Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2039-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2039-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum
Suzanne Alice Ghislaine Leroy
CORRESPONDING AUTHOR
Aix Marseille Univ, CNRS, Minist Culture, LAMPEA, UMR 7269, 5 rue du Château de l'Horloge, BP 647, 13094 Aix-en-Provence Cedex 2, France
Environmental Sciences, University of Liverpool , UK
Klaus Arpe
CORRESPONDING AUTHOR
Max-Planck-Institute for Meteorology, Hamburg, Germany
retired
Uwe Mikolajewicz
Max-Planck-Institute for Meteorology, Hamburg, Germany
Institute of Geology and Geophysics, Chinese Academy of Science (IGGCAS) Beijing, 100029, P. R. China
Related authors
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
A. Naderi Beni, H. Lahijani, R. Mousavi Harami, K. Arpe, S. A. G. Leroy, N. Marriner, M. Berberian, V. Andrieu-Ponel, M. Djamali, A. Mahboubi, and P. J. Reimer
Clim. Past, 9, 1645–1665, https://doi.org/10.5194/cp-9-1645-2013, https://doi.org/10.5194/cp-9-1645-2013, 2013
Malena Andernach, Marie-Luise Kapsch, and Uwe Mikolajewicz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-24, https://doi.org/10.5194/esd-2024-24, 2024
Revised manuscript under review for ESD
Short summary
Short summary
Using a comprehensive set of simulations with the Max Planck Institute for Meteorology Earth System Model, we disentangle and quantify the impacts of a disintegrated Greenland Ice Sheet on the global climate, including the deep ocean. We find that most of the climate response is driven by Greenland’s lower elevation and enhanced by changed surface-properties, although regional differences exist. The altered climate conditions constrain a potential ice-sheet regrowth to high-bedrock elevations.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-55, https://doi.org/10.5194/cp-2024-55, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A fully coupled atmosphere-ocean-ice sheet-solid earth model was applied to simulate the time from the last glacial maximum to the preindustrial. The model simulations are compared to proxy data. During the glacial and deglaciation the model simulates several abrupt changes in North Atlantic climate. The underlying meachanisms are analysed and described.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Clemens Schannwell, Uwe Mikolajewicz, Florian Ziemen, and Marie-Luise Kapsch
Clim. Past, 19, 179–198, https://doi.org/10.5194/cp-19-179-2023, https://doi.org/10.5194/cp-19-179-2023, 2023
Short summary
Short summary
Heinrich-type ice-sheet surges are recurring events over the course of the last glacial cycle during which large numbers of icebergs are discharged from the Laurentide ice sheet into the ocean. These events alter the evolution of the global climate. Here, we use model simulations of the Laurentide ice sheet to identify and quantify the importance of various climate and ice-sheet parameters for the simulated surge cycle.
Katharina Dorothea Six and Uwe Mikolajewicz
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-27, https://doi.org/10.5194/bg-2022-27, 2022
Preprint withdrawn
Short summary
Short summary
We developed a global ocean biogeochemical model with a zoom on the Benguela upwelling system. We show that the high spatial resolution is necessary to capture long-term trends of oxygen of the recent past. The regional anthropogenic carbon uptake over the last century is lower than compared to a coarser resolution ocean model as used in Earth system models. This suggests that, at least for some regions, the changes projected by these Earth system models are associated with high uncertainty.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Marie-Luise Kapsch, Uwe Mikolajewicz, Florian A. Ziemen, Christian B. Rodehacke, and Clemens Schannwell
The Cryosphere, 15, 1131–1156, https://doi.org/10.5194/tc-15-1131-2021, https://doi.org/10.5194/tc-15-1131-2021, 2021
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Moritz Mathis and Uwe Mikolajewicz
Ocean Sci., 16, 167–193, https://doi.org/10.5194/os-16-167-2020, https://doi.org/10.5194/os-16-167-2020, 2020
Short summary
Short summary
In a strong global warming scenario, declining nutrient concentrations of Atlantic water masses flushing the NWES lead to a reduction in the biological productivity on the shelf. We show that meltwater discharge from the Greenland ice sheet induces a change in the subpolar ocean circulation, resulting in a nutrient increase of deeper Atlantic water masses. These are mixed up at the shelf break and spread over the shelf, mitigating both the expected nutrient decline and productivity reduction.
