not statistically significative according to the student test.

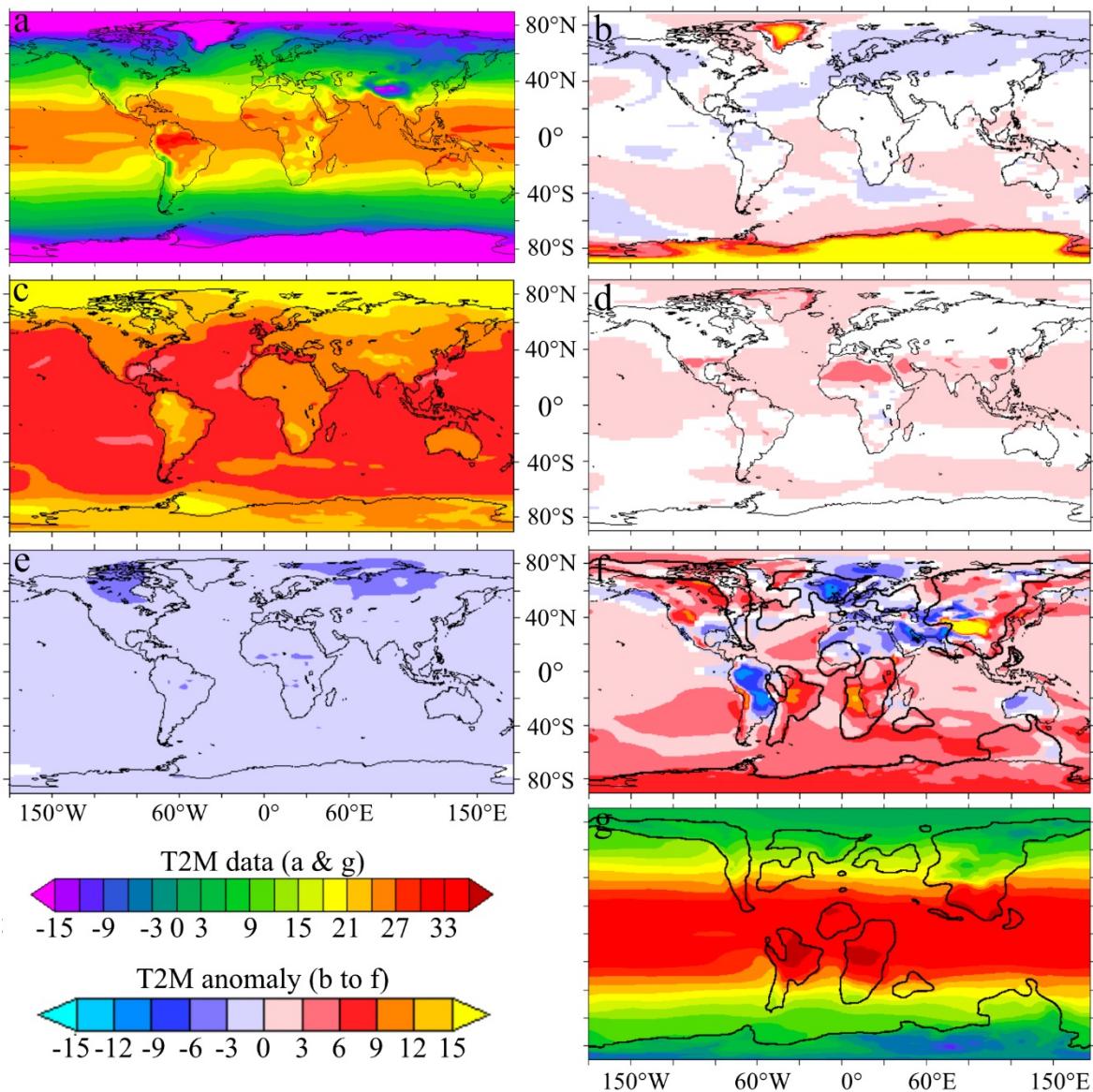



Figure 5: Mean annual cloudiness for 1X-NOICE and 4X-NOICE simulations. (a) Anomaly of total cloudiness (4X-NOICE – 1X NOICE). (b) Low-altitude cloudiness (Below 680 hPa of atmospheric pressure - solid curves) and high-altitude cloudiness Above 440 hPa of atmospheric pressure - dashed curves) for 1X-NOICE (black) and 4X-NOICE (red) simulations.

