Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1263-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1263-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean
Univ Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie
Physique et Spatiale (LOPS), IUEM, Brest, France
Thierry Huck
Univ Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie
Physique et Spatiale (LOPS), IUEM, Brest, France
Camille Lique
Univ Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie
Physique et Spatiale (LOPS), IUEM, Brest, France
Yannick Donnadieu
Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL,
CEA/CNRS/UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE,
Aix-en-Provence, France
Jean-Baptiste Ladant
Department of Earth and Environmental Sciences, University of
Michigan, Ann Arbor, MI, USA
Marina Rabineau
CNRS, Univ Brest, Univ Bretagne Sud, Laboratoire Géosciences
Océan (LGO, UMR6538), IUEM, Plouzané, France
Daniel Aslanian
Ifremer, Unité de Recherche Géosciences Marines, Centre de
Bretagne, Plouzané, France
Related authors
No articles found.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023, https://doi.org/10.5194/tc-17-617-2023, 2023
Short summary
Short summary
Sea ice cover in the Arctic is full of cracks, which we call leads. We suspect that these leads play a role for atmosphere–ocean interactions in polar regions, but their importance remains challenging to estimate. We use a new ocean–sea ice model with an original way of representing sea ice dynamics to estimate their impact on winter sea ice production. This model successfully represents sea ice evolution from 2000 to 2018, and we find that about 30 % of ice production takes place in leads.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Mikael Evain, Philippe Schnürle, Angélique Leprêtre, Fanny Verrier, Louise Watremez, Joseph Offei Thompson, Philippe de Clarens, Daniel Aslanian, and Maryline Moulin
Solid Earth, 12, 1865–1897, https://doi.org/10.5194/se-12-1865-2021, https://doi.org/10.5194/se-12-1865-2021, 2021
Short summary
Short summary
This study analyses recently acquired marine seismic data offshore of southeastern Mozambique. It aims to better constrain the early history and formation of southeastern African margins. The crustal structure and segmentation of the Limpopo margin provide evidence of strike-slip rifting along the eastern North Natal Valley. This has profound consequences on our understanding of the East Gondwana breakup, challenging kinematic models based on an overlap between the Antarctic and African plates.
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021, https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
Short summary
In this study, we investigate the interactions of surface ocean waves with sea ice. We focus on the evolution of sea ice after it has been fragmented by the waves. Fragmented sea ice is expected to experience less resistance to deformation. We reproduce this evolution using a new coupling framework between a wave model and the recently developed sea ice model neXtSIM. We find that waves can significantly increase the mobility of compact sea ice over wide areas in the wake of storm events.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Jean-Baptiste Ladant, Christopher J. Poulsen, Frédéric Fluteau, Clay R. Tabor, Kenneth G. MacLeod, Ellen E. Martin, Shannon J. Haynes, and Masoud A. Rostami
Clim. Past, 16, 973–1006, https://doi.org/10.5194/cp-16-973-2020, https://doi.org/10.5194/cp-16-973-2020, 2020
Short summary
Short summary
Understanding of the role of ocean circulation on climate is contingent on the ability to reconstruct its modes and evolution. Here, we show that earth system model simulations of the Late Cretaceous predict major changes in ocean circulation as a result of paleogeographic and gateway evolution. Comparisons of model results with available data compilations demonstrate reasonable agreement but highlight that various plausible theories of ocean circulation change coexist during this period.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Guillaume Boutin, Camille Lique, Fabrice Ardhuin, Clément Rousset, Claude Talandier, Mickael Accensi, and Fanny Girard-Ardhuin
The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, https://doi.org/10.5194/tc-14-709-2020, 2020
Short summary
Short summary
We investigate the interactions of surface ocean waves with sea ice taking place at the interface between the compact sea ice cover and the open ocean. We use a newly developed coupling framework between a wave and an ocean–sea ice numerical model. Our results show how the push on sea ice exerted by waves changes the amount and the location of sea ice melting, with a strong impact on the ocean surface properties close to the ice edge.