Andreas Lang and Uwe Mikolajewicz
Ocean Sci., 15, 651–668, https://doi.org/10.5194/os-15-651-2019, https://doi.org/10.5194/os-15-651-2019, 2019
Short summary
Short summary
Here we investigate the occurrence of extreme storm surges in the southern German Bight and their associated large-scale forcing mechanisms using climate model simulations covering the last 1000 years. We find that extreme storm surges are characterized by a large internal variability that masks potential links to external climate forcing or background sea level fluctuations; existing estimates of extreme sea levels based on short data records thus fail to account for their full variability.
Florian Andreas Ziemen, Marie-Luise Kapsch, Marlene Klockmann, and Uwe Mikolajewicz
Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, https://doi.org/10.5194/cp-15-153-2019, 2019
Short summary
Short summary
Heinrich events are among the dominant modes of glacial climate variability. They are caused by massive ice discharges from the Laurentide Ice Sheet into the North Atlantic. In previous studies, the climate changes were either seen as resulting from freshwater released from the melt of the discharged icebergs or by ice sheet elevation changes. With a coupled ice sheet–climate model, we show that both effects are relevant with the freshwater effects preceding the ice sheet elevation effects.
Virna Loana Meccia and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4677–4692, https://doi.org/10.5194/gmd-11-4677-2018, https://doi.org/10.5194/gmd-11-4677-2018, 2018
Thomas Riddick, Victor Brovkin, Stefan Hagemann, and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4291–4316, https://doi.org/10.5194/gmd-11-4291-2018, https://doi.org/10.5194/gmd-11-4291-2018, 2018
Short summary
Short summary
During the Last Glacial Maximum, many rivers were blocked by the presence of large ice sheets and thus found new routes to the sea. This resulted in changes in the pattern of freshwater discharge into the oceans and thus would have significantly affected ocean circulation. Also, rivers found routes across the vast exposed continental shelves to the lower coastlines of that time. We propose a model for such changes in river routing suitable for use in wider models of the last glacial cycle.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Valerie Menke, Werner Ehrmann, Yvonne Milker, Swaantje Brzelinski, Jürgen Möbius, Uwe Mikolajewicz, Bernd Zolitschka, Karin Zonneveld, Kay Christian Emeis, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-139, https://doi.org/10.5194/cp-2017-139, 2017
Preprint withdrawn
Short summary
Short summary
This study examines changes in the marine ecosystem during the past 1300 years in the Gulf of Taranto (Italy) to unravel natural and anthropogenic forcing. Our data suggest, that processes at the sea floor are linked to the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation. During the past 200 years, the effects of rising northern hemisphere temperature and increasing anthropogenic activity enhanced nutrient and organic matter fluxes leading to more eutrophic conditions.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Marlene Klockmann, Uwe Mikolajewicz, and Jochem Marotzke
Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016, https://doi.org/10.5194/cp-12-1829-2016, 2016
Short summary
Short summary
We study the response of the glacial AMOC to different forcings in a coupled AOGCM. The depth of the upper overturning cell remains almost unchanged in response to the full glacial forcing. This is the result of two opposing effects: a deepening due to the ice sheets and a shoaling due to the low GHG concentrations. Increased brine release in the Southern Ocean is key to the shoaling. With glacial ice sheets, a shallower cell can be simulated with GHG concentrations below the glacial level.