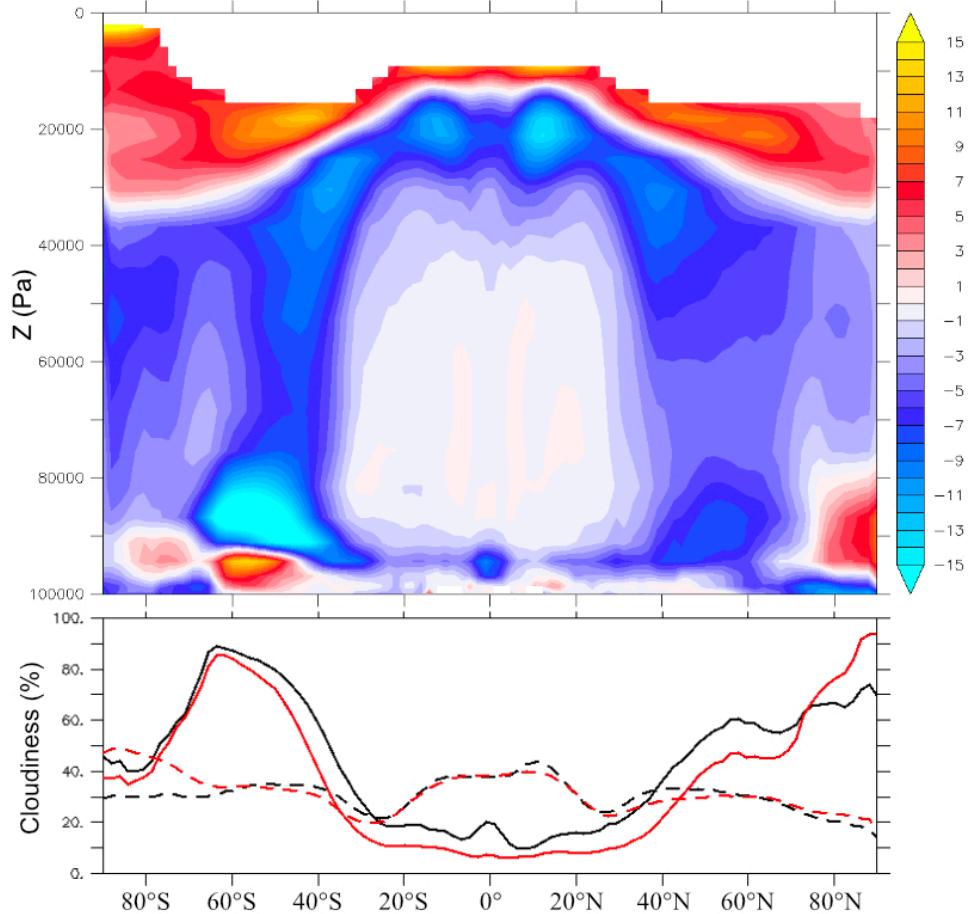
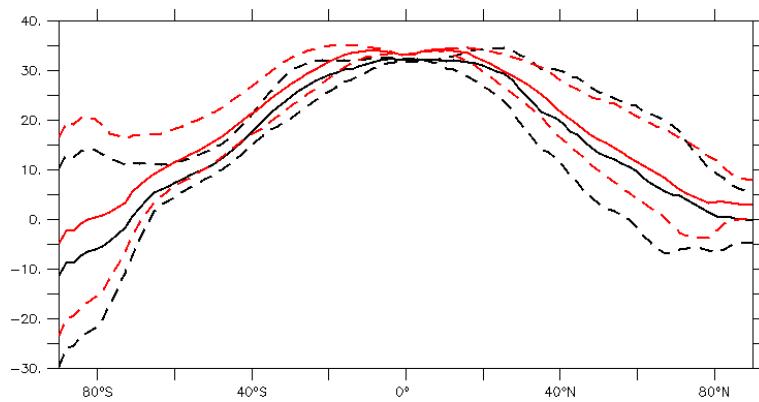
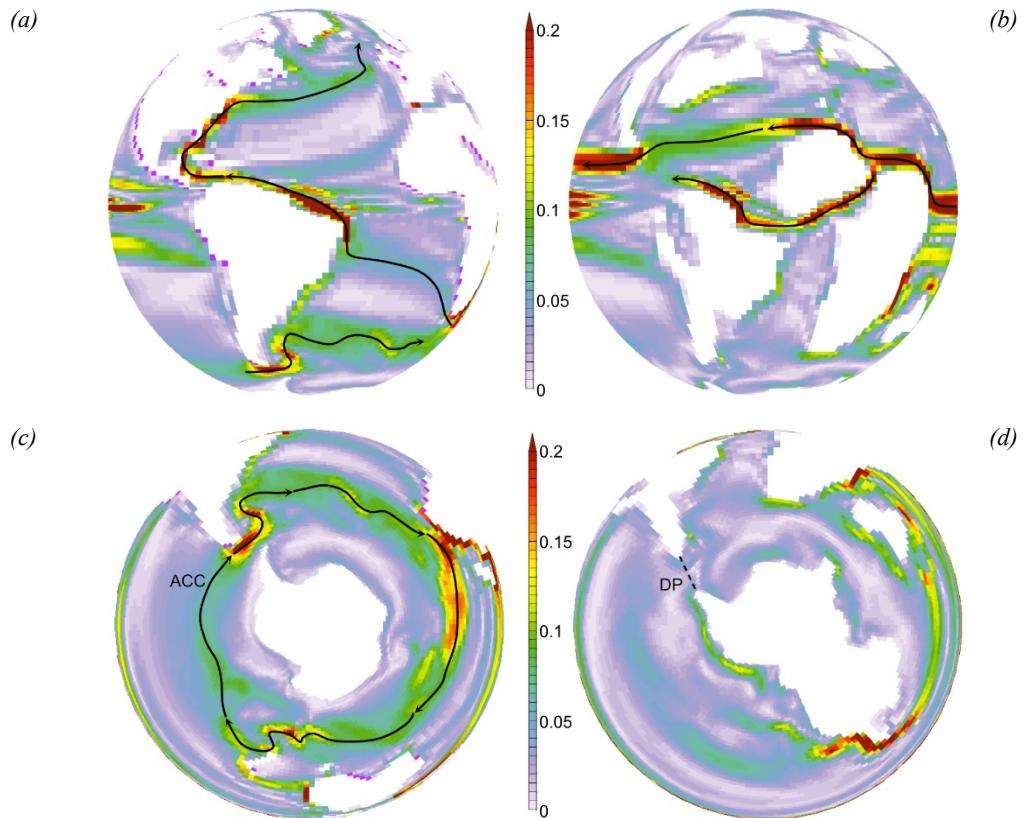
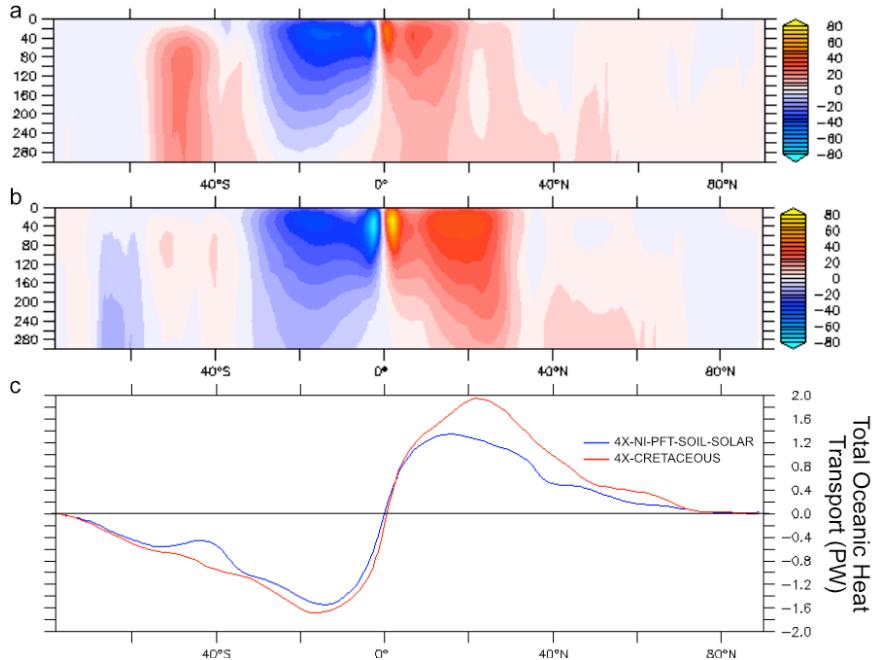
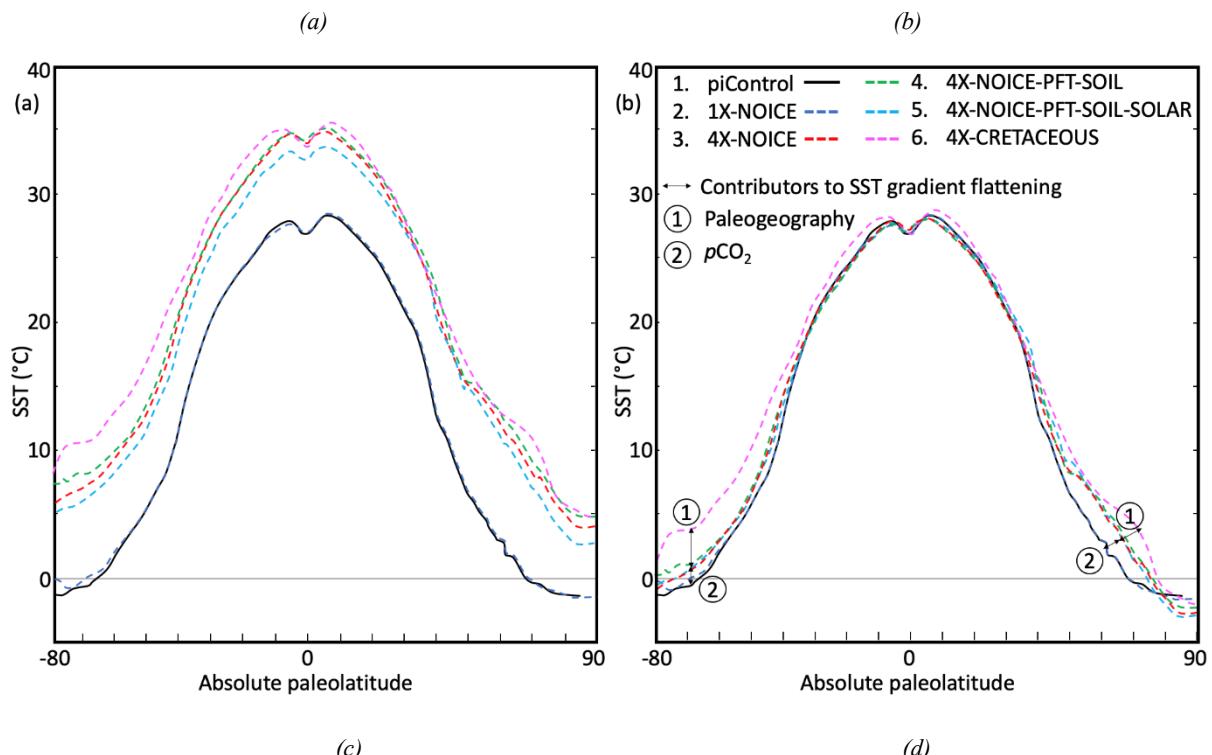
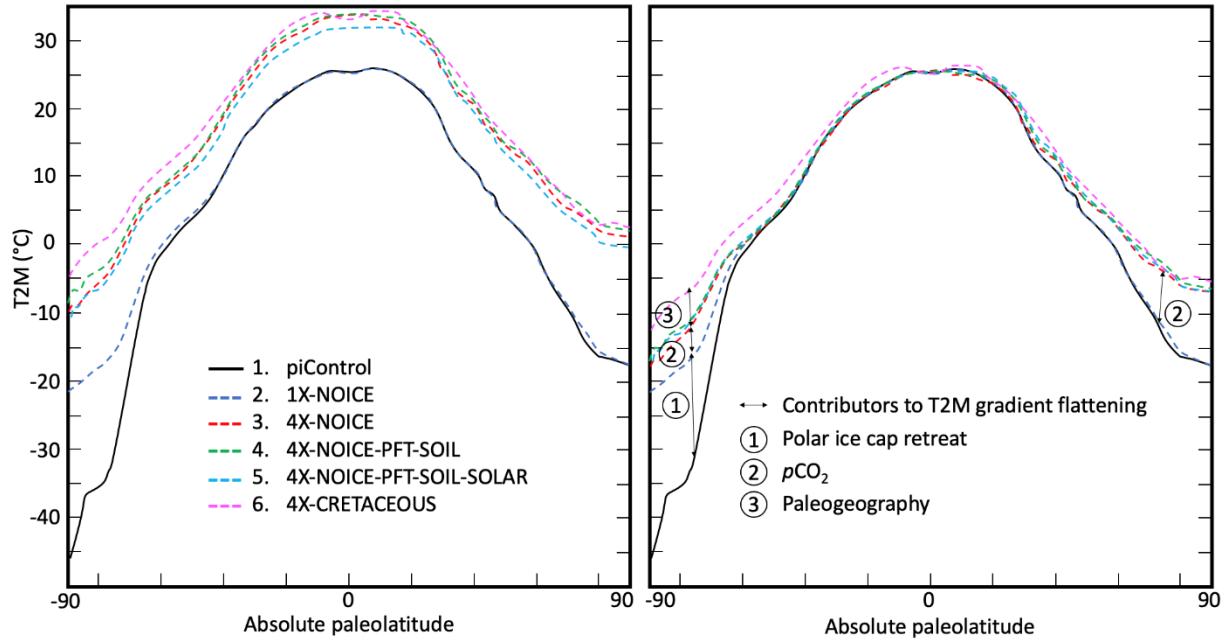



Figure 6: T2M ( $^{\circ}$ C) mean annual meridional gradients for 4X-NI-PFT-SOIL-SOLAR (black) and 4X-CRETACEOUS (red) simulations. Solid curve corresponds to annual average, dashed curves correspond to winter and summer values. The 4X-CRETACEOUS simulation is generally warmer than the 4X-NI-PFT-SOIL-SOLAR-SOLAR simulation, with the exception of the boreal summer.