Robert Ricker, Fanny Girard-Ardhuin, Thomas Krumpen, and Camille Lique
The Cryosphere, 12, 3017–3032, https://doi.org/10.5194/tc-12-3017-2018, https://doi.org/10.5194/tc-12-3017-2018, 2018
Short summary
Short summary
We present ice volume flux estimates through the Fram Strait using CryoSat-2 ice thickness data. This study presents a detailed analysis of temporal and spatial variability of ice volume export through the Fram Strait and shows the impact of ice volume export on Arctic ice mass balance.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
G. Hoareau, B. Bomou, D. J. J. van Hinsbergen, N. Carry, D. Marquer, Y. Donnadieu, G. Le Hir, B. Vrielynck, and A.-V. Walter-Simonnet
Clim. Past, 11, 1751–1767, https://doi.org/10.5194/cp-11-1751-2015, https://doi.org/10.5194/cp-11-1751-2015, 2015
Short summary
Short summary
The impact of Neo-Tethys closure on early Cenozoic warming has been tested. First, the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin has been calculated. Second, corresponding pCO2 have been tested using the GEOCLIM model. Despite high CO2 production, maximum pCO2 values (750ppm) do not reach values inferred from proxies. Other cited sources of excess CO2 such as the NAIP are also below fluxes required by GEOCLIM to fit with proxy data.
A. Pohl, Y. Donnadieu, G. Le Hir, J.-F. Buoncristiani, and E. Vennin
Clim. Past, 10, 2053–2066, https://doi.org/10.5194/cp-10-2053-2014, https://doi.org/10.5194/cp-10-2053-2014, 2014
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
G. Le Hir, Y. Teitler, F. Fluteau, Y. Donnadieu, and P. Philippot
Clim. Past, 10, 697–713, https://doi.org/10.5194/cp-10-697-2014, https://doi.org/10.5194/cp-10-697-2014, 2014
Related subject area
Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Cenozoic
The sensitivity of the Eocene–Oligocene Southern Ocean to the strength and position of wind stress
Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model
Qianjiang Xing, David Munday, Andreas Klocker, Isabel Sauermilch, and Joanne Whittaker
Clim. Past, 18, 2669–2693, https://doi.org/10.5194/cp-18-2669-2022, https://doi.org/10.5194/cp-18-2669-2022, 2022
Short summary
Short summary
A high-resolution ocean model and realistic paleo-bathymetry are applied to obtain accurate simulation results. We firstly propose that the alignment of the maximum wind stress with a deep Tasmanian Gateway and Drake Passage is a trigger for the proto-Antarctic Circumpolar Current (proto-ACC) and the cooling of the Eocene Southern Ocean. We use zonal momentum budget analysis to explore the nature of the proto-ACC and the sensitivity of its transport through gateways to doubled wind stress.
R. P. M. Topper and P. Th. Meijer
Clim. Past, 11, 233–251, https://doi.org/10.5194/cp-11-233-2015, https://doi.org/10.5194/cp-11-233-2015, 2015
Cited articles
Abbott, A. N., Haley, B. A., Tripati, A. K., and Frank, M.: Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes, Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, 2016.
Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M.,
and Talley, L. D.: Water-mass transformation by sea ice in the upper branch
of the Southern Ocean overturning, Nat. Geosci., 9, 596–601, https://doi.org/10.1038/NGEO2749,
2016.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A.,
Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing
atmospheric CO2 concentration was the primary driver of early Cenozoic
climate, Nature, 533, 380–384, 2016.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: Equilibrium state and sensitivity of the simulated middle-to-late Eocene climate, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, 2018.
Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A.,
Klein, T., Pérez-Díaz, L., and Frank, M.: Major intensification of
Atlantic overturning circulation at the onset of Paleogene greenhouse
warmth, Nat. Commun., 9, 4954, https://doi.org/10.1038/s41467-018-07457-7, 2018.