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
F. A. Ziemen, C. B. Rodehacke, and U. Mikolajewicz
Clim. Past, 10, 1817–1836, https://doi.org/10.5194/cp-10-1817-2014, https://doi.org/10.5194/cp-10-1817-2014, 2014
A. Naderi Beni, H. Lahijani, R. Mousavi Harami, K. Arpe, S. A. G. Leroy, N. Marriner, M. Berberian, V. Andrieu-Ponel, M. Djamali, A. Mahboubi, and P. J. Reimer
Clim. Past, 9, 1645–1665, https://doi.org/10.5194/cp-9-1645-2013, https://doi.org/10.5194/cp-9-1645-2013, 2013
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein
Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, https://doi.org/10.5194/bg-10-3767-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Historical Records | Timescale: Pleistocene
Refinement of the environmental and chronological context of the archeological site El Harhoura 2 (Rabat, Morocco) using paleoclimatic simulations
Simulation of ash clouds after a Laacher See-type eruption
Léa Terray, Emmanuelle Stoetzel, Eslem Ben Arous, Masa Kageyama, Raphaël Cornette, and Pascale Braconnot
Clim. Past, 19, 1245–1263, https://doi.org/10.5194/cp-19-1245-2023, https://doi.org/10.5194/cp-19-1245-2023, 2023
Short summary
Short summary
The reconstruction of paleoenvironments has long been a subject of great interest, particularly to study past biodiversity. Paleoenvironmental proxies often show inconsistencies, and age estimations can vary depending on the method used. We demonstrate the ability of paleoclimate simulations to address these discrepancies, illustrating the strong potential of our cross-disciplinary consistency approach to refine the context of archeological and paleontological sites.
Ulrike Niemeier, Felix Riede, and Claudia Timmreck
Clim. Past, 17, 633–652, https://doi.org/10.5194/cp-17-633-2021, https://doi.org/10.5194/cp-17-633-2021, 2021
Short summary
Short summary
The 13 kyr BP Laacher See eruption impacted local environments, human communities and climate. We have simulated the evolution of its fine ash and sulfur cloud such that it reflects the empirically known ash distribution. In our models, the heating of the ash causes a mesocyclone which changes the dispersion of the cloud itself, resulting in enhanced transport to low latitudes. This may partially explain why no Laacher See ash has yet been found in Greenlandic ice cores.
Cited articles
Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the Last Glacial Maximum, Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, 2013.
Arpe, K., Leroy, S. A. G., and Mikolajewicz, U.: A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia, Clim. Past, 7, 91–114, https://doi.org/10.5194/cp-7-91-2011, 2011.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Bhattacharyya, A., Mehrotra, N., Shah, S. K., Basavaiah, N., Chaudhary, V., Singh,
I. B., and Singh, I. B.: Analysis of vegetation and climate change during Late
Pleistocene from Ziro Valley, Arunachal Pradesh, Eastern Himalaya region,
Quaternary Sci. Rev., 101, 111–123, 2014.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Cao, X., Ni, J., Herzschuh, U., Wang, Y., and Zhao, Y.: A late Quaternary
pollen dataset from eastern continental Asia for vegetation and climate
reconstructions: Set up and evaluation, Palaeobot. Palyno., 194, 21–37, 2013.
Chen, D., Zhang, X., Kang, H., Sun X., Yin S., Du, H., Yamanaka, N., Gapare, W.,
Wu, H. X. and Li, C.: Phylogeography of Quercus variabilis Based on Chloroplast DNA Sequence in
East Asia: Multiple Glacial Refugia and Mainland-Migrated Island
Populations, PloS One, 7, e47268, https://doi.org/10.1371/journal.pone.0047268, 2012.
Chen, J., Liu, Y., Shi, X., Bong-Chool, S., Zou, J., and Yao, Z.: Climate and
environmental changes for the past 44 ka clarified in the Ulleung Basin,
East Sea (Japan Sea), Quaternary Int., 402, 73–80, 2016,
Chen, W.-Y., Su, T., Adams, J. M., Jacques, F. M. B., Ferguson, D. K., and Zhou, Z.-K:
Large-scale dataset from China gives new insights into leaf
margin–temperature relationships, Palaeogeogr. Palaeoclim., 402, 73–80, 2014.
Chen, X. M., Chen, F., Zhou, A., Wu, D., Chen, J., and Huang, X.: Vegetation
history, climatic changes and Indian summer monsoon evolution during the
last 36400 years documented from sediments of Xingyun Lake, south-west
China, 13th International Paleolimnological Symposium, Lanzhou, China, 4–7 August 2015,
volume of abstracts, 162–163, 2015.
Chung, C.-H.: Vegetation response to climate change on Jeju Island, South
Korea, during the last deglaciation based on pollen record, Geosci. J., 11,
147–155, 2007.
Chung, C.-H., Lim, H. S., and Yoon, H. I.: Vegetation and climate changes during the
Late Pleistocene to Holocene inferred from pollen record in Jinju area,
South Korea, Geosci. J., 10, 423–431, 2006.