Figure 7: Surface currents for 4X-NOICE-PFT-SOIL-SOLAR (left) and 4X-CRETACEOUS (right) simulations. (a), (b) Intensity of surface circulation ( $\text{Sv}$  – Annual Mean for 0-80 meters of water depth). Strong equatorial winds lead to the formation of an equatorial circumglobal current. (c), (d) Intensity of surface circulation ( $\text{Sv}$  – Annual Mean for 0-80 meters of water depth). The closure of the Drake passage (DP-300 meters of water depth) leads to the suppression of the ACC.




610  
611  
612  
613  
Figure 8 - (a), (b) Global mean annual meridional stream-function (Sv) for the first 300 meters of water depth. Red and blue  
colors indicate clockwise and anti-clockwise circulation respectively. (a): 4X-NI-PFT-SOIL-SOLAR and (b) 4X-  
CRETACEOUS. (c) Oceanic heat transport for 4X-NI-PFT-SOIL-SOLAR and 4X-CRETACEOUS simulations. Positive and  
negative values indicate northward and southward transport direction, respectively.



614  
615  
616  
617  
618  
619  
Figure 9: (a) Mean annual meridional Sea-Surface Temperature gradients for all simulations. (b) Same SST curves than (a)  
but superimposed such as equator temperatures are equal, allowing to compare the steepness of the curves. (c) Meridional  
atmospheric surface temperature gradients for all simulations. (d) Same curves than (c) but superimposed such as equator  
temperatures are equal.





620  
621  
622  
623  
624  
625  
626  
627  
628  
629

630 *Figure 10: Meridional surface temperature gradients for the 4X-CRETACEOUS simulation. (a) Oceanic temperatures: the*  
631 *solid line corresponds to the mean annual temperature obtained from the modeling. Dashed lines correspond to winter and*  
632 *summer seasonal averages. The grey shaded areas correspond to local monthly temperatures. Data points are obtained with*  
633 *several proxies for the Cenomano-Turonian period. The green data point is obtained from TEX 86 for the Maastrichtian (70*  
634 *Ma) and extrapolated for 90 Ma. The Huber et al. (2018) point is obtained from  $\delta^{18}\text{O}$  on foraminifera and the Vandemark et*  
635 *al., 2007 point is interpreted from the presence of crocodilian fossils. MAT=Mean Annual Temperature, CM=Coldest Month.*  
636 *(b) Atmospheric temperatures: same legend as (a) for modelized temperatures. Data points are obtained from several proxies*  
637 *including CLAMP analysis on paleofloras, leaf analyses, paleosol-derived climofunction or bioclimatic analysis. Symbols*  
638 *represent mean annual temperatures and solid lines associated ranges/errors. Dashed lines represent monthly mean*  
639 *temperatures. Orange data points are for Cenomano-Turonian ages (100-90 Ma), blue data points for Albian and green data*  
640 *points for Coniacian-Santonian (88-85 Ma).*

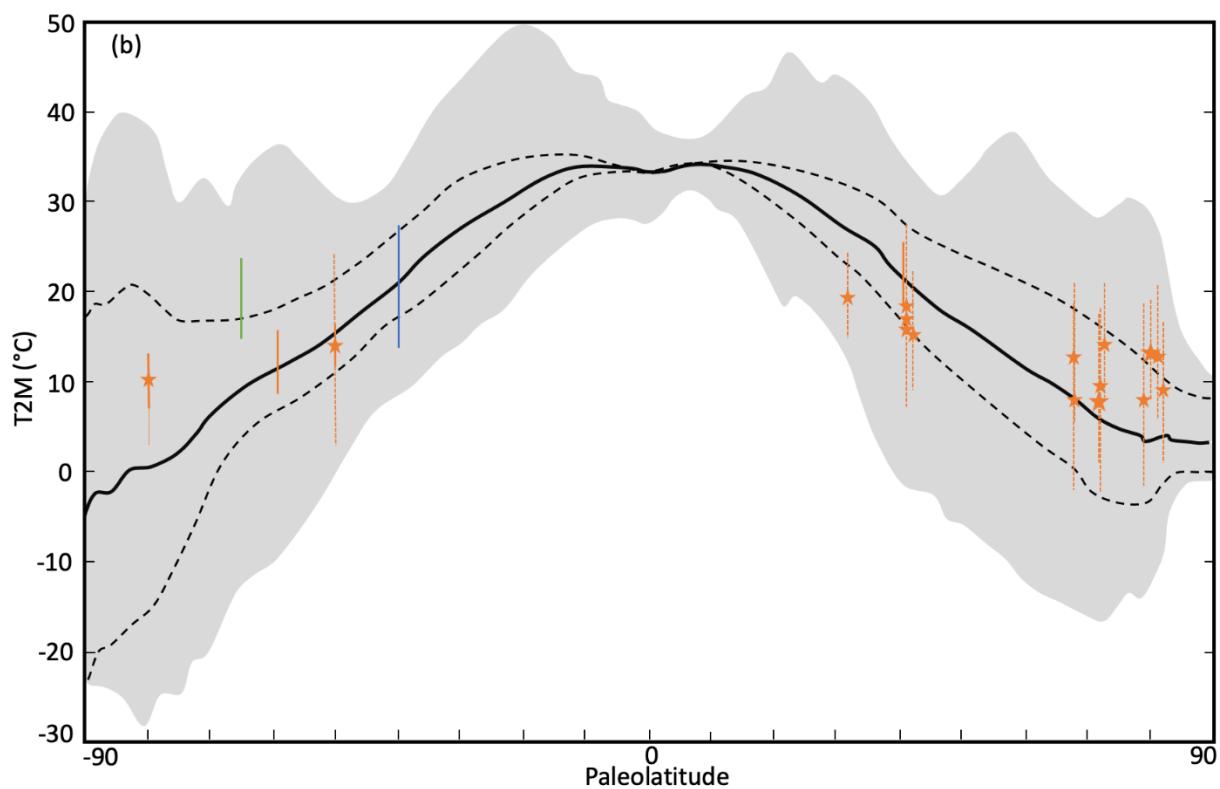
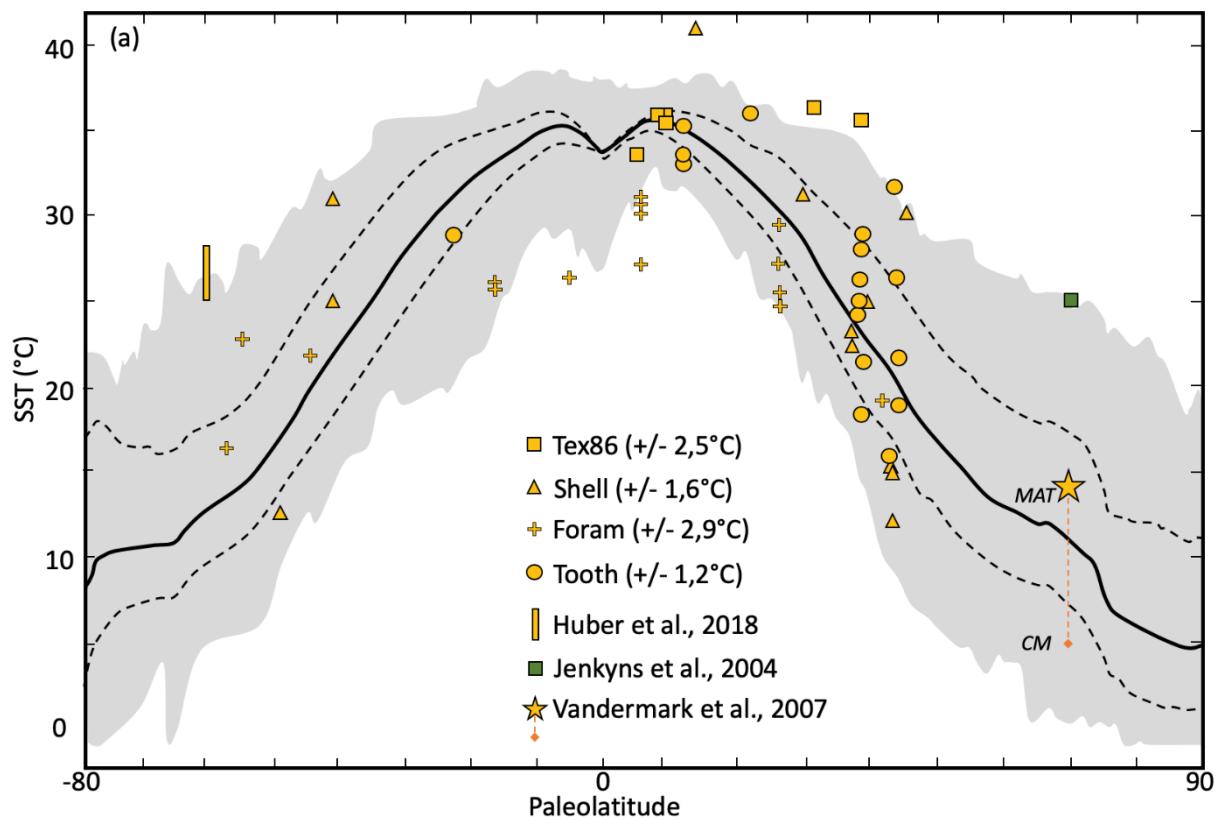
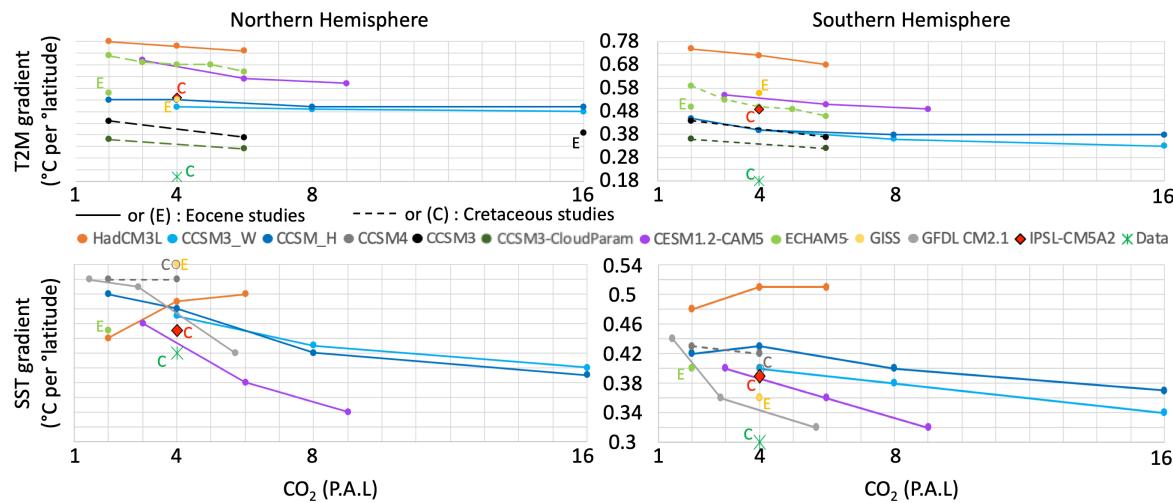





