Articles | Volume 14, issue 4
https://doi.org/10.5194/cp-14-473-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-14-473-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges
Hans W. Linderholm
CORRESPONDING AUTHOR
Regional Climate Group, Department of Earth Sciences, University of
Gothenburg, 40530 Gothenburg, Sweden
Marie Nicolle
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Pierre Francus
Institut National de la Recherche Scientifique, Centre Eau Terre
Environnement, G1K 9A9, Québec, QC, Canada
GEOTOP Research Center, Montréal, QC, Canada
Konrad Gajewski
Département de géographie, Université d'Ottawa, Ottawa,
Ontario K1N 6N5, Canada
Samuli Helama
Natural Resources Institute Finland, Rovaniemi, Finland
Atte Korhola
Environmental Change Research Unit (ECRU), Department of Environmental
Sciences, University of Helsinki, 00014 Helsinki, Finland
Olga Solomina
Institute of Geography, Russian Academy of Sciences, 119017 Moscow,
Russia
Zicheng Yu
Department of Earth and Environmental Sciences, Lehigh University,
Bethlehem PA 18015-3001, USA
Peng Zhang
Regional Climate Group, Department of Earth Sciences, University of
Gothenburg, 40530 Gothenburg, Sweden
William J. D'Andrea
Lamont-Doherty Earth Observatory, Columbia University, Palisades NY
10964, USA
Maxime Debret
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Dmitry V. Divine
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Department of Mathematics and Statistics, University of Tromsø –
The Arctic University of Norway, 9037, Norway
Björn E. Gunnarson
Department of Physical Geography, Stockholm University, 10691
Stockholm, Sweden
Neil J. Loader
Department of Geography, Swansea University, Swansea SA2 8PP, Wales,
UK
Nicolas Massei
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Kristina Seftigen
Regional Climate Group, Department of Earth Sciences, University of
Gothenburg, 40530 Gothenburg, Sweden
Earth and Life Institute, Université catholique de Louvain, 1348
Louvain-la-Neuve, Belgium
Elizabeth K. Thomas
Department of Geology, University at Buffalo, Buffalo NY 14260,
USA
Johannes Werner
Department of Earth Science, University of Bergen, 5020 Bergen,
Norway
Sofia Andersson
Department of Physical Geography, Stockholm University, 10691
Stockholm, Sweden
Annika Berntsson
Department of Physical Geography, Stockholm University, 10691
Stockholm, Sweden
Tomi P. Luoto
Department of Environmental Sciences, University of Helsinki, 15140
Lahti, Finland
Liisa Nevalainen
Department of Environmental Sciences, University of Helsinki, 15140
Lahti, Finland
Saija Saarni
Department of Geography and Geology, University of Turku, 20014 Turun
yliopisto, Finland
Minna Väliranta
Environmental Change Research Unit (ECRU), Department of Environmental
Sciences, University of Helsinki, 00014 Helsinki, Finland
Related authors
Tzu Tung Chen, Rodney Edvinsson, Karin Modig, Hans W. Linderholm, and Fredrik Charpentier Ljungqvist
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-92, https://doi.org/10.5194/cp-2023-92, 2023
Revised manuscript accepted for CP
Short summary
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with precipitation. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Feng Chen, Tongwen Zhang, Andrea Seim, Shulong Yu, Ruibo Zhang, Hans W. Linderholm, Zainalobudin V. Kobuliev, Ahsan Ahmadov, and Anvar Kodirov
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-44, https://doi.org/10.5194/cp-2018-44, 2018
Preprint withdrawn
Short summary
Short summary
Here we present a regional tree-ring chronology from the Kuramenian Mountains which accounts for 40.5 % of the variance of the June–July self-calibrating Palmer Drought Severity Index during the instrumental period (1901 to 2012). Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals. This record can provide some information about the linkage of dry extremes of western Central Asia with the Asian summer monsoon.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Peng Zhang, Hans W. Linderholm, Björn E. Gunnarson, Jesper Björklund, and Deliang Chen
Clim. Past, 12, 1297–1312, https://doi.org/10.5194/cp-12-1297-2016, https://doi.org/10.5194/cp-12-1297-2016, 2016
Short summary
Short summary
We present C-Scan, a new Scots pine tree-ring density based reconstruction of warm-season (April-September) temperatures for central Scandinavia back to 850 CE, extending the previous reconstruction by 250 years. Our reconstruction indicates that the warm-season warmth during a relatively-warm period of last millennium is not so pronounced in central Scandinavia, which adds further detail to our knowledge about the spatial pattern of surface air temperature on the regional scale.