Chung, C.-H., Lim, H. S., and Lee, H. J.: Vegetation and climate history during
the late Pleistocene and early Holocene inferred from pollen record in
Gwangju area, South Korea, Quaternary Int., 227, 61–67, 2010.
CLIMAP: Seasonal reconstructions of the Earth's surface at the last glacial
maximum, Geological Society of America, Map Chart Ser., MC-36, 1981.
Cook, C. G., Jones, R. T., Langdon, P. G., Leng, M. G., and Zhang, E: New insights
on Late Quaternary Asian palaeomonsoon variability and the timing of the
Last Glacial Maximum in southwestern China, Quaternary Sci. Rev., 30, 808–820,
2011
Cramer, W.: The climate data base of monthly normal for globally gridded climate variables, available at: http://www.pik-potsdam.de/~cramer/climate.html (last access: 28 October 2020), 1996.
Dai, L., Weng, C., and Limi, M.: Patterns of vegetation and climate change in the
South China Sea during the last glaciation inferred from marine
palynological records, Paleogeogr. Paleoclimatol. Paleoecol., 440,
249–258, 2015.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm,
E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.
P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.-N., and Vitart, F: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Donoghue, M. J. and Smith, S. A.: Patterns in the assembly of temperate
forests around the Northern Hemisphere, Philos. Trans. R. Soc. Lond. B, 359,
1633–1644, 2004.
ECMWF: Climate reanalysis, ERA interim, synoptic monthly means, available at: https://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=sfc/, last
access: 8 October 2019.
Fang, J., Wang, Z., and Tang, Z.: Atlas of woody plants in China, Higher Education
Press, Beijing, pp. 2020, 2009.
Fuji, R. and Sakai, H.: Paleoclimatic changes during the last 2.5 myr
recorded in the Kathmandu Basin, central Nepal Himalayas, J. Asian Earth
Sci., 20, 255–266, 2002.
Gotanda, K. and Yasuda, Y.: Spatial biome changes in southwestern Japan since
the Last Glacial Maximum, Quaternary Int., 184, 84–93, 2008.
Gotanda, K., Nakagawa, T., Tarasov, P., Kitagawa, J., Inoue, Y., and Yasuda, Y.:
Biome classification from Japanese pollen data: application to modern-day
and Late Quaternary samples, Quaternary Sci. Rev., 21, 647–657, 2002.
GPCC: download GPCC products, available at: ftp://ftp-anon.dwd.de/pub/data/gpcc/html/download_gate.html (last access: 1 December 2014), 2013.
Harrison, S. P., Yu, G., Takahara, H., and Prentice, I. C. : Diversity of
temperate plants in east Asia, Nature, 413, 129–130, 2001.
Hayashi, R., Takahara, H., Hayashida, A., and Takemura, K.: Millennial-scale
vegetation changes during the last 40,000 yr based on a pollen record from
Lake Biwa, Japan, Quaternary Res., 74, 91–99, 2010.
He, K., Hu, N.-Q., Chen, X., Li, J.-T., and Jiang, X.-L. : Interglacial refugia
preserved high genetic diversity of the Chinese mole shrew in the mountains
of southwest China, Heredity, 116, 23–32, 2016.
Igarachi, Y.: Pollen record in core MD01-2421 off Kashima, North Pacific:
correlation with the terrestrial polen record since MIS 6, J. Geol. Soc.
Japan, 115, 357–366, 2009.
Igarachi, Y. and Zharov, A. E.: Climate and vegetation change during the late
Pleistocene and early Holocene in Sakhalin and Hokkaido, northeast Asia,
Quaternary Int., 237, 24–31, 2011.
Jiang, D. and Lang, X.: Last Glacial Maximum East Asian Monsoon: Results of
PMIP Simulations, J. Climate, 23, 5030–5038, https://doi.org/10.1175/2010JCLI3526.1, 2010.
Kawahata, H. and Ohshima, H: Vegetation and environmental record in the
northern East China Sea during the late Pleistocene, Global Planet Change,
41, 251–273, 2004.
Kim, S.-J., Crowley, T. J., Erickson, D. J., Govindasamy, B., Duffy, P. B., and
Lee, B. Y.: High-resolution climate simulation of the last glacial maximum,
Clim. Dynam., 31, 1–16, https://doi.org/10.1007/s00382-007-0332-z, 2008.