Boccaletti, G.: The vertical structure of ocean heat transport,
Geophys. Res. Lett., 32, L10603, https://doi.org/10.1029/2005GL022474, 2005.
Boyer, T., Levitus, S., Garcia, H., Locarnini, R. A., Stephens, C., and
Antonov, J.: Objective analyses of annual, seasonal, and monthly temperature
and salinity for the World Ocean on a 0.25∘ grid, Int. J. Climatol.,
25, 931–945, https://doi.org/10.1002/joc.1173, 2005.
Bryan, F.: Parameter Sensitivity of Primitive Equation Ocean General
Circulation Models, J. Phys. Oceanogr., 17, 970–985,
https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2,
1987.
Bryan, F. O., Danabasoglu, G., Nakashiki, N., Yoshida, Y., Kim, D.-H.,
Tsutsui, J., and Doney, S. C.: Response of the North Atlantic Thermohaline
Circulation and Ventilation to Increasing Carbon Dioxide in CCSM3, J.
Climate, 19, 2382–2397, https://doi.org/10.1175/JCLI3757.1, 2006.
Bryan, K.: Poleward Heat Transport by the Ocean: Observations and Models,
Annu. Rev. Earth Pl. Sc., 10, 15–38,
https://doi.org/10.1146/annurev.ea.10.050182.000311, 1982.
Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C. A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., and Pancost, R. D.: A model–model and data–model comparison for the early Eocene hydrological cycle, Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, 2016.
Cheng, W., Chiang, J. C. H., and Zhang, D.: Atlantic Meridional Overturning
Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations, J.
Climate, 26, 7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1, 2013.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.: Late
Cretaceous–Neogene trends in deep ocean temperature and continental ice
volume: Reconciling records of benthic foraminiferal geochemistry
(δ18O and Mg∕Ca) with sea level history, J. Geophys. Res., 116, C12023,
https://doi.org/10.1029/2011JC007255, 2011.
de Boer, A. M., Sigman, D. M., Toggweiler, J. R., and Russell, J. L.: Effect
of global ocean temperature change on deep ocean ventilation,
Paleoceanography, 22, PA2210, https://doi.org/10.1029/2005PA001242, 2007.
DeepMIP: The Deep-Time Model Intercomparison Project, available at: https://www.deepmip.org/, last access: 13 July 2020.
de Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. J. G., and Naveira
Garabato, A. C.: On the Consumption of Antarctic Bottom Water in the Abyssal
Ocean, J. Phys. Oceanogr., 46, 635–661, https://doi.org/10.1175/JPO-D-14-0201.1, 2016.
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic,
C.: Toward global maps of internal tide energy sinks, Ocean Model., 137,
52–75, https://doi.org/10.1016/j.ocemod.2019.03.010, 2019.
Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck,
J.-F.: A better-ventilated ocean triggered by Late Cretaceous changes in
continental configuration, Nat. Commun., 7, 10316,
https://doi.org/10.1038/ncomms10316, 2016.
Drijfhout, S. S. and Hazeleger, W.: Changes in MOC and gyre-induced Atlantic
Ocean heat transport, Geophys. Res. Lett., 33, L07707,
https://doi.org/10.1029/2006GL025807, 2006.
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A.,
Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints on
ocean warming across the Paleocene–Eocene Thermal Maximum, Earth-Sci. Rev.,
125, 123–145, https://doi.org/10.1016/j.earscirev.2013.07.004, 2013.
Emile-Geay, J. and Madec, G.: Geothermal heating, diapycnal mixing and the abyssal circulation, Ocean Sci., 5, 203–217, https://doi.org/10.5194/os-5-203-2009, 2009.
England, M. H., Hutchinson, D. K., Santoso, A., and Sijp, W. P.:
Ice–Atmosphere Feedbacks Dominate the Response of the Climate System to
Drake Passage Closure, J. Climate, 30, 5775–5790,
https://doi.org/10.1175/JCLI-D-15-0554.1, 2017.
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J.
A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., Valdes, P.