J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm
Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, https://doi.org/10.5194/cp-10-877-2014, 2014
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Marie-Luise Adolph, Sambor Czerwiński, Mirko Dreßler, Paul Strobel, Marcel Bliedtner, Sebastian Lorenz, Maxime Debret, and Torsten Haberzettl
Clim. Past, 20, 2143–2165, https://doi.org/10.5194/cp-20-2143-2024, https://doi.org/10.5194/cp-20-2143-2024, 2024
Short summary
Short summary
We reconstruct environmental changes derived from sediments of Schweriner See, a large lake in NE Germany, for the past 3000 years. We infer variations in North Atlantic large-scale atmospheric circulation systems, namely the North Atlantic Oscillation (NAO), by combining sedimentological, geochemical, and biological parameters. Our results suggest distinct shifts between positive and negative NAO phases affecting winter temperatures, precipitation, and westerly wind strength at our study site.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Marie-Eugénie Meusseunan Pascale Jamba, Pierre Francus, Antoine Gagnon-Poiré, and Guillaume St-Onge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2511, https://doi.org/10.5194/egusphere-2024-2511, 2024
Short summary
Short summary
This article presents a non-destructive method for studying laminated sediments with X-ray computed tomography (μCT). It aims to study the possibility of using μCT as an analytical tool to analyse varved sediments in the context of paleoclimatic studies. As results, µCT offers the possibility of to do fasts analysis and constitutes a powerful tool to improve the quality of results through the access of a 3D view allowing choosing the most representative part of varved record.
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
EGUsphere, https://doi.org/10.5194/egusphere-2024-2102, https://doi.org/10.5194/egusphere-2024-2102, 2024
Short summary
Short summary
The vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown recent expansion of peatlands but their plant community succession of has not been studied. Although generally described as dry bog-types, our results show that peatland margins in a subarctic fen initiated as wet fen with high methane emissions and shifted to dryer peatland types only after dryer post Little Ice Age climate. Thus, they have acted as a carbon source for most of their history.
Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, Bastien Dieppois, Abel Henriot, and Matthieu Fournier
EGUsphere, https://doi.org/10.5194/egusphere-2024-794, https://doi.org/10.5194/egusphere-2024-794, 2024
Short summary
Short summary
This study explores how deep learning can improve our understanding of groundwater levels, using an approach that combines climate data and physical characteristics of aquifers. By focusing on different types of groundwater levels and employing techniques like clustering and wavelet transform, the study highlights the importance of targeting relevant information. This research not only advances groundwater simulation but also emphasizes the benefits of different modelling approaches.
Andria Dawson, John W. Williams, Marie-José Gaillard, Simon J. Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Dan G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-6, https://doi.org/10.5194/cp-2024-6, 2024
Revised manuscript under review for CP
Short summary
Short summary
Holocene vegetation-atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum- a mismatch between data- and model- inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth System Models.
Tzu Tung Chen, Rodney Edvinsson, Karin Modig, Hans W. Linderholm, and Fredrik Charpentier Ljungqvist
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-92, https://doi.org/10.5194/cp-2023-92, 2023
Revised manuscript accepted for CP
Short summary
Short summary
We study the climate effects on mortality, using annual mortality records and meteorological data, in Sweden between 1749 and 1859. It is found that colder winter and spring temperatures increased mortality, while no statistically significant associations were observed between summer or autumn temperatures and mortality, and only weak associations existed with precipitation. Further research is needed about which specific diseases caused the mortality increase following cold winters and springs.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-17, https://doi.org/10.5194/hess-2023-17, 2023
Revised manuscript under review for HESS
Short summary
Short summary
KarstMod consists in a useful tool for the assessment of karst groundwater variability and sensitivity to anthropogenic pressures (e.g. groundwater abstraction). This tools is devoted to promote good practices in hydrological modeling for learning and occasional users. KarstMod requires no programming skills and offers a user friendly interface allowing any user to easily handle hydrological modeling.