Kotlia, B. S., Sanwal, J., Phartiyal, B., Joshi, L., Trivedi, A., and Sharma, C.:
Late Quaternary climatic changes in the eastern Kumaun Himalaya, India, as
deduced from multi-proxy studies, Quaternary Int., 213, 44–55, 2010.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Chen, M. T.,
Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and
Waelbroeck, C.: Reconstruction of Sea-Surface Temperatures from Assemblages
of Planktonic Foraminifera: Multi-Technique Approach Based on Geographically
Constrained Calibration Data Sets and Its Application to Glacial Atlantic
and Paci?c Oceans, Quaternary Sci. Rev., 24, 951–998, 2005.
Kumon, F., Kawai, S., and Inouchi, Y.: Climate Changes between 25000 and 6000 yrs
BP Deduced from TOC, TN, and Fossil Pollen Analyses of a Sediment Core from
Lake Nojiri, Central Japan, The Quaternary Res., 42, 13–26,
2003.
Kuroda, T. and Ota, T.: Palynological study of the late Pleistocene and
Holocene deposits of the Tenjin area, Fukuoka City, northern Kyushu, part 1,
The Quaternary Res., 17, 1–14, 1978 (in Japanese with English summary).
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and
global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci., 111,
43, 15296–15303, 2014.
Leemans, R. and Cramer, W.: The IIASA database for mean monthly values of
temperature, precipitation and cloudiness of a global terrestrial grid,
International Institute (IIASA), RR-91-18, 1991.
Leroy, S. A. G.: Progress in palynology of the Gelasian-Calabrian Stages in
Europe: ten messages, Rev. Micropaléontol., 50, 293–308, 2007.
Leroy, S. and Arpe, K.: Glacial refugia for summer-green trees in Europe and S-W Asia as proposed by ECHAM3 time slice atmospheric model simulations, J.
Biogeogr., 34, 2115–2128, 2007.
Li, J. and Del Tredici, P.: The Chinese Parrotia: A Sibling Species of the Persian
Parrotia, Arnoldia, 66, 2–9, 2008.
Li, J., Zheng, Z., Huang, K., Yang, S., Chase, B., Valsecchi, V., Carré, M., and
Cheddadi, R.: Vegetation changes during the past 40,000 years in Central
China from a long fossil record, Quaternary Int., 310, 221–226, 2013.
Liao, J. C.: Fagaceae, in: Flora of Taiwan. Volume 2. 2nd edition, edited by:
Boufford, D. E., Hsieh, C. F., Huang, T. C., Ohashi, H., Yang, Y. P., and Lu, S.
Y., Taipei, Taiwan: Editorial Committee of Flora of Taiwan, 114–115, 122,
1996.
Liew, P.-M., Huang, S.-Y., and Kuo, C.-M.: Pollen stratigraphy, vegetation and
environment of the last glacial and Holocene – A record from Toushe Basin,
central Taiwan, Quaternary Int., 147, 16–33, 2006.
Liu, D., Gao, X., Wang, X., Zhang, S., Pei, S., and Chen, F.: Palaeoenvironmental
changes from sporopollen record during the later Late Pleistocene at
Shuidonggou locality 2 in Yinchuan, Ningxia, J. Palaeogeography, 13,
467–472, 2011 (in Chinese with English abstract).
López-Pujol, J., Zhang, F.-M., Sun, H.-Q., Ying, T.-S., and Ge, S.: Mountains
of southern China as “Plant Museums” and “Plant Craddles”: evolutionary
and conservation insights, Mountain Res. Develop., 31, 261–269,
2011.
Lu, H.-Y., Liu, J.-Q., Chu, G.-Q., Gu, Z.-Y., Negendank, J., Schettler, G., and
Mingram, J.: A study of pollen and environment in the Huguangyan maar lake
since the last glaciation, Acta Palaeontol. Sinica, 42, 284–291, 2003.
Mikolajewicz, U., Vizcaino, M., Jungclaus, J., and Schurgers, G.: Effect of
ice sheet interactions in anthropogenic climate change simulations, Geophys.
