Articles | Volume 16, issue 4
Clim. Past, 16, 1263–1283, 2020
https://doi.org/10.5194/cp-16-1263-2020
Clim. Past, 16, 1263–1283, 2020
https://doi.org/10.5194/cp-16-1263-2020
Research article
17 Jul 2020
Research article | 17 Jul 2020

Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean

Yurui Zhang et al.

Related authors

Arctic sea ice mass balance in a new coupled ice-ocean model using a brittle rheology framework
Guillaume Boutin, Einar Örn Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-142,https://doi.org/10.5194/tc-2022-142, 2022
Preprint under review for TC
Short summary
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022,https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Crustal structure of the East African Limpopo margin, a strike-slip rifted corridor along the continental Mozambique Coastal Plain and North Natal Valley
Mikael Evain, Philippe Schnürle, Angélique Leprêtre, Fanny Verrier, Louise Watremez, Joseph Offei Thompson, Philippe de Clarens, Daniel Aslanian, and Maryline Moulin
Solid Earth, 12, 1865–1897, https://doi.org/10.5194/se-12-1865-2021,https://doi.org/10.5194/se-12-1865-2021, 2021
Short summary
Wave–sea-ice interactions in a brittle rheological framework
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021,https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021,https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Cenozoic
Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model
R. P. M. Topper and P. Th. Meijer
Clim. Past, 11, 233–251, https://doi.org/10.5194/cp-11-233-2015,https://doi.org/10.5194/cp-11-233-2015, 2015

Cited articles

Abbott, A. N., Haley, B. A., Tripati, A. K., and Frank, M.: Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes, Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, 2016. 
Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., 9, 596–601, https://doi.org/10.1038/NGEO2749, 2016. 
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, 2016. 
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. 
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: Equilibrium state and sensitivity of the simulated middle-to-late Eocene climate, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, 2018. 
Download
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.