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898, https://doi.org/10.5194/tc-16-2881-2022, https://doi.org/10.5194/tc-16-2881-2022, 2022
Short summary
Short summary
We examined changes in the dates of ice break-ups in three Finnish rivers since the 1700s. The analyses show that ice break-ups nowadays occur earlier in spring than in previous centuries. The changes are pronounced in the south, and both rivers had their first recorded years without a complete ice cover in the 21st century. These events occurred during exceptionally warm winters and show that climate extremes affect the river-ice regime in southwest Finland differently than in the north.
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022, https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary
Short summary
Aquifers often act as low-pass filters, dampening high-frequency (intra-annual) and amplifying low-frequency (LFV, multi-annual to multidecadal) variabilities originating from climate variability. By processing groundwater level signals, we show the key role of LFV in the occurrence of groundwater extremes (GWEs). Results highlight how changes in LFV may impact future GWEs as well as the importance of correct representation of LFV in general circulation model outputs for GWE projection.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Antoine Gagnon-Poiré, Pierre Brigode, Pierre Francus, David Fortin, Patrick Lajeunesse, Hugues Dorion, and Annie-Pier Trottier
Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, https://doi.org/10.5194/cp-17-653-2021, 2021
Short summary
Short summary
A very high quality 160-year-long annually laminated (varved) sediment sequence of fluvial origin was recently discovered in an especially deep lake in Labrador. Each varve represents 1 hydrological year. A significant relation between varves' physical parameters (i.e., thickness and grain size extracted from each annual lamination) and river discharge instrumental observations provided the opportunity to develop regional discharge reconstructions beyond the instrumental period.
Imen Turki, Lisa Baulon, Nicolas Massei, Benoit Laignel, Stéphane Costa, Matthieu Fournier, and Olivier Maquaire
Nat. Hazards Earth Syst. Sci., 20, 3225–3243, https://doi.org/10.5194/nhess-20-3225-2020, https://doi.org/10.5194/nhess-20-3225-2020, 2020
Short summary
Short summary
We examine the variability of storm surges along the English Channel coasts and their connection with the global atmospheric circulation at the interannual and interdecadal timescales using hybrid approaches combining wavelet techniques and probabilistic
generalized extreme value models. Our hypothesis is that the physical mechanisms of the atmospheric circulation change according to the timescales and their connection with the local variability improve the prediction of the extreme surges.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Tammo Reichgelt, William J. D'Andrea, Ailín del C. Valdivia-McCarthy, Bethany R. S. Fox, Jennifer M. Bannister, John G. Conran, William G. Lee, and Daphne E. Lee
Clim. Past, 16, 1509–1521, https://doi.org/10.5194/cp-16-1509-2020, https://doi.org/10.5194/cp-16-1509-2020, 2020
Short summary
Short summary
Carbon dioxide (CO2) levels are increasing in the atmosphere. CO2 has a direct fertilization effect on plants, meaning that plants can photosynthesize more and create more biomass under higher atmospheric CO2. This paper outlines the first direct evidence of a carbon fertilization effect on plants in Earth's past from 23 × 106 yr old fossil leaves, when CO2 was higher. This allowed the biosphere to extend into areas that are currently too dry or too cold for forests.
André-Marie Dendievel, Brice Mourier, Alexandra Coynel, Olivier Evrard, Pierre Labadie, Sophie Ayrault, Maxime Debret, Florence Koltalo, Yoann Copard, Quentin Faivre, Thomas Gardes, Sophia Vauclin, Hélène Budzinski, Cécile Grosbois, Thierry Winiarski, and Marc Desmet
Earth Syst. Sci. Data, 12, 1153–1170, https://doi.org/10.5194/essd-12-1153-2020, https://doi.org/10.5194/essd-12-1153-2020, 2020
Short summary
Short summary
Polychlorinated biphenyl indicators (ΣPCBi) from sediment cores, bed and flood deposits, suspended particulate matter, and dredged sediments along the major French rivers (1945–2018) are compared with socio-hydrological drivers. ΣPCBi increased from 1945 to the 1990s due to urban and industrial emissions. It gradually decreased with the implementation of regulations. Specific ΣPCBi fluxes reveal the amount of PCB-polluted sediment transported by French rivers to European seas over 40 years.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Pierre Sabatier, Marie Nicolle, Christine Piot, Christophe Colin, Maxime Debret, Didier Swingedouw, Yves Perrette, Marie-Charlotte Bellingery, Benjamin Chazeau, Anne-Lise Develle, Maxime Leblanc, Charlotte Skonieczny, Yoann Copard, Jean-Louis Reyss, Emmanuel Malet, Isabelle Jouffroy-Bapicot, Maëlle Kelner, Jérôme Poulenard, Julien Didier, Fabien Arnaud, and Boris Vannière
Clim. Past, 16, 283–298, https://doi.org/10.5194/cp-16-283-2020, https://doi.org/10.5194/cp-16-283-2020, 2020
Short summary
Short summary
High-resolution multiproxy analysis of sediment core from a high-elevation lake on Corsica allows us to reconstruct past African dust inputs to the western Mediterranean area over the last 3 millennia. Millennial variations of Saharan dust input have been correlated with the long-term southward migration of the Intertropical Convergence Zone, while short-term variations were associated with the North Atlantic Oscillation and total solar irradiance after and before 1070 cal BP, respectively.