Res. Lett., 34, L18706, https://doi.org/10.1029/2007GL031173, 2007.
Milne, R. I. and Abbott, R. J.: The Origin and Evolution of Tertiary Relict
Floras, Adv. Bot. Res., 38, 281–314, 2002.
Mix, A. C., Bard, E., and Schneider, R.: Environmental processes of the ice
age: land, oceans, glaciers (EPILOG), Quaternary Sci. Rev., 20, 627–657,
2001.
Miyoshi, N. and Yano, N.: Late Pleistocene and Holocene vegetation history of
Ohnuma moor in the Chugoku Mountains, western Japan, Rev. Palaeobot. Palyno.,
46, 355–376, 1986.
Molavi-Arabshahi, M., Arpe, K., and Leroy, S. A. G.: Precipitation
and temperature of the south-west Caspian Sea region during the last 55
years, their trends and teleconnections with large-scale atmospheric
phenomena, Int. J. Climatol., 36, 2156–2172, https://doi.org/10.1002/joc.4483,
2016.
Momohara, A., Yoshida, A., Kudo, Y., and Nishiuchi, Okitsu S.: Paleovegetation
and climatic conditions in a refugium of temperate plants in central Japan
in the Last Glacial Maximum, Quaternary Int., 425, 38–48, 2016.
Nakagawa, T., Tarasov, P. E., Nishida, K., Gotanda, K., and Yasuda, Y.:
Quantitative pollen-based climate reconstruction in central Japan:
application to surface and Late Quaternary spectra, Quaternary Sci.
Rev., 21, 2099–2113, 2002.
Ni, J., Yu, G., Harrison, S. P., and Prentice, I. C.: Palaeovegetation in China
during the late Quaternary: biome reconstructions based on a global scheme
of plant functional types, Palaeogeogr. Palaeoclimatol. Palaeoecol., 289,
44–61, 2010.
Ni, J., Cao, X., Jeltsch, F., and Herzschuh, U.: Biome distribution over the last
22,000 yr in China, Palaeogeogr. Palaeocl., 409, 33–47, 2014.
Nishiuchi, R., Momohara, A., Osato, S., and Endo, K: Temperate deciduous
broadleaf forest dynamics around the last glacial maximum in a hilly area in
the northern Kanto district, central Japan, Quaternary Int., 455, 113–125, 2017.
Orain, R., Lebreton, V., Russo Ermolli, E., Combourieu-Nebout, N., and Sémah,
A.-M.: Carya as marker for tree refuges in southern Italy (Boiano basin) at the
Middle Pleistocene, Palaeogeogr. Palaeocl., 369, 295–302, 2013.
Park, J.: A modern pollen-temperature calibration data set from Korea and
quantitative temperature reconstructions for the Holocene, The Holocene, 21, 1125–1135, 2011.
Park, J. and Park, J.: Pollen-based temperature reconstructions from Jeju
island, South Korea and its implication for coastal climate of East Asia
during the late Pleistocene and early Holocene, Palaeogeogr. Palaeocl., 417,
445–457, 2015.
Piggott, D.: Lime-trees and Basswoods: A Biological Monograph of the Genus
Tilia, 395 pp., Cambridge University Press, Cambridge, UK, 2012.
Qi, X. S., Yuan, N., Comes, H. P., Sakaguchi, S., and Qiu, Y. X.: A strong `filter' effect
of the East China Sea land bridge for East Asia's temperate plant species:
inferences from molecular phylogeography and ecological niche modelling of
Platycrater arguta (Hydrangeaceae), BMC Evolut. Biol., 14, 16 pp., 2014.
Qian, H. and Ricklefs, R. E.: Large-scale processes and the Asian bias in species
diversity of temperate plants, Nature, 407, 180–182, 2000.
Qiu, Y. X., Fu, C. X., and Comes, H. P.: Plant molecular phylogeography in China and
adjacent regions: Tracing the genetic imprints of Quaternary climate and
environmental change in the world's most diverse temperate flora,. Mole.
Phylog. Evolut., 59, 225–244, 2011.