Figure 11: Plot of atmospheric and sea surface mean annual temperature gradients vs  $pCO_2$  for different modelling studies and data compilation. Data gradients are plotted for a default  $pCO_2$  value of 4 P.A.L. Gradients are expressed in  $^{\circ}C$  per  $^{\circ}$ latitude and are calculated from 30 to 80 degrees of latitude. Gradients linked by a line correspond to studies realized with the same model & paleogeography. Solid lines or gradients marked with a (E) correspond to an Eocene paleogeography. Dashed lines or gradients marked with a C correspond to a Cretaceous paleogeography.



641

642

## 643 REFERENCES

644

645 Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies,  
646 Global Biogeochem. Cycles, 20(2), 1–15, doi:10.1029/2005GB002591, 2006.

647 Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. and Gehlen, M.: PISCES-v2: An ocean  
648 biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8(8), 2465–  
649 2513, doi:10.5194/gmd-8-2465-2015, 2015.

650 Barclay, R. S., McElwain, J. C. and Sageman, B. B.: Carbon sequestration activated by a  
651 volcanic CO<sub>2</sub> pulse during Ocean Anoxic Event 2, Nat. Geosci., 3(3), 205–208,  
652 doi:10.1038/ngeo757, 2010.

653 Barron, E. J.: Model simulations of Cretaceous climates : the role of geography and carbon  
654 dioxide, , 1(1989), 1993.

655 Barron, E. J., Fawcett, P. J., Peterson, W. H., Pollard, D. and Thompson, S. L.: A " simulation  
656 " of mid-Cretaceous climate Abstract . A series of general circulation model experiments W  
657 increased from present day ). By combining all three major variables levels of CO<sub>2</sub> . Four  
658 times present-day • s W provided the best match to the this, , 10(5), 953–962, 1995.

659 Van Bentum, E. C., Reichart, G. J., Forster, A. and Sinninghe Damsté, J. S.: Latitudinal  
660 differences in the amplitude of the OAE-2 carbon isotopic excursion: PCO<sub>2</sub>and paleo

661 productivity, *Biogeosciences*, 9(2), 717–731, doi:10.5194/bg-9-717-2012, 2012.

662 Berner, R. A.: GEOCARBSULF: A combined model for Phanerozoic atmospheric O<sub>2</sub> and

663 CO<sub>2</sub>, *Geochim. Cosmochim. Acta*, 70(23 SPEC. ISS.), 5653–5664,

664 doi:10.1016/j.gca.2005.11.032, 2006.

665 Bice, K. L. and Norris, R. D.: Possible atmospheric CO<sub>2</sub> extremes of the Middle Cretaceous

666 (late Albian-Turonian), *Paleoceanography*, 17(4), 22-1-22-17, doi:10.1029/2002pa000778,

667 2003.

668 Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K. U. and Norris, R. D.: A

669 multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric

670 CO<sub>2</sub> concentrations, *Paleoceanography*, 21(2), 1–17, doi:10.1029/2005PA001203, 2006.

671 Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P.,

672 Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J. and Vichi, M.: Multiple stressors of ocean

673 ecosystems in the 21st century: Projections with CMIP5 models, *Biogeosciences*, 10(10),

674 6225–6245, doi:10.5194/bg-10-6225-2013, 2013.

675 Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P. and Kageyama, M.: Ocean

676 (de)oxygenation from the Last Glacial Maximum to the twenty-first century: Insights from

677 Earth System models, *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.*, 375(2102),

678 doi:10.1098/rsta.2016.0323, 2017.

679 Brady, E. C., Deconto, R. M. and Thompson, S. L.: Deep Water Formation and Poleward

680 Ocean Heat Transport in the Warm Climate Extreme of the Cretaceous (80 Ma) evidence, ,

681 25(22), 4205–4208, 1998.

682 Broccoli, A. J. and Manabe, S.: The influence of continental ice, atmospheric CO<sub>2</sub>, and land

683 albedo on the climate of the last glacial maximum, *Clim. Dyn.*, 1(2), 87–99,

684 doi:10.1007/BF01054478, 1987.

685 Bush, A. B. G., George, S. and Philander, H.: The late Cretaceous ' Simulation with a coupled

686 atmosphere-ocean general circulation model, , 12(3), 495–516, 1997.

687 Charney, J., Arakawa, A., Baker, D. ., Bolin, B., Dickinson, R. E., Goody, R. ., Leith, C. .,

688 Stommel, H. . and Wunsch, C. .: *Carbon Dioxide and Climate*, National Academies Press,

689 Washington, D.C., 1979.

690 Contoux, C., Jost, A., Ramstein, G., Sepulchre, P., Krinner, G. and Schuster, M.: Megalake

691 chad impact on climate and vegetation during the late Pliocene and the mid-Holocene, *Clim.*

692 *Past*, 9(4), 1417–1430, doi:10.5194/cp-9-1417-2013, 2013.

693 Contoux, C., Dumas, C., Ramstein, G., Jost, A. and Dolan, A. M.: Modelling Greenland ice

694 sheet inception and sustainability during the Late Pliocene, *Earth Planet. Sci. Lett.*, 424, 295–

695 305, doi:10.1016/j.epsl.2015.05.018, 2015.