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020, https://doi.org/10.5194/bg-17-47-2020, 2020
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Tine Nilsen, Johannes P. Werner, Dmitry V. Divine, and Martin Rypdal
Clim. Past, 14, 947–967, https://doi.org/10.5194/cp-14-947-2018, https://doi.org/10.5194/cp-14-947-2018, 2018
Short summary
Short summary
The BARCAST climate field reconstruction method is tested using synthetic data experiments. It is demonstrated that the output reconstructions have altered statistical properties compared with the input data, but they are also not necessarily consistent with the model assumption of the reconstruction method. The conclusion is that the statistical properties of a reconstruction not only reflect the statistics of the real climate, but they may very well be affected by the manipulation of the data.
Carmen Paulina Vega, Elisabeth Isaksson, Elisabeth Schlosser, Dmitry Divine, Tõnu Martma, Robert Mulvaney, Anja Eichler, and Margit Schwikowski-Gigar
The Cryosphere, 12, 1681–1697, https://doi.org/10.5194/tc-12-1681-2018, https://doi.org/10.5194/tc-12-1681-2018, 2018
Short summary
Short summary
Ions were measured in firn and ice cores from Fimbul Ice Shelf, Antarctica, to evaluate sea-salt loads. A significant sixfold increase in sea salts was found in the S100 core after 1950s which suggests that it contains a more local sea-salt signal, dominated by processes during sea-ice formation in the neighbouring waters. In contrast, firn cores from three ice rises register the larger-scale signal of atmospheric flow conditions and transport of sea-salt aerosols produced over open water.
Feng Chen, Tongwen Zhang, Andrea Seim, Shulong Yu, Ruibo Zhang, Hans W. Linderholm, Zainalobudin V. Kobuliev, Ahsan Ahmadov, and Anvar Kodirov
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-44, https://doi.org/10.5194/cp-2018-44, 2018
Preprint withdrawn
Short summary
Short summary
Here we present a regional tree-ring chronology from the Kuramenian Mountains which accounts for 40.5 % of the variance of the June–July self-calibrating Palmer Drought Severity Index during the instrumental period (1901 to 2012). Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals. This record can provide some information about the linkage of dry extremes of western Central Asia with the Asian summer monsoon.
Johannes P. Werner, Dmitry V. Divine, Fredrik Charpentier Ljungqvist, Tine Nilsen, and Pierre Francus
Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, https://doi.org/10.5194/cp-14-527-2018, 2018
Short summary
Short summary
We present a new gridded Arctic summer temperature reconstruction back to the first millennium CE. Our method respects the age uncertainties of the data, which results in a more precise reconstruction.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
The spatial average shows a millennium-scale cooling trend which is reversed in the mid-19th century. While temperatures in the 10th century were probably as warm as in the 20th century, the spatial coherence of the recent warm episodes seems unprecedented.