J., and Affek, H. P.: Eocene greenhouse climate revealed by coupled clumped
isotope-Mg∕Ca thermometry, P. Natl. Acad. Sci. USA, 115, 1174–1179,
https://doi.org/10.1073/pnas.1714744115, 2018.
Farnsworth, A., Lunt, D. J., O'Brien, C. L., Foster, G. L., Inglis, G. N.,
Markwick, P., Pancost, R. D., and Robinson, S. A.: Climate Sensitivity on
Geological Timescales Controlled by Nonlinear Feedbacks and Ocean
Circulation, Geophys. Res. Lett., 46, 9880–9889, https://doi.org/10.1029/2019GL083574,
2019.
Ferreira, D., Cessi, P., Coxall, H. K., de Boer, A., Dijkstra, H. A.,
Drijfhout, S. S., Eldevik, T., Harnik, N., McManus, J. F., Marshall, D. P.,
Nilsson, J., Roquet, F., Schneider, T., and Wills, R. C.: Atlantic-Pacific
Asymmetry in Deep Water Formation, Annu. Rev. Earth Pl. Sc., 46, 327–352,
https://doi.org/10.1146/annurev-earth-082517-010045, 2018.
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102,
12609–12646, https://doi.org/10.1029/97JC00480, 1997.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun., 8,
14845, https://doi.org/10.1038/ncomms14845, 2017.
Frank, M.: Radiogenic isotopes: Tracers of past ocean circulation and
erosional input, Rev. Geophys., 40, 1001, https://doi.org/10.1029/2000RG000094, 2002.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M.,
Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico,
F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the
Eocene-Oligocene boundary climate transition, Science, 352, 76–80,
https://doi.org/10.1126/science.aab0669, 2016.
Ganachaud, A. and Wunsch, C.: Large-Scale Ocean Heat and Freshwater
Transports during the World Ocean Circulation Experiment, J. Climate, 16,
696–705, 2003.
Gasson, E., Lunt, D. J., DeConto, R., Goldner, A., Heinemann, M., Huber, M., LeGrande, A. N., Pollard, D., Sagoo, N., Siddall, M., Winguth, A., and Valdes, P. J.: Uncertainties in the modelled CO2 threshold for Antarctic glaciation, Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014, 2014.
Gent, P. R.: A commentary on the Atlantic meridional overturning circulation
stability in climate models, Ocean Model., 122, 57–66,
https://doi.org/10.1016/j.ocemod.2017.12.006, 2018.
Green, J. A. M. and Huber, M.: Tidal dissipation in the early Eocene and
implications for ocean mixing: EOCENE TIDES, Geophys. Res. Lett., 40,
2707–2713, https://doi.org/10.1002/grl.50510, 2013.
Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J. A. M., Müller, R. D., Markwick, P., and Huber, M.: A suite of early Eocene (∼55 Ma) climate model boundary conditions, Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, 2014.
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Changes in
Global Ocean Bottom Properties and Volume Transports in CMIP5 Models under
Climate Change Scenarios, J. Climate, 28, 2917–2944,
https://doi.org/10.1175/JCLI-D-14-00381.1, 2015.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Holton, J. R. and Staley, D. O.: An Introduction to Dynamic Meteorology, Am.
J. Phys., 41, 752–754, https://doi.org/10.1119/1.1987371, 1973.
Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F.,
Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.-L.,
Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B: the atmospheric
component of the IPSL climate model with revisited parameterizations for
clouds and convection, Clim. Dynam., 40, 2193–2222,
https://doi.org/10.1007/s00382-012-1343-y, 2013.
Huber, B. T., Macleod, K. G., and Wing, S. L.: Warm Climates in
Earth History, Cambridge University Press, 2000.
Huber, M.: Progress in Greenhouse Climate Modelling,
The Paleontological Society Papers, 18, 213–262, 2012.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A.,
Warnaar, J., Schellenberg, S. A., and Williams, G. L.: Eocene circulation of
the Southern Ocean: Was Antarctica kept warm by subtropical waters?,
Paleoceanography, 19, 4026, https://doi.org/10.1029/2004PA001014, 2004.
Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, 2018.
Jansen, M. F., Nadeau, L.-P., and Merlis, T. M.: Transient versus Equilibrium
Response of the Ocean's Overturning Circulation to Warming, J. Climate,
31, 5147–5163, https://doi.org/10.1175/JCLI-D-17-0797.1, 2018.
Kageyama, M., Braconnot, P., Bopp, L., Caubel, A., Foujols, M.-A.,
Guilyardi, E., Khodri, M., Lloyd, J., Lombard, F., Mariotti, V., Marti, O.,
Roy, T., and Woillez, M.-N.: Mid-Holocene and Last Glacial Maximum climate
simulations with the IPSL model–part I: comparing IPSL_CM5A
to IPSL_CM4, Clim. Dynam., 40, 2447–2468,
https://doi.org/10.1007/s00382-012-1488-8, 2013.
Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T.,
Bessières, L., and Molcard, R.: On the transformation of Pacific Water
into Indonesian Throughflow Water by internal tidal mixing, Geophys. Res. Lett., 34, L04604, https://doi.org/10.1029/2006GL028405, 2007.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
Ladant, J.-B., Donnadieu, Y., Lefebvre, V., and Dumas, C.: The respective
role of atmospheric carbon dioxide and orbital parameters on ice sheet
evolution at the Eocene-Oligocene transition: Ice sheet evolution at the
EOT, Paleoceanography, 29, 810–823, https://doi.org/10.1002/2013PA002593, 2014.
Ladant, J.-B., Donnadieu, Y., Bopp, L., Lear, C. H., and Wilson, P. A.:
Meridional Contrasts in Productivity Changes Driven by the Opening of Drake
Passage, Paleoceanogr. Paleocl., 33, 302–317,
https://doi.org/10.1002/2017PA003211, 2018.
Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag
parametrization: Its formulation and testing, Q. J. Roy. Meteor. Soc., 123,
101–127, 1997.
Lott, F. O.: Alleviation of Stationary Biases in a GCM through a Mountain
Drag Parameterization Scheme and a Simple Representation of Mountain Lift
Forces, Mon. Weather Rev., 127, 778–801, 1999.
Lumpkin, R. and Speer, K.: Global Ocean Meridional Overturning, J. Phys. Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1, 2007.
Lunt, D. J., Valdes, P. J., Jones, T. D., Ridgwell, A., Haywood, A. M.,
Schmidt, D. N., Marsh, R., and Maslin, M.: CO2-driven ocean circulation
changes as an amplifier of Paleocene-Eocene thermal maximum hydrate
destabilization, Geology, 38, 875–878, https://doi.org/10.1130/G31184.1, 2010.
Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., von der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J.-B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C., and Zeebe, R. E.: The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0), Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, 2017.
Madec, G. and the NEMO team: NEMO ocean engine, available at:
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf (last access: 13 July 2020),
2016.
Maffre, P., Ladant, J.-B., Donnadieu, Y., Sepulchre, P., and Goddéris,
Y.: The influence of orography on modern ocean circulation, Clim. Dynam.,
50, 1277–1289, https://doi.org/10.1007/s00382-017-3683-0, 2018.
Manabe, S. and Stouffer, R. J.: The role of thermohaline circulation in
climate, Tellus B, 51, 91–109, https://doi.org/10.1034/j.1600-0889.1999.00008.x,
1999.
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory,
and models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999.
Marshall, J. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180, 2012.
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B.
I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden, H.
L.: Measuring the Atlantic Meridional Overturning Circulation at
26∘ N, Prog. Oceanogr., 130, 91–111,
https://doi.org/10.1016/j.pocean.2014.10.006, 2015.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients
as the dominant control on the spread of anoxia and euxinia across the
Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison,
Paleoceanography, 27, PA4209, https://doi.org/10.1029/2012PA002351, 2012.
