Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2431-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2431-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The SP19 chronology for the South Pole Ice Core – Part 2: gas chronology, Δage, and smoothing of atmospheric records
Jenna A. Epifanio
CORRESPONDING AUTHOR
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR, USA
Edward J. Brook
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR, USA
Christo Buizert
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR, USA
Jon S. Edwards
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR, USA
Todd A. Sowers
The Earth and Environmental Systems Institute, Pennsylvania State
University, University Park, PA, USA
Emma C. Kahle
Department of Earth and Space Science, University of Washington,
Seattle, WA, USA
Jeffrey P. Severinghaus
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Eric J. Steig
Department of Earth and Space Science, University of Washington,
Seattle, WA, USA
Dominic A. Winski
School of Earth and Climate Sciences, University of Maine, Orono,
ME, USA
Climate Change Institute, University of Maine, Orono, ME, USA
Erich C. Osterberg
Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
Tyler J. Fudge
Department of Earth and Space Science, University of Washington,
Seattle, WA, USA
Murat Aydin
Department of Earth System Science, University of California, Irvine, CA, USA
Ekaterina Hood
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
Michael Kalk
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR, USA
Karl J. Kreutz
School of Earth and Climate Sciences, University of Maine, Orono,
ME, USA
Climate Change Institute, University of Maine, Orono, ME, USA
David G. Ferris
Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
Joshua A. Kennedy
Department of Chemistry and Biochemistry, South Dakota State
University, Brookings, SD, USA
Viewed
Total article views: 3,434 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Jun 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,719 | 655 | 60 | 3,434 | 126 | 54 | 52 |
- HTML: 2,719
- PDF: 655
- XML: 60
- Total: 3,434
- Supplement: 126
- BibTeX: 54
- EndNote: 52
Total article views: 2,700 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 03 Dec 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,270 | 410 | 20 | 2,700 | 81 | 24 | 21 |
- HTML: 2,270
- PDF: 410
- XML: 20
- Total: 2,700
- Supplement: 81
- BibTeX: 24
- EndNote: 21
Total article views: 734 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Jun 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
449 | 245 | 40 | 734 | 45 | 30 | 31 |
- HTML: 449
- PDF: 245
- XML: 40
- Total: 734
- Supplement: 45
- BibTeX: 30
- EndNote: 31
Viewed (geographical distribution)
Total article views: 3,434 (including HTML, PDF, and XML)
Thereof 2,927 with geography defined
and 507 with unknown origin.
Total article views: 2,700 (including HTML, PDF, and XML)
Thereof 2,346 with geography defined
and 354 with unknown origin.
Total article views: 734 (including HTML, PDF, and XML)
Thereof 581 with geography defined
and 153 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
7 citations as recorded by crossref.
- Reconstruction of Temperature, Accumulation Rate, and Layer Thinning From an Ice Core at South Pole, Using a Statistical Inverse Method E. Kahle et al. 10.1029/2020JD033300
- Antarctic surface temperature and elevation during the Last Glacial Maximum C. Buizert et al. 10.1126/science.abd2897
- The Ice Core Gas Age‐Ice Age Difference as a Proxy for Surface Temperature C. Buizert 10.1029/2021GL094241
- CH<sub>4</sub> and N<sub>2</sub>O fluctuations during the penultimate deglaciation L. Schmidely et al. 10.5194/cp-17-1627-2021
- Seasonally Resolved Holocene Sea Ice Variability Inferred From South Pole Ice Core Chemistry D. Winski et al. 10.1029/2020GL091602
- Continuous-Flow Analysis of δ17O, δ18O, and δD of H2O on an Ice Core from the South Pole E. Steig et al. 10.3389/feart.2021.640292
- Anthropogenic Impacts on Atmospheric Carbonyl Sulfide Since the 19th Century Inferred From Polar Firn Air and Ice Core Measurements M. Aydin et al. 10.1029/2020JD033074
6 citations as recorded by crossref.
- Reconstruction of Temperature, Accumulation Rate, and Layer Thinning From an Ice Core at South Pole, Using a Statistical Inverse Method E. Kahle et al. 10.1029/2020JD033300
- Antarctic surface temperature and elevation during the Last Glacial Maximum C. Buizert et al. 10.1126/science.abd2897
- The Ice Core Gas Age‐Ice Age Difference as a Proxy for Surface Temperature C. Buizert 10.1029/2021GL094241
- CH<sub>4</sub> and N<sub>2</sub>O fluctuations during the penultimate deglaciation L. Schmidely et al. 10.5194/cp-17-1627-2021
- Seasonally Resolved Holocene Sea Ice Variability Inferred From South Pole Ice Core Chemistry D. Winski et al. 10.1029/2020GL091602
- Continuous-Flow Analysis of δ17O, δ18O, and δD of H2O on an Ice Core from the South Pole E. Steig et al. 10.3389/feart.2021.640292
Latest update: 23 Mar 2023
Short summary
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record including the composition of the past atmosphere. This paper describes the gas chronology for the South Pole ice core, based on a high-resolution methane record. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the delta age record.
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record...