Jonas Svensson, Johan Ström, Niku Kivekäs, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Arttu Jutila, John Backman, Aki Virkkula, Meri Ruppel, Antti Hyvärinen, Anna Kontu, Henna-Reetta Hannula, Matti Leppäranta, Rakesh K. Hooda, Atte Korhola, Eija Asmi, and Heikki Lihavainen
Atmos. Meas. Tech., 11, 1403–1416, https://doi.org/10.5194/amt-11-1403-2018, https://doi.org/10.5194/amt-11-1403-2018, 2018
Short summary
Short summary
Receding glaciers in the Himalayas are of concern. Here we present measurements of light-absorbing impurities, known to contribute to the ongoing glacier decrease, in snow from Indian Himalayas and compare them to snow samples from the Finnish Arctic. The soot particles in the snow are shown to have lower light absorbing efficiency, possibly affecting their radiative forcing potential in the snow. Further, dust influences the snow in the Himalayas to a much greater extent than in Finland.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Kristina Seftigen, Hugues Goosse, Francois Klein, and Deliang Chen
Clim. Past, 13, 1831–1850, https://doi.org/10.5194/cp-13-1831-2017, https://doi.org/10.5194/cp-13-1831-2017, 2017
Short summary
Short summary
Comparisons of proxy data to GCM-simulated hydroclimate are still limited and inter-model variability remains poorly characterized. In this study, we bring together tree-ring paleoclimate evidence and CMIP5–PMIP3 model simulations of the last millennium hydroclimate variability across Scandinavia. We explore the consistency between the datasets and the role of external forcing versus internal variability in driving the hydroclimate changes regionally.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Jasper G. Franke, Johannes P. Werner, and Reik V. Donner
Clim. Past, 13, 1593–1608, https://doi.org/10.5194/cp-13-1593-2017, https://doi.org/10.5194/cp-13-1593-2017, 2017
Short summary
Short summary
We apply evolving functional network analysis, a tool for studying temporal changes of the spatial co-variability structure, to a set of
Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to
long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). We obtain a
qualitative reconstruction of the NAO long-term variability over the entire Common Era.
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017, https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Short summary
Black carbon (BC) deposition enhances Arctic warming and melting. We present Svalbard ice core BC data from 2005 to 2015, comparing the results with chemical transport model data. The ice core and modelled BC deposition trends clearly deviate from measured and observed atmospheric concentration trends, and thus meteorological processes such as precipitation and scavenging efficiency seem to have a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
François Lapointe, Pierre Francus, Scott F. Lamoureux, Mathias Vuille, Jean-Philippe Jenny, Raymond S. Bradley, and Charly Massa
Clim. Past, 13, 411–420, https://doi.org/10.5194/cp-13-411-2017, https://doi.org/10.5194/cp-13-411-2017, 2017
Short summary
Short summary
Using a unique annually-laminated record (varve) from the western Canadian High Arctic, we found a significant relationship between our varve record and instrumental and reconstructed Pacific Decadal Oscillations (PDOs). The negative (positive) PDO (North Pacific Index) phases increase precipitation as low sea-ice extent, warmer temperature and winds reach our region more efficiently. Our results imply that future negative PDO phases will likely impact the already rapidly warming Arctic.
Sirui Wang, Qianlai Zhuang, and Zicheng Yu
Biogeosciences, 13, 6305–6319, https://doi.org/10.5194/bg-13-6305-2016, https://doi.org/10.5194/bg-13-6305-2016, 2016
Short summary
Short summary
We used a model to quantify the carbon stock and its changes in terrestrial ecosystems of Alaska during the last 15 000 years. We found that the changes in vegetation distribution due to climate were the key factors in the spatial variations of carbon in different time periods. The warming during 11–9 k years ago characterized by the increased summer temperature and seasonality of radiation, along with the high precipitation, might play an important role in causing the high carbon accumulation.
Carmen P. Vega, Elisabeth Schlosser, Dmitry V. Divine, Jack Kohler, Tõnu Martma, Anja Eichler, Margit Schwikowski, and Elisabeth Isaksson
The Cryosphere, 10, 2763–2777, https://doi.org/10.5194/tc-10-2763-2016, https://doi.org/10.5194/tc-10-2763-2016, 2016
Short summary
Short summary
Surface mass balance and water stable isotopes from firn cores on three ice rises at Fimbul Ice Shelf are reported. The results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores. The first deuterium excess data for the area suggests a possible role of seasonal moisture transport changes on the annual isotopic signal. Large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios at the sites.