Msadek, R., Johns, W. E., Yeager, S. G., Danabasoglu, G., Delworth, T. L.,
and Rosati, A.: The Atlantic Meridional Heat Transport at 26.5∘ N
and Its Relationship with the MOC in the RAPID Array and the GFDL and NCAR
Coupled Models, J. Climate, 26, 4335–4356,
https://doi.org/10.1175/JCLI-D-12-00081.1, 2013.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy.
Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Munday, D. R., Johnson, H. L., and Marshall, D. P.: The role of ocean
gateways in the dynamics and sensitivity to wind stress of the early
Antarctic Circumpolar Current, Paleoceanography, 30, 284–302,
https://doi.org/10.1002/2014PA002675, 2015.
Munk, W. H.: On the wind-driven ocean circulation, J. Meteorol., 7, 79–93,
https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2,
1950.
Nikurashin, M. and Ferrari, R.: Overturning circulation driven by breaking
internal waves in the deep ocean, Geophys. Res. Lett., 40, 3133–3137,
https://doi.org/10.1002/grl.50542, 2013.
Nong, G. T., Najjar, R. G., Seidov, D., and Peterson, W. H.: Simulation of
ocean temperature change due to the opening of Drake Passage, Geophys. Res. Lett., 27, 2689–2692, https://doi.org/10.1029/1999GL011072, 2000.
Rose, B. E. J. and Ferreira, D.: Ocean Heat Transport and Water Vapor
Greenhouse in a Warm Equable Climate: A New Look at the Low Gradient
Paradox, J. Climate, 26, 2117–2136,
https://doi.org/10.1175/JCLI-D-11-00547.1, 2013.
Schmittner, A., Latif, M., and Schneider, B.: Model projections of the North
Atlantic thermohaline circulation for the 21st century assessed by
observations, Geophys. Res. Lett., 32, L23710, https://doi.org/10.1029/2005GL024368,
2005.
Sepulchre, P., Caubel, A., Ladant, J.-B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Dufresne, J.-L., Estella-Perez, V., Ethé, C., Fluteau, F., Foujols, M.-A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., Marti, O., Meurdesoif, Y., Mignot, J., Sarr, A.-C., Servonnat, J., Swingedouw, D., Szopa, S., and Tardif, D.: IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations, Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, 2020.
Sijp, W. P. and England, M. H.: Effect of the Drake Passage Throughflow on
Global Climate, J. Phys. Oceanogr., 34, 1254–1266, 2004.
Sijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S., Douglas,
P. M. J., and Bijl, P. K.: The role of ocean gateways on cooling climate on
long time scales, Global Planet. Change, 119, 1–22,
https://doi.org/10.1016/j.gloplacha.2014.04.004, 2014.
Simmons, H. L., Jayne, S. R., Laurent, L. C. S., and Weaver, A. J.: Tidally
driven mixing in a numerical model of the ocean general circulation, Ocean
Model., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004.
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29, 2106,
https://doi.org/10.1029/2002GL015633, 2002.
Stein, C. A. and Stein, S.: A model for the global variation in oceanic
depth and heat flow with lithospheric age, Nature, 359, 123–129,
https://doi.org/10.1038/359123a0, 1992.
Thomas, D. J., Bralower, T. J., and Jones, C. E.: Neodymium isotopic
reconstruction of late Paleocene–early Eocene thermohaline circulation,
Earth Planet. Sc. Lett., 209, 309–322,
https://doi.org/10.1016/S0012-821X(03)00096-7, 2003.
Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., and Haines, B.: Nd
isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for
vigorous ocean circulation and ocean heat transport in a greenhouse world,
Paleoceanography, 29, 454–469, https://doi.org/10.1002/2013PA002535, 2014.
Thomas, M. D. and Fedorov, A. V.: Mechanisms and Impacts of a Partial AMOC
Recovery Under Enhanced Freshwater Forcing, Geophys. Res. Lett., 46,
3308–3316, https://doi.org/10.1029/2018GL080442, 2019.