696 Crowley, T. J. and Berner, R. A.: CO<sub>2</sub> and climate change, *Science* (80-.), 292(5518), 870–  
697 872, doi:10.1126/science.1061664, 2001.

698 Crowley, T. J. and Zachos, J. C.: Comparison of zonal temperature profiles for past warm  
699 time periods, in *Warm Climates in Earth History*, edited by B. T. Huber, K. G. Macleod, and  
700 S. L. Wing, pp. 50–76, Cambridge University Press, Cambridge., 1999.

701 Crowley, T. J., Short, D. A., Mengel, J. G. and North, G. R.: Role of seasonality in the  
702 evolution of climate during the last 100 million years, *Science* (80-.), 231(4738), 579–584,  
703 doi:10.1126/science.231.4738.579, 1986.

704 Damsté, J. S. S., Kuypers, M. M. M., Pancost, R. D. and Schouten, S.: The carbon isotopic  
705 response of algae, (cyano)bacteria, archaea and higher plants to the late Cenomanian  
706 perturbation of the global carbon cycle: Insights from biomarkers in black shales from the  
707 Cape Verde Basin (DSDP Site 367), *Org. Geochem.*, 39(12), 1703–1718,  
708 doi:10.1016/j.orggeochem.2008.01.012, 2008.

709 Deconto, R. M., Brady, E. C., Bergengren, J. and Hay, W. W.: Late Cretaceous climate,  
710 vegetation, and ocean interactions, *Warm Clim. Earth Hist.*, 275–296,  
711 doi:10.1017/cbo9780511564512.010, 2000.

712 Von Deimling, T. S., Ganopolski, A., Held, H. and Rahmstorf, S.: How cold was the last  
713 Glacial maximum?, *Geophys. Res. Lett.*, 33(14), 1–5, doi:10.1029/2006GL026484, 2006.

714 Donnadieu, Y., Pierrehumbert, R., Jacob, R. and Fluteau, F.: Modelling the primary control of  
715 paleogeography on Cretaceous climate, *Earth Planet. Sci. Lett.*, 248(1–2), 411–422,  
716 doi:10.1016/j.epsl.2006.06.007, 2006.

717 Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y.,  
718 Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P.,  
719 Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé,  
720 C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L.,  
721 Guiyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S.,  
722 Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M. P., Lefevre, F., Levy,  
723 C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S.,  
724 Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M.,  
725 Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N. and Vuichard, N.: Climate  
726 change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5., 2013.

727 Egbert, G. D., Ray, R. D. and Bills, B. G.: Numerical modeling of the global semidiurnal tide  
728 in the present day and in the last glacial maximum, *J. Geophys. Res. C Ocean.*, 109(3), 1–15,

729 doi:10.1029/2003jc001973, 2004.

730 Enderton, D. and Marshall, J.: Explorations of Atmosphere–Ocean–Ice Climates on an  
731 Aquaplanet and Their Meridional Energy Transports, *J. Atmos. Sci.*, 66(6), 1593–1611,  
732 doi:10.1175/2008jas2680.1, 2008.

733 Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to the treatment of  
734 ice thermodynamics and dynamics, *J. Geophys. Res. Ocean.*, 102(C6), 12609–12646,  
735 doi:10.1029/97JC00480, 1997.

736 Fletcher, B. J., Brentnall, S. J., Quick, W. P. and Beerling, D. J.: BRYOCARB: A process-  
737 based model of thallose liverwort carbon isotope fractionation in response to CO<sub>2</sub>, O<sub>2</sub>, light  
738 and temperature, *Geochim. Cosmochim. Acta*, 70(23 SPEC. ISS.), 5676–5691,  
739 doi:10.1016/j.gca.2006.01.031, 2006.

740 Fluteau, F., Ramstein, G., Besse, J., Guiraud, R. and Masse, J. P.: Impacts of palaeogeography  
741 and sea level changes on Mid-Cretaceous climate, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,  
742 247(3–4), 357–381, doi:10.1016/j.palaeo.2006.11.016, 2007.

743 Foster, G. L., Royer, D. L. and Lunt, D. J.: Future climate forcing potentially without  
744 precedent in the last 420 million years, *Nat. Commun.*, 8, 1–8, doi:10.1038/ncomms14845,  
745 2017.

746 Friedrich, O., Norris, R. D. and Erbacher, J.: Evolution of middle to late Cretaceous oceans-A  
747 55 m.y. Record of Earth's temperature and carbon cycle, *Geology*, 40(2), 107–110,  
748 doi:10.1130/G32701.1, 2012.

749 Gastineau, G., D'Andrea, F. and Frankignoul, C.: Atmospheric response to the North Atlantic  
750 Ocean variability on seasonal to decadal time scales, *Clim. Dyn.*, 40(9–10), 2311–2330,  
751 doi:10.1007/s00382-012-1333-0, 2013.

752 Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., Fiorino,  
753 M., Gleckler, P. J., Hnilo, J. J., Marlais, S. M., Phillips, T. J., Potter, G. L., Santer, B. D.,  
754 Sperber, K. R., Taylor, K. E. and Williams, D. N.: An Overview of the Results of the  
755 Atmospheric Model Intercomparison Project (AMIP I), *Bull. Am. Meteorol. Soc.*, 80(1), 29–  
756 55 [online] Available from: <http://www.jstor.org/stable/26214897>, 1999.

757 Goddérat, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. and Nardin, E.: The role of  
758 palaeogeography in the Phanerozoic history of atmospheric CO<sub>2</sub> and climate, *Earth-Science  
759 Rev.*, 128, 122–138, doi:10.1016/j.earscirev.2013.11.004, 2014.

760 Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D.,  
761 Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G.,  
762 Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-

763 Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M.,  
764 Foucar, J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hunke, E. C., Jacob, R.  
765 Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein, S. A., Larson, V. E.,  
766 Leung, L. R., Li, H., Lin, W., Lipscomb, W. H., Ma, P., Mahajan, S., Maltrud, M. E.,  
767 Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P.  
768 J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger,  
769 A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K.,  
770 Veneziani, M., Wan, H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H.,  
771 Xie, S., Yang, Y., Yoon, J., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K.,  
772 Zhang, Y., Zheng, X., Zhou, T. and Zhu, Q.: The DOE E3SM coupled model version 1:  
773 Overview and evaluation at standard resolution, *J. Adv. Model. Earth Syst.*, 1–82,  
774 doi:10.1029/2018ms001603, 2019.

775 Goldner, A., Herold, N. and Huber, M.: Antarctic glaciation caused ocean circulation changes  
776 at the Eocene-Oligocene transition, *Nature*, 511(7511), 574–577, doi:10.1038/nature13597,  
777 2014.

778 Gough: Solar interior structure variations\*, *Sol. Phys.*, 74(September 1980), 21–34, 1981.

779 Green, J. A. M. and Huber, M.: Tidal dissipation in the early Eocene and implications for  
780 ocean mixing, *Geophys. Res. Lett.*, 40(11), 2707–2713, doi:10.1002/grl.50510, 2013.

781 Gyllenhaal, E. D., Engberts, C. J., Markwick, P. J., Smith, L. H. and Patzkowsky, M. E.: The  
782 Fujita-Ziegler model: a new semi-quantitative technique for estimating paleoclimate from  
783 paleogeographic maps, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 86(1–2), 41–66,  
784 doi:10.1016/0031-0182(91)90005-C, 1991.

785 Hay, W. W., DeConto, R. M., de Boer, P., Flögel, S., Song, Y. and Stepashko, A.: Possible  
786 solutions to several enigmas of Cretaceous climate, Springer Berlin Heidelberg., 2019.

787 Heinemann, M., Jungclaus, J. H. and Marotzke, J.: Warm Paleocene/Eocene climate as  
788 simulated in ECHAM5/MPI-OM, *Clim. Past*, 5(4), 785–802, doi:10.5194/cp-5-785-2009,  
789 2009.

790 Herman, A. B. and Spicer, R. A.: Palaeobotanical evidence for a warm Cretaceous Arctic  
791 Ocean, *Nature*, 380(6572), 330–333, doi:10.1038/380330a0, 1996.

792 Herman, A. B. and Spicer, R. A.: Mid-Cretaceous floras and climate of the Russian high  
793 Arctic (Novosibirsk Islands, Northern Yakutiya), *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,  
794 295(3–4), 409–422, doi:10.1016/j.palaeo.2010.02.034, 2010.

795 Herweijer, C., Seager, R., Winton, M. and Clement, A.: Why ocean heat transport warms the  
796 global mean climate, *Tellus, Ser. A Dyn. Meteorol. Oceanogr.*, 57(4), 662–675,

797 doi:10.1111/j.1600-0870.2005.00121.x, 2005.

798 Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M., Creech, J. B., Hines,  
799 B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J. S., Gibbs, S., Pearson, P. N. and  
800 Zachos, J. C.: Early Paleogene temperature history of the Southwest Pacific Ocean :  
801 Reconciling proxies and models, *Earth Planet. Sci. Lett.*, 349–350, 53–66,  
802 doi:10.1016/j.epsl.2012.06.024, 2012.