Manuel Fossa, Marie Nicolle, Nicolas Massei, Matthieu Fournier, and Benoit Laignel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-395, https://doi.org/10.5194/hess-2016-395, 2016
Manuscript not accepted for further review
Short summary
Short summary
Links between river's discharge and large scale atmospheric and ocean physical processes has long been established by numerous studies. It is critical to identify those links for each river and map the rivers that share the same links. This study introduces a new method that allows classification of France rivers discharge variability according to 4 atmospheric processes that influence them and at 3 different time scales.
Peng Zhang, Hans W. Linderholm, Björn E. Gunnarson, Jesper Björklund, and Deliang Chen
Clim. Past, 12, 1297–1312, https://doi.org/10.5194/cp-12-1297-2016, https://doi.org/10.5194/cp-12-1297-2016, 2016
Short summary
Short summary
We present C-Scan, a new Scots pine tree-ring density based reconstruction of warm-season (April-September) temperatures for central Scandinavia back to 850 CE, extending the previous reconstruction by 250 years. Our reconstruction indicates that the warm-season warmth during a relatively-warm period of last millennium is not so pronounced in central Scandinavia, which adds further detail to our knowledge about the spatial pattern of surface air temperature on the regional scale.
Odile Crabeck, Ryan Galley, Bruno Delille, Brent Else, Nicolas-Xavier Geilfus, Marcos Lemes, Mathieu Des Roches, Pierre Francus, Jean-Louis Tison, and Søren Rysgaard
The Cryosphere, 10, 1125–1145, https://doi.org/10.5194/tc-10-1125-2016, https://doi.org/10.5194/tc-10-1125-2016, 2016
Short summary
Short summary
We present a new non-destructive X-ray-computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. While the internal layers showed air-volume fractions < 2 %, the ice–air interface (top 2 cm) showed values up to 5 %. As a result of the presence of large bubbles and higher air volume fraction measurements in sea ice, we introduce new perspectives on processes regulating gas exchange at the ice–atmosphere interface.
N. L. Balascio, W. J. D'Andrea, and R. S. Bradley
Clim. Past, 11, 1587–1598, https://doi.org/10.5194/cp-11-1587-2015, https://doi.org/10.5194/cp-11-1587-2015, 2015
Short summary
Short summary
Sediment cores were collected from a lake that captures runoff from two glaciers in Greenland. Our analysis of the sediments shows that these glaciers were active over the last 9,000 years and advanced and retreated in response to regional climate changes. The data also provide a long-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the range of natural variability.
J. P. Werner and M. P. Tingley
Clim. Past, 11, 533–545, https://doi.org/10.5194/cp-11-533-2015, https://doi.org/10.5194/cp-11-533-2015, 2015
Short summary
Short summary
We present a Bayesian approach to simultaneously constrain the age models associated with time-uncertain proxies and inferring past climate in space and time. For the sake of exposition, the discussion focuses on annually resolved climate archives, such as varved lakes, corals, and tree rings, with dating by layer counting. Numerical experiments show that updating the probabilities associated with an ensemble of possible age models reduces uncertainty in the inferred climate.
G. Hugelius, J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C.-L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O'Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry
Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, https://doi.org/10.5194/bg-11-6573-2014, 2014
Short summary
Short summary
This study provides an updated estimate of organic carbon stored in the northern permafrost region. The study includes estimates for carbon in soils (0 to 3 m depth) and deeper sediments in river deltas and the Yedoma region. We find that field data is still scarce from many regions. Total estimated carbon storage is ~1300 Pg with an uncertainty range of between 1100 and 1500 Pg. Around 800 Pg carbon is perennially frozen, equivalent to all carbon dioxide currently in the Earth's atmosphere.