Toggweiler, J. R. and Bjornsson, H.: Drake Passage and palaeoclimate, J.
Quaternary Sci., 15, 319–328, 2000.
Trenberth, K. E. and Caron, J. M.: Estimates of Meridional Atmosphere and
Ocean Heat Transports, J. Climate, 14, 3433–3443, 2001.
Vellinga, M. and Wood, R. A.: Impacts of thermohaline circulation shutdown
in the twenty-first century, Climatic Change, 91, 43–63,
https://doi.org/10.1007/s10584-006-9146-y, 2008.
Voigt, S., Jung, C., Friedrich, O., Frank, M., Teschner, C., and Hoffmann,
J.: Tectonically restricted deep-ocean circulation at the end of the
Cretaceous greenhouse, Earth Planet. Sc. Lett., 369–370, 169–177,
https://doi.org/10.1016/j.epsl.2013.03.019, 2013.
Volkov, D. L., Fu, L.-L., and Lee, T.: Mechanisms of the meridional heat
transport in the Southern Ocean, Clim. Dynam., 60, 791–801,
https://doi.org/10.1007/s10236-010-0288-0, 2010.
Watts, D. R., Tracey, K. L., Donohue, K. A., and Chereskin, T. K.: Estimates
of Eddy Heat Flux Crossing the Antarctic Circumpolar Current from
Observations in Drake Passage, J. Phys. Oceanogr., 46, 2103–2122,
https://doi.org/10.1175/JPO-D-16-0029.1, 2016.
Weber, T. and Thomas, M.: Influence of ocean tides on the general ocean
circulation in the early Eocene, Paleoceanography, 32, 553–570,
https://doi.org/10.1002/2016PA002997, 2017.
Winguth, A., Shellito, C., Shields, C., and Winguth, C.: Climate Response at
the Paleocene–Eocene Thermal Maximum to Greenhouse Gas Forcing–A Model
Study with CCSM3, J. Climate, 23, 2562–2584, https://doi.org/10.1175/2009JCLI3113.1,
2010.
Winguth, A. M. E., Thomas, E., and Winguth, C.: Global decline in ocean
ventilation, oxygenation, and productivity during the Paleocene-Eocene
Thermal Maximum: Implications for the benthic extinction, Geology, 40,
263–266, https://doi.org/10.1130/G32529.1, 2012.
Wolfe, C. L. and Cessi, P.: Salt Feedback in the Adiabatic Overturning
Circulation, J. Phys. Oceanogr., 44, 1175–1194,
https://doi.org/10.1175/JPO-D-13-0154.1, 2014.
Yang, H., Wang, Y., and Liu, Z.: A modelling study of the Bjerknes
compensation in the meridional heat transport in a freshening ocean, Tellus
A, 65, 18480, https://doi.org/10.3402/tellusa.v65i0.18480, 2013.
Yang, H., Li, Q., Wang, K., Sun, Y., and Sun, D.: Decomposing the meridional
heat transport in the climate system, Clim. Dynam., 44, 2751–2768,
https://doi.org/10.1007/s00382-014-2380-5, 2015.
Yang, S., Galbraith, E., and Palter, J.: Coupled climate impacts of the Drake
Passage and the Panama Seaway, Clim. Dynam., 43, 37–52,
https://doi.org/10.1007/s00382-013-1809-6, 2014.
Zachos, J. C, Pagani, M., Sloan, L., Thomas, E., and Billups, K: Trends,
Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science,
292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature,
451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zeebe, R. E. and Zachos, J. C.: Reversed deep-sea carbonate ion basin
gradient during Paleocene-Eocene thermal maximum, Paleoceanography, 22,
PA3201, https://doi.org/10.1029/2006PA001395, 2007.
Zhang, R.: Latitudinal dependence of Atlantic meridional overturning
circulation (AMOC) variations, Geophys. Res. Lett., 37, 76–84,
https://doi.org/10.1029/2010GL044474, 2010.
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2...