803 Hong, S. K. and Lee, Y. Il: Evaluation of atmospheric carbon dioxide concentrations during  
804 the Cretaceous, *Earth Planet. Sci. Lett.*, 327–328, 23–28, doi:10.1016/j.epsl.2012.01.014,  
805 2012.

806 Hotinski, R. M. and Toggweiler, J. R.: Impact of a Tethyan circumglobal passage on ocean  
807 heat transport and “equable” climates, *Paleoceanography*, 18(1), n/a-n/a,  
808 doi:10.1029/2001PA000730, 2003.

809 Hourdin, F., Foujols, M. A., Codron, F., Guemas, V., Dufresne, J. L., Bony, S., Denvil, S.,  
810 Guez, L., Lott, F., Ghattas, J., Braconnot, P., Marti, O., Meurdesoif, Y. and Bopp, L.: Impact  
811 of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-  
812 CM5A coupled model, *Clim. Dyn.*, 40(9–10), 2167–2192, doi:10.1007/s00382-012-1411-3,  
813 2013.

814 Huber, B. T., Hodell, D. A. and Hamilton, C. P.: ... Late Cretaceous climate of the southern  
815 high latitudes: Stable isotopic evidence for minimal ..., *Geol. Soc. Am. Bull.*, (10), 1164–  
816 1191, doi:10.1130/0016-7606(1995)107<1164, 1995.

817 Huber, B. T., Leckie, R. M., Norris, R. D., Bralower, T. J. and CoBabe, E.: Foraminiferal  
818 assemblage and stable isotopic change across the Cenomanian-Turonian boundary in the  
819 Subtropical North Atlantic, *J. Foraminifer. Res.*, 29(4), 392–417, 1999.

820 Huber, B. T., Norris, R. D. and MacLeod, K. G.: Deep-sea paleotemperature record of  
821 extreme warmth during the Cretaceous, *Geology*, 30(2), 123–126, doi:10.1130/0091-  
822 7613(2002)030<0123:DSPROE>2.0.CO;2, 2002.

823 Huber, B. T., MacLeod, K. G., Watkins, D. K. and Coffin, M. F.: The rise and fall of the  
824 Cretaceous Hot Greenhouse climate, *Glob. Planet. Change*, 167(April), 1–23,  
825 doi:10.1016/j.gloplacha.2018.04.004, 2018.

826 Huber, M.: Progress in Greenhouse Climate Modeling, *Paleontol. Soc. Pap.*, 18, 213–262,  
827 doi:10.1017/s108933260000262x, 2012.

828 Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, *Clim. Past*,  
829 7(2), 603–633, doi:10.5194/cp-7-603-2011, 2011.

830 Hunter, S. J., Haywood, A. M., Valdes, P. J., Francis, J. E. and Pound, M. J.: Modelling

831 equitable climates of the Late Cretaceous: Can new boundary conditions resolve data-model  
832 discrepancies?, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 392, 41–51,  
833 doi:10.1016/j.palaeo.2013.08.009, 2013.

834 Hutchinson, D. K., De Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J. and Baatsen, M.:  
835 Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL  
836 CM2.1, *Clim. Past*, 14(6), 789–810, doi:10.5194/cp-14-789-2018, 2018.

837 IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III  
838 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., 2014.

839 Jenkyns, H. C.: Geochemistry of oceanic anoxic events, *Geochemistry, Geophys.*  
840 *Geosystems*, 11(3), 1–30, doi:10.1029/2009GC002788, 2010.

841 Jenkyns, H. C., Forster, A., Schouten, S. and Sinninghe Damsté, J. S.: High temperatures in  
842 the Late Cretaceous Arctic Ocean, *Nature*, 432(7019), 888–892, doi:10.1038/nature03143,  
843 2004.

844 Kageyama, M., Braconnot, P., Bopp, L., Caubel, A., Foujols, M. A., Guilyardi, E., Khodri,  
845 M., Lloyd, J., Lombard, F., Mariotti, V., Marti, O., Roy, T. and Woillez, M. N.: Mid-  
846 Holocene and Last Glacial Maximum climate simulations with the IPSL model-part I:  
847 Comparing IPSL\_CM5A to IPSL\_CM4, *Clim. Dyn.*, 40(9–10), 2447–2468,  
848 doi:10.1007/s00382-012-1488-8, 2013.

849 Kennedy, A. T., Farnsworth, A., Lunt, D. J., Lear, C. H. and Markwick, P. J.: Atmospheric  
850 and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition, *Philos.*  
851 *Trans. R. Soc. A Math. Phys. Eng. Sci.*, 373(2054), doi:10.1098/rsta.2014.0419, 2015.

852 Kerr, A. C. and Kerr, A. C.: Oceanic plateau formation : A cause of mass extinction and black  
853 shale deposition around the Cenomanian-Turonian boundary ? Oceanic plateau formation : a  
854 cause of mass extinction and black shale deposition around the Cenomanian – Turonian  
855 boundary ?, , (May), doi:10.1144/gsjgs.155.4.0619, 1998.

856 Knorr, G. and Lohmann, G.: Climate warming during antarctic ice sheet expansion at the  
857 middle miocene transition, *Nat. Geosci.*, 7(5), 376–381, doi:10.1038/ngeo2119, 2014.

858 Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T., Bessières, L. and Molcard,  
859 R.: On the transformation of Pacific Water into Indonesian Throughflow Water by internal  
860 tidal mixing, *Geophys. Res. Lett.*, 34(4), 1–6, doi:10.1029/2006GL028405, 2007.

861 Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P.,  
862 Ciais, P., Sitch, S. and Prentice, I. C.: A dynamic global vegetation model for studies of the  
863 coupled atmosphere-biosphere system, *Global Biogeochem. Cycles*, 19(1), 1–33,  
864 doi:10.1029/2003GB002199, 2005.

865 Ladant, J. B. and Donnadieu, Y.: Palaeogeographic regulation of glacial events during the  
866 Cretaceous supergreenhouse, *Nat. Commun.*, 7(April 2017), 1–9, doi:10.1038/ncomms12771,  
867 2016.

868 Ladant, J. B., Donnadieu, Y., Bopp, L., Lear, C. H. and Wilson, P. A.: Meridional Contrasts  
869 in Productivity Changes Driven by the Opening of Drake Passage, *Paleoceanogr.*  
870 *Paleoclimatology*, 302–317, doi:10.1002/2017PA003211, 2018.

871 de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nylander, J. and Vic, C.: Toward global  
872 maps of internal tide energy sinks, *Ocean Model.*, 137(April), 52–75,  
873 doi:10.1016/j.ocemod.2019.03.010, 2019.

874 Leier, A., Quade, J., DeCelles, P. and Kapp, P.: Stable isotopic results from paleosol  
875 carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration, *Earth*  
876 *Planet. Sci. Lett.*, 279(3–4), 242–254, doi:10.1016/j.epsl.2008.12.044, 2009.

877 Levine, X. J. and Schneider, T.: Response of the Hadley Circulation to Climate Change in an  
878 Aquaplanet GCM Coupled to a Simple Representation of Ocean Heat Transport, *J. Atmos.*  
879 *Sci.*, 68(4), 769–783, doi:10.1175/2010jas3553.1, 2010.

880 Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J. and Pancost, R. D.: High sea-  
881 surface temperatures during the Early Cretaceous Epoch, *Nat. Geosci.*, 4(3), 169–172,  
882 doi:10.1038/ngeo1081, 2011.

883 Lunt, D. J., Jones, T. D., Heinemann, M., Huber, M., LeGrande, A., Winguth, A., Loptson,  
884 C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes, P. and Winguth, C.: A model-data  
885 comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations:  
886 *EoMIP*, *Clim. Past*, 8(5), 1717–1736, doi:10.5194/cp-8-1717-2012, 2012a.

887 Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J., Dowsett, H. J. and  
888 Loptson, C. A.: On the causes of mid-Pliocene warmth and polar amplification, *Earth Planet.*  
889 *Sci. Lett.*, 321–322, 128–138, doi:10.1016/j.epsl.2011.12.042, 2012b.

890 Lunt, D. J., Farnsworth, A., Loptson, C., L Foster, G., Markwick, P., O'Brien, C. L., Pancost,  
891 R. D., Robinson, S. A. and Wrobel, N.: Palaeogeographic controls on climate and proxy  
892 interpretation, *Clim. Past*, 12(5), 1181–1198, doi:10.5194/cp-12-1181-2016, 2016.