Reichler, T. and Kim, J.: How Well do Coupled Models Simulate Today's
Climate?,
B. Am. Meteorol. Soc., 89, 303–311, 2008.
Roche, D. M., Dokken, T. M., Goosse, H., Renssen, H., and Weber, S. L.: Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model, Clim. Past, 3, 205–224, https://doi.org/10.5194/cp-3-205-2007, 2007.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R.,
Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini,
E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The
atmospheric general circulation model ECHAM5, Part I: Model description, Max
Planck Institute for Meteorology, Hamburg, Report no. 349, 2003.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and
Ziese, M.: GPCC Full Data Reanalysis Version 6.0 at 0.5: Monthly Land-Surface
Precipitation from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/10.5676/DWD_GPCC/FD_M_V6_050, 2011.
Shen, C., Tang, L., Wang, S., Li, C., and Liu, K.: The Pollen Records and
time scale from the RM of the Zoige Basin, northeastern Qinghai-Tibetan
Plateau, Chinese Sci. Bull., 50, 553–562, 2005.
Shimada, M., Takahara, H., Imura, R., Haraguchi, T., Yonenobu, H. I., Hayashida, A.,
and Yamada, K.: Vegetation history based on pollen and charcoal analyses
since the Last Glacial Maximum in southern Kyushu, Japan, EPPC Padua Italy
26–21 August 2014, abstract book p. 253, 2014.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan,
J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.:
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon
cycling in the LPJ Dynamic Global Vegetation Model, Global Change Biol., 9, 161–185, 2003.
Solla, A., Martin, J. A., Corral, P., and Gil, L.: Seasonal changes in wood formation
of Ulmus pumila and U. minor and its relation with Dutch elm disease, New Phytol., 166,
1025–1034, 2005.
Sugaya, M., Okuda, M., and Okada, M.: Quantitative paleoclimate reconstruction
based on a 130 ka pollen record from teC9001C core off NE Japan, Quaternary Int.,
397, 404–416, 2016.
Sun, X. J. and Li, X.: A pollen record of the last 37 ka in deep sea core 17940
from the northern slope of the South China Sea, Mar. Geol., 156,
227–244, 1999.
Sun, X. J., Song, C. Q., and Wang, F. Y.: Vegetation history of the Southern
Loess Plateau of China during the last 100,000 years based on pollen data,
Acta Botanica Sinica, 38, 982–988,
1996 (in Chinese with English summary).
Sun, X., Li, X., Luo, Y., and Chen, X.: The vegetation and climate at the last
glaciation on the emerged continental shelf of the South China Sea,
Palaeogeogr. Palaeocl., 160, 301–316, 2000.
Sun, X., Luo, Y, Huang, F., Tian, J., and Wang, P.: Deep-sea pollen from the South
China Sea: Pleistocene indicators of East Asian monsoon, Mar. Geol., 201,
97–118, 2003.
Svenning, J.-C.: Deterministic Plio-Pleistocene extinctions in the European
cool-temperate tree flora, Ecol. Lett., 6, 646–653, 2003.
Takahara, H. and Takeoka, M.: Vegetational changes since the last Glacial
maximum around the Hatchodaira Moor, Kyoto, Japan, Japan J. Ecol., 6,
105–116, 1986.
Takahara, H. and Takeoka, M.: Vegetation history since the last glacial period
in the Mikata lowland, the Sea of Japan area, western Japan, Ecol.
Res., 7, 371–386, 1992.
Takahara, H., Sugita, S., Harrison, S. P., Miyoshi, N., Morita, Y., and Uchiyama,
T.: Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000
14C yr BP, J. Biogeogr., 27, 665–683, 2000.
Tian, B., Liu, R., Wang, L., Qiu, Q., Chen, K., and Liu, J.: Phylogeographic
analyses suggest that a deciduous species (Ostryopsis davidiana Decne., Betulaceae) survived in
northern China during the Last Glacial Maximum, J. Biogeogr., 36, 2148–2155,
2009.
Tian, F., Cao, X., Dallmeyer, A., Ni, J., Zhao, Y., Wang, Y., and Herzschuh, U.:
Quantitative woody cover reconstructions from eastern continental Asia of
the last 22 kyr reveal strong regional peculiarities, Quaternary Sci. Rev., 137,
33–44, 2016.
Tian, Z. and Jiang, D.: Revisiting last glacial maximum climate over China and
east Asian monsoon using PMIP3 simulations, Palaeogeogr. Palaeocl. Palaeocol.,
453, 115–126, 2016.