M. M. Ruppel, E. Isaksson, J. Ström, E. Beaudon, J. Svensson, C. A. Pedersen, and A. Korhola
Atmos. Chem. Phys., 14, 11447–11460, https://doi.org/10.5194/acp-14-11447-2014, https://doi.org/10.5194/acp-14-11447-2014, 2014
J. A. Björklund, B. E. Gunnarson, K. Seftigen, J. Esper, and H. W. Linderholm
Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, https://doi.org/10.5194/cp-10-877-2014, 2014
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
D.-D. Rousseau, M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine
Clim. Past, 9, 2213–2230, https://doi.org/10.5194/cp-9-2213-2013, https://doi.org/10.5194/cp-9-2213-2013, 2013
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
R. Spahni, F. Joos, B. D. Stocker, M. Steinacher, and Z. C. Yu
Clim. Past, 9, 1287–1308, https://doi.org/10.5194/cp-9-1287-2013, https://doi.org/10.5194/cp-9-1287-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
M. Casado, P. Ortega, V. Masson-Delmotte, C. Risi, D. Swingedouw, V. Daux, D. Genty, F. Maignan, O. Solomina, B. Vinther, N. Viovy, and P. Yiou
Clim. Past, 9, 871–886, https://doi.org/10.5194/cp-9-871-2013, https://doi.org/10.5194/cp-9-871-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Decadal-Seasonal
Hydroclimatic anomalies detected by a sub-decadal diatom oxygen isotope record of the last 220 years from Lake Khamra, Siberia
Large-scale climate signals of a European oxygen isotope network from tree rings
The response of annual minimum temperature on the eastern central Tibetan Plateau to large volcanic eruptions over the period 1380–2014 CE
Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling
Introduction to the special issue “Climate of the past 2000 years: regional and trans-regional syntheses”
French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose δ18O
A 500-year seasonally resolved δ18O and δ13C, layer thickness and calcite aspect record from a speleothem deposited in the Han-sur-Lesse cave, Belgium
Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite
Variation in the Asian monsoon intensity and dry–wet conditions since the Little Ice Age in central China revealed by an aragonite stalagmite
Millennial minimum temperature variations in the Qilian Mountains, China: evidence from tree rings
Tree-ring-inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability
Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width
Modern isotope hydrology and controls on δD of plant leaf waxes at Lake El'gygytgyn, NE Russia
Clustering climate reconstructions
Extracting a common high frequency signal from Northern Quebec black spruce tree-rings with a Bayesian hierarchical model
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
Yajun Wang, Xuemei Shao, Yong Zhang, and Mingqi Li
Clim. Past, 17, 241–252, https://doi.org/10.5194/cp-17-241-2021, https://doi.org/10.5194/cp-17-241-2021, 2021
Short summary
Short summary
It is not clear to what extent or in what manner a strong volcanic eruption will influence temperature in different regions over the long term. Therefore, new 635-year annual mean minimum temperatures (Tmin) across the eastern central Tibetan Plateau were used to explored the response of Tmin to strong volcanic eruptions. Our results show that there is a high probability that the Tmin decreases within 2 years of a large volcanic eruption, especially when such eruptions occur in low latitudes.
Robert Tardif, Gregory J. Hakim, Walter A. Perkins, Kaleb A. Horlick, Michael P. Erb, Julien Emile-Geay, David M. Anderson, Eric J. Steig, and David Noone
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, https://doi.org/10.5194/cp-15-1251-2019, 2019
Short summary
Short summary
An updated Last Millennium Reanalysis is presented, using an expanded multi-proxy database, and proxy models representing the seasonal characteristics of proxy records, in addition to the dual sensitivity to temperature and moisture of tree-ring-width chronologies. We show enhanced skill in spatial reconstructions of key climate variables in the updated reanalysis, compared to an earlier version, resulting from the combined influences of the enhanced proxy network and improved proxy modeling.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Inga Labuhn, Valérie Daux, Olivier Girardclos, Michel Stievenard, Monique Pierre, and Valérie Masson-Delmotte
Clim. Past, 12, 1101–1117, https://doi.org/10.5194/cp-12-1101-2016, https://doi.org/10.5194/cp-12-1101-2016, 2016
Short summary
Short summary
This article presents a reconstruction of summer droughts in France for the last 680 years, based on oxygen isotope ratios in tree ring cellulose from living trees and building timbers at two sites, Fontainebleau and Angoulême. Both sites show coherent drought patterns during the 19th and 20th century, and are characterized by increasing drought in recent decades. A decoupling between sites points to a more heterogeneous climate in France during earlier centuries.