893 Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R.,  
894 Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., Von Der  
895 Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Turner, S. K., Korty, R. L.,  
896 Kozdon, R., Krishnan, S., Ladant, J. B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler,  
897 K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C.,  
898 Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A.,

899 Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C.  
900 and Zeebe, R. E.: The DeepMIP contribution to PMIP4: Experimental design for model  
901 simulations of the EECO, PETM, and pre-PETM (version 1.0), *Geosci. Model Dev.*, 10(2),  
902 889–901, doi:10.5194/gmd-10-889-2017, 2017.

903 MacLeod, K. G., Huber, B. T., Berrocoso, Á. J. and Wendler, I.: A stable and hot Turonian  
904 without glacial  $\delta^{18}\text{O}$  excursions is indicated by exquisitely preserved Tanzanian foraminifera,  
905 *Geology*, 41(10), 1083–1086, doi:10.1130/G34510.1, 2013.

906 Madec, G.: NEMO ocean engine (2012), , (27), 2012.

907 Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole singularity,  
908 *Clim. Dyn.*, 12(6), 381–388, doi:10.1007/BF00211684, 1996.

909 Maffre, P., Ladant, J. B., Donnadieu, Y., Sepulchre, P. and Goddérés, Y.: The influence of  
910 orography on modern ocean circulation, *Clim. Dyn.*, 50(3–4), 1277–1289,  
911 doi:10.1007/s00382-017-3683-0, 2018.

912 Mays, C., Steinthorsdottir, M. and Stilwell, J. D.: Climatic implications of *Ginkgoites*  
913 *waarrensis* Douglas emend. from the south polar Tupuangi flora, Late Cretaceous  
914 (Cenomanian), Chatham Islands, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 438, 308–326,  
915 doi:10.1016/j.palaeo.2015.08.011, 2015.

916 Le Mézo, P., Beaufort, L., Bopp, L., Braconnot, P. and Kageyama, M.: From monsoon to  
917 marine productivity in the Arabian Sea: Insights from glacial and interglacial climates, *Clim.*  
918 *Past*, 13(7), 759–778, doi:10.5194/cp-13-759-2017, 2017.

919 Monteiro, F. M., Pancost, R. D., Ridgwell, A. and Donnadieu, Y.: Nutrients as the dominant  
920 control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic  
921 event (OAE2): Model-data comparison, *Paleoceanography*, 27(4), 1–17,  
922 doi:10.1029/2012PA002351, 2012.

923 Müller, R. D., Sdrolias, M., Gaina, C. and Roest, W. R.: Age, spreading rates, and spreading  
924 asymmetry of the world's ocean crust, *Geochemistry, Geophys. Geosystems*, 9(4), 1–19,  
925 doi:10.1029/2007GC001743, 2008.

926 Niegodzki, I., Knorr, G., Lohmann, G., Tyszka, J. and Markwick, P. J.: Late Cretaceous  
927 climate simulations with different CO<sub>2</sub> levels and subarctic gateway configurations: A model-  
928 data comparison, *Paleoceanography*, 32(9), 980–998, doi:10.1002/2016PA003055, 2017.

929 Norris, R. D., Bice, K. L., Magno, E. A. and Wilson, P. A.: Jiggling the tropical thermostat in  
930 the Cretaceous hothouse, *Geology*, 30(4), 299–302, doi:10.1130/0091-  
931 7613(2002)030<0299:JTTTIT>2.0.CO;2, 2002.

932 O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt,

933 D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C., Farnsworth, A., Forster, A.,  
934 Huber, B. T., Inglis, G. N., Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena,  
935 A., Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M.,  
936 Vellekoop, J., Wagner, T. and Wrobel, N. E.: Cretaceous sea-surface temperature evolution:  
937 Constraints from TEX 86 and planktonic foraminiferal oxygen isotopes, *Earth-Science Rev.*,  
938 172(March 2016), 224–247, doi:10.1016/j.earscirev.2017.07.012, 2017.

939 Ohba, M. and Ueda, H.: A GCM Study on Effects of Continental Drift on Tropical Climate at  
940 the Early and Late Cretaceous, *J. Meteorol. Soc. Japan*, 88(6), 869–881,  
941 doi:10.2151/jmsj.2010-601, 2011.

942 Ortega, P., Mignot, J., Swingedouw, D., Sévellec, F. and Guilyardi, E.: Reconciling two  
943 alternative mechanisms behind bi-decadal variability in the North Atlantic, *Prog. Oceanogr.*,  
944 137, 237–249, doi:10.1016/j.pocean.2015.06.009, 2015.

945 Otto-bliesner, B. L. and Upchurch, G. R.: the Late Cretaceous period, , 385127(February),  
946 18–21, 1997.

947 Pearson, P. N., DitchfieldPeter, W., SinganoJoyce, Harcourt-BrownKatherine, G.,  
948 NicholasChristopher, J., OlssonRichard, K., ShackletonNicholas, J. and HallMike, A.:  
949 erratum: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs,  
950 *Nature*, 414(6862), 470 [online] Available from: <http://dx.doi.org/10.1038/35106617>, 2001.

951 Poulsen, C. J., Seidov, D., Barron, E. J. and Peterson, W. H.: The impact of paleogeographic  
952 evolution on the surface oceanic circulation and the marine environment within the Mid-  
953 Cretaceous tethys, , 13(5), 546–559, 1998.

954 Poulsen, C. J., Barron, E. J., Arthur, M. A. and Peterson, W. H.: Response of the mid-  
955 Cretaceous global oceanic circulation to tectonic and CO<sub>2</sub> forcings,  
956 *Paleoceanography*, 16(6), 576–592, doi:10.1029/2000PA000579, 2001.

957 Poulsen, C. J., Gendaszek, A. S. and Jacob, R. L.: Did the rifting of the Atlantic Ocean cause  
958 the Cretaceous thermal maximum?, *Geology*, 31(2), 115–118, doi:10.1130/0091-  
959 7613(2003)031<0115:DTROTA>2.0.CO;2, 2003.

960 Poulsen, C. J., Pollard, D. and White, T. S.: General circulation model simulation of the δ<sup>18</sup>O  
961 content of continental precipitation in the middle Cretaceous: A model-proxy comparison,  
962 *Geology*, 35(3), 199–202, doi:10.1130/G23343A.1, 2007.

963 Pucéat, E., Lécuyer, C., Donnadieu, Y., Naveau, P., Cappetta, H., Ramstein, G., Huber, B. T.  
964 and Kriwet, J.: Fish tooth δ<sup>18</sup>O revising Late Cretaceous meridional upper ocean water  
965 temperature gradients, *Geology*, 35(2), 107–110, doi:10.1130/G23103A.1, 2007.

966 Retallack, G. J. and Conde, G. D.: Deep time perspective on rising atmospheric CO<sub>2</sub>, *Glob.*

967 Planet. Change, 189(March), 103177, doi:10.1016/j.gloplacha.2020.103177, 2020.

968 Robinson, S. A., Dickson, A. J., Pain, A., Jenkyns, H. C., O'Brien, C. L., Farnsworth, A. and

969 Lunt, D. J.: Southern Hemisphere sea-surface temperatures during the Cenomanian-Turonian:

970 Implications for the termination of Oceanic Anoxic Event 2, *Geology*, 47(2), 131–134,

971 doi:10.1130/G45842.1, 2019.

972 Rose, B. E. J. and Ferreira, D.: Ocean heat transport and water vapor greenhouse in a warm

973 equitable climate: A new look at the low gradient paradox, *J. Clim.*, 26(6), 2117–2136,

974 doi:10.1175/JCLI-D-11-00547.1, 2013.

975 Royer, D. L.: Atmospheric CO<sub>2</sub> and O<sub>2</sub> During the Phanerozoic: Tools, Patterns, and

976 Impacts, 2nd ed., Elsevier Ltd., 2013.

977 Royer, D. L., Berner, R. A. and Park, J.: Climate sensitivity constrained by CO<sub>2</sub>

978 concentrations over the past 420 million years, *Nature*, 446(7135), 530–532,

979 doi:10.1038/nature05699, 2007.

980 Sandler, A. and Harlavan, Y.: Early diagenetic illitization of illite-smectite in Cretaceous

981 sediments (Israel): evidence from K-Ar dating, *Clay Miner.*, 41(2), 637–658,

982 doi:10.1180/0009855064120210, 2006.

983 Sarr, A. C., Sepulchre, P. and Husson, L.: Impact of the Sunda Shelf on the Climate of the

984 Maritime Continent, *J. Geophys. Res. Atmos.*, doi:10.1029/2018JD029971, 2019.

985 Schmidt, G. A. and Mysak, L. A.: Can increased poleward oceanic heat flux explain the warm

986 Cretaceous climate?, *Paleoceanography*, 11(5), 579–593, doi:10.1029/96PA01851, 1996.

987 Sellers, P. ., Bounoua, L., Collatz, G. J., Randall, D. A., Dazlich, D. A., Los, S. O., Berry, J.

988 A., Fung, I., Tucker, C. J., Field, C. B. and Jensen, T. G.: Comparison of Radiative and

989 Physiological Effects of Doubled Atmospheric CO<sub>2</sub> on Climate, , 1402–1406, 1996.

990 Sellwood, B. W., Price, G. D. and Valdest, P. J.: Cretaceous temperatures, , 370(August),

991 453–455, 1994.