Wang, S., Lu, H., Han, J., Chu, G., Liu, J., and Negendank, J. F. W.:
Palaeovegetation and palaeoclimate in low-latitude southern China during the
Last Glacial Maximum, Quaternary Int., 248, 79–85, 2012.
Xu, D., Lu, H., Wu, N., and Liu, Z.: 30 000-Year vegetation and climate change
around the East China Sea shelf inferred from a high-resolution pollen
record, Quaternary Int., 227, 53–60, 2010.
Xu, G., Yang, X., Ke, Z., Li Nag, W., and Yang, Z.: Environment Changes in Yanshan
Mountain Area during the Latest Pleistocene, Geogr. Terri.
Res., 18, 4 pp., 2002.
Yan, G., Wang, F. B., Shi, G. R., and Li, S. F.: Palynological and stable isotopic
study of palaeoenvironmental changes on the northeastern Tibetan plateau in
the last 30,000 years, Palaeogeogr. Palaeoclim. Palaeocl., 153, 147–159,
1999.
Yang, D., Peng, Z., Luo, C., Liu, Y., Zhang, Z., Liu, W., and Zhang, P.:
High-resolution pollen sequence from Lop Nur, Xinjiang, China: Implications
on environmental changes during the late Pleistocene to the early Holocene,
Palaeobot. Palyno., 192, 32–41, 2013.
Yi, S. and Kim, S.-J.: Vegetation changes in western central region of Korean
Peninsula during the last glacial (ca. 21.1–26.1 cal kyr BP), Geosci. J., 14, 1–10, 2010.
Yu, G., Ke, X., Xue, B., and Ni, J.: The relationships between the surface
arboreal pollen and the plants of the vegetation in China, Palaeobot. Palyno.,
129, 187–198, 2004.
Yu, S., Zheng, Z., Chen, Z., Jing, X., Kershaw, P., Moss, P., Peng, X., Zhang, X., Chen,
C., Zhou, Y., Huang, K., and Gan, H.: A last glacial and deglacial pollen record
from the northern South China Sea: New insight into coastal-shelf
paleoenvironment, Quaternary Sci. Rev., 157, 114–128, 2017.
Yue, Y., Zheng, Z., Huang, K., Chevalier, M., Chase, B. M., Carré, M., Ledru,
M.-P., and Cheddadi, R.: A continuous record of vegetation and climate change
over the past 50,000 years in the Fujian Province of eastern subtropical
China, Palaeogeogr. Palaeocl., 365–366, 115–123, https://doi.org/10.1016/j.palaeo.2012.09.018, 2012.
Zheng, Z., Huang, K., Deng, Y., Cao, L., Yu, S., and Suc, J.-P.: A 200 ka pollen
record from Okinawa Trough: Paleoenvironment reconstruction of
glacial-interglacial cycles, Sci. China Earth Sci., 56,
1731–1747, 2013.
Zheng, Z., Wei, J., Huang, K., Xu, Q., Lu, H., Tarasov, P., Luo, C., Beaudouin, C.,
Deng, Y., Pan, A., Zheng, Y., Luo, Y., Nakagawa, T., Li, C., Yang, S., Peng, H., and
Cheddadi, R.: East Asian pollen database: modern pollen distribution and its
quantitative relationship with vegetation and climate, J. Biogeogr., 41, 1819–1832,
https://doi.org/10.1111/jbi.12361, 2014.
Ziska, L. H. and Caulfield, F. A.: Rising CO2 and pollen production of
common ragweed (Ambrosia artemisiifolia), a known allergy inducing species: implications for public
health, Aust. J. Plant Physiol., 27, 893–898, 2000,
Short summary
The biodiversity of temperate deciduous trees in eastern Asia is greater than in Europe. During the peak of the last ice age, their distribution was obtained based on pollen data literature. A climate model, after validation on the present, was used to calculate the potential distribution of such trees in the past. It shows that the shift of the tree belt was only 2° latitude to the south. Moreover, greater population connectivity was shown for the Yellow Sea and southern Himalayas.
The biodiversity of temperate deciduous trees in eastern Asia is greater than in Europe. During...