992 Sepulchre, P., Caubel, A., Ladant, J., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P.,

993 Cozic, A., Donnadieu, Y., Estella-perez, V., Ethé, C., Fluteau, F., Foujols, M., Gastineau, G.,

994 Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., Marti, O., Meurdesoif,

995 Y., Mignot, J., Sarr, A., Servonnat, J., Swingedouw, D., Szopa, S. and Tardif, D.: IPSL-

996 CM5A2 . An Earth System Model designed for multi-millennial climate simulations, ,

997 (December), 2019.

998 Sewall, J. O., Van De Wal, R. S. W., Van Der Zwan, K., Van Oosterhout, C., Dijkstra, H. A.

999 and Scotese, C. R.: Climate model boundary conditions for four Cretaceous time slices, *Clim.*

1000 *Past*, 3(4), 647–657, doi:10.5194/cp-3-647-2007, 2007.

1001 Simmons, H. L., Jayne, S. R., St. Laurent, L. C. and Weaver, A. J.: Tidally driven mixing in a  
1002 numerical model of the ocean general circulation, *Ocean Model.*, 6(3–4), 245–263,  
1003 doi:10.1016/S1463-5003(03)00011-8, 2004.

1004 Sluijs, A., Schouten, S., Pagani, M., Woltering, M. and Brinkhuis, H.: Subtropical Arctic  
1005 Ocean temperatures during the Palaeocene / Eocene thermal maximum, , (May 2014),  
1006 doi:10.1038/nature04668, 2006.

1007 Spicer, R. A. and Herman, A. B.: The Late Cretaceous environment of the Arctic: A  
1008 quantitative reassessment based on plant fossils, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*,  
1009 295(3–4), 423–442, doi:10.1016/j.palaeo.2010.02.025, 2010.

1010 Steinig, S., Dummann, W., Park, W., Latif, M., Kusch, S., Hofmann, P. and Flögel, S.:  
1011 Evidence for a regional warm bias in the Early Cretaceous TEX86 record, *Earth Planet. Sci.  
1012 Lett.*, 539, 116184, doi:10.1016/j.epsl.2020.116184, 2020.

1013 Swingedouw, D., Rodehacke, C. B., Olsen, S. M., Menary, M., Gao, Y., Mikolajewicz, U.  
1014 and Mignot, J.: On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet  
1015 melting in projections: a multi-model assessment, *Clim. Dyn.*, 44(11–12), 3261–3279,  
1016 doi:10.1007/s00382-014-2270-x, 2015.

1017 Swingedouw, D., Mignot, J., Guilyardi, E., Nguyen, S. and Ormières, L.: Tentative  
1018 reconstruction of the 1998–2012 hiatus in global temperature warming using the IPSL–  
1019 CM5A–LR climate model, *Comptes Rendus - Geosci.*, 349(8), 369–379,  
1020 doi:10.1016/j.crte.2017.09.014, 2017.

1021 Tabor, C. R., Poulsen, C. J., Lunt, D. J., Rosenbloom, N. A., Otto-Bliesner, B. L., Markwick,  
1022 P. J., Brady, E. C., Farnsworth, A. and Feng, R.: The cause of Late Cretaceous cooling: A  
1023 multimodel-proxy comparison, *Geology*, 44(11), 963–966, doi:10.1130/G38363.1, 2016.

1024 Tagliabue, A., Bopp, L., Dutay, J. C., Bowie, A. R., Chever, F., Jean-Baptiste, P., Bucciarelli,  
1025 E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O., Gehlen, M. and Jeandel, C.:  
1026 Hydrothermal contribution to the oceanic dissolved iron inventory, *Nat. Geosci.*, 3(4), 252–  
1027 256, doi:10.1038/ngeo818, 2010.

1028 Tan, N., Ramstein, G., Dumas, C., Contoux, C., Ladant, J. B., Sepulchre, P., Zhang, Z. and  
1029 De Schepper, S.: Exploring the MIS M2 glaciation occurring during a warm and high  
1030 atmospheric CO<sub>2</sub>Pliocene background climate, *Earth Planet. Sci. Lett.*, 472, 266–276,  
1031 doi:10.1016/j.epsl.2017.04.050, 2017.

1032 Tierney, J. E.: GDGT Thermometry: Lipid Tools for Reconstructing Paleotemperatures,  
1033 *Paleontol. Soc. Pap.*, 18, 115–132, doi:10.1017/s1089332600002588, 2012.

1034 Turgeon, S. C. and Creaser, R. A.: Cretaceous oceanic anoxic event 2 triggered by a massive

1035 magmatic episode, , 454(July), doi:10.1038/nature07076, 2008.

1036 Upchurch, G. R.: Vegetation-atmosphere interactions and their role in global warming during  
1037 the latest Cretaceous, *Philos. Trans. R. Soc. B Biol. Sci.*, 353(1365), 97–112,  
1038 doi:10.1098/rstb.1998.0194, 1998.

1039 Upchurch, G. R., Kiehl, J., Shields, C., Scherer, J. and Scotese, C.: Latitudinal temperature  
1040 gradients and high-latitude temperatures during the latest Cretaceous: Congruence of geologic  
1041 data and climate models, *Geology*, 43(8), 683–686, doi:10.1130/G36802.1, 2015.

1042 Valcke, S., Budich, R., Carter, M., Guilyardi, E., Lautenschlager, M., Redler, R. and  
1043 Steenman-clark, L.: The PRISM software framework and the OASIS coupler, , 5(September  
1044 2014), 2001–2004, 2006.

1045 Vandermark, D., Tarduno, J. A. and Brinkman, D. B.: A fossil champsosaur population from  
1046 the high Arctic: Implications for Late Cretaceous paleotemperatures, *Palaeogeogr.*  
1047 *Palaeoclimatol. Palaeoecol.*, 248(1–2), 49–59, doi:10.1016/j.palaeo.2006.11.008, 2007.

1048 Veizer, J., Godderis, Y. and François, L. M.: Evidence for decoupling of atmospheric CO<sub>2</sub>  
1049 and global climate during the Phanerozoic eon, *Nature*, 408(6813), 698–701,  
1050 doi:10.1038/35047044, 2000.

1051 Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J. and Lin, Z.: Paleo-CO<sub>2</sub> variation trends and  
1052 the Cretaceous greenhouse climate, *Earth-Science Rev.*, 129, 136–147,  
1053 doi:10.1016/j.earscirev.2013.11.001, 2014.

1054 Wilson, M. F. and Henderson-sellers, A.: LBA Regional Vegetation and Soils, 1-Degree  
1055 (Wilson and Henderson-Sellers), , doi:10.3334/ORNLDAAC/687, 2003.

1056 Woillez, M. N., Levavasseur, G., Daniau, A. L., Kageyama, M., Urrego, D. H., Sánchez-  
1057 Goñi, M. F. and Hanquiez, V.: Impact of precession on the climate, vegetation and fire  
1058 activity in southern Africa during MIS4, *Clim. Past*, 10(3), 1165–1182, doi:10.5194/cp-10-  
1059 1165-2014, 2014.

1060 Zhou, J., Poulsen, C. J., Pollard, D. and White, T. S.: Simulation of modern and middle  
1061 Cretaceous marine  $\delta^{18}\text{O}$  with an ocean-atmosphere general circulation model,  
1062 *Paleoceanography*, 23(3), 1–11, doi:10.1029/2008PA001596, 2008.

1063 Zhou, J., Poulsen, C. J., Rosenbloom, N., Shields, C. and Briegleb, B.: Vegetation-climate  
1064 interactions in the warm mid-Cretaceous, *Clim. Past*, 8(2), 565–576, doi:10.5194/cp-8-565-  
1065 2012, 2012.

1066 Zhu, J., Poulsen, C. J. and Tierney, J. E.: Simulation of Eocene extreme warmth and high  
1067 climate sensitivity through cloud feedbacks, *Sci. Adv.*, 5(9), eaax1874,  
1068 doi:10.1126/sciadv.aax1874, 2019.

1069 Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C. and Noone, D. C.:  
1070 Simulation of early Eocene water isotopes using an Earth system model and its implication  
1071 for past climate reconstruction, *Earth Planet. Sci. Lett.*, 537, 116164,  
1072 doi:10.1016/j.epsl.2020.116164, 2020.  
1073 Zobler, L.: Global Soil Types, 1-Degree Grid (Zobler), , doi:10.3334/ORNLDAAAC/418,  
1074 1999.  
1075  
1076  
1077