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
M. Van Rampelbergh, S. Verheyden, M Allan, Y. Quinif, E. Keppens, and P. Claeys
Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, https://doi.org/10.5194/cp-10-1871-2014, 2014
J.-J. Yin, D.-X. Yuan, H.-C. Li, H. Cheng, T.-Y. Li, R. L. Edwards, Y.-S. Lin, J.-M. Qin, W. Tang, Z.-Y. Zhao, and H.-S. Mii
Clim. Past, 10, 1803–1816, https://doi.org/10.5194/cp-10-1803-2014, https://doi.org/10.5194/cp-10-1803-2014, 2014
Y. Zhang, X. M. Shao, Z.-Y. Yin, and Y. Wang
Clim. Past, 10, 1763–1778, https://doi.org/10.5194/cp-10-1763-2014, https://doi.org/10.5194/cp-10-1763-2014, 2014
J. Duan, L. Wang, L. Li, and Y. Sun
Clim. Past, 9, 2451–2458, https://doi.org/10.5194/cp-9-2451-2013, https://doi.org/10.5194/cp-9-2451-2013, 2013
S. E. Tolwinski-Ward, K. J. Anchukaitis, and M. N. Evans
Clim. Past, 9, 1481–1493, https://doi.org/10.5194/cp-9-1481-2013, https://doi.org/10.5194/cp-9-1481-2013, 2013
K. M. K. Wilkie, B. Chapligin, H. Meyer, S. Burns, S. Petsch, and J. Brigham-Grette
Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, https://doi.org/10.5194/cp-9-335-2013, 2013
G. Bürger
Clim. Past, 6, 515–523, https://doi.org/10.5194/cp-6-515-2010, https://doi.org/10.5194/cp-6-515-2010, 2010
J.-J. Boreux, P. Naveau, O. Guin, L. Perreault, and J. Bernier
Clim. Past, 5, 607–613, https://doi.org/10.5194/cp-5-607-2009, https://doi.org/10.5194/cp-5-607-2009, 2009
Cited articles
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res., 94, 14485–14498, https://doi.org/10.1029/JC094iC10p14485, 1989.
Abbott, M. B. and Stafford Jr., T. W.: Radiocarbon geochemistry of modern and Ancient Arctic lake systems, Baffin Island, Canada, Quaternary Res., 45, 300–311, https://doi.org/10.1006/qres.1996.0031, 1996.
ACIA: Arctic Climate Impact Assessment, Cambridge University Press, 1042 pp., 2005.
Allen, J. R., Long, A. J., Ottley, C. J., Pearson, D. G., and Huntley, B.: Holocene climate variability in northernmost Europe, Quaternary Sci. Rev., 26, 1432–1453, https://doi.org/10.1016/j.quascirev.2007.02.009, 2007.
Anchukaitis, K. J., D'Arrigo, R., Andreu-Hayles, L., Frank, D., Verstege, A., Curtis, A., Buckley, B. M., Jacoby, G. C., and Cook, E. R.: Tree-ring reconstructed summer temperatures from north-west North America during the past nine centuries, J. Climate, 26, 3001–3012, https://doi.org/10.1175/JCLI-D-11-00139.1, 2013.
Andersen, K. K., Ditlevsen, P. D., Rasmussen, S. O., Clausen, H. B., Vinther, B. M., Johnsen, S. J., and Steffensen, J. P.: Retrieving a common accumulation record from Greenland ice cores for the past 1800 years, J. Geophys. Res.-Atmos., 111, D15106, https://doi.org/10.1029/2005JD006765, 2006.
Anderson, L., Abbott, M. B., Finney, B. P., and Burns, S. J.: Late Holocene moisture balance variability in the southwest Yukon Territory, Canada, Quaternary Sci. Rev., 26, 130–141, https://doi.org/10.1016/j.quascirev.2006.04.011, 2007.
Anderson, N. J., Liversidge, A. C., McGowan, S., and Jones, M. D.: Lake and catchment response to Holocene environmental change: spatial variability along a climate gradient in southwest Greenland, J. Paleolimnol., 48, 209–222, https://doi.org/10.1007/s10933-012-9616-3, 2012.
Andersson, S. and Schoning, K.: Surface wetness and mire development during the late Holocene in central Sweden, Boreas, 39, 749–760, https://doi.org/10.1111/j.1502-3885.2010.00157.x, 2010.
Andresen, C. S., Björck, S., Bennike, O., and Bond, G.: Holocene climate changes in southern Greenland: evidence from lake sediments, J. Quaternary Sci., 19, 783–795, https://doi.org/10.1002/jqs.886, 2004.
Appenzeller, C., Schwander, J., Sommer, S., and Stocker, T. F.: The North Atlantic Oscillation and its imprint on precipitation and ice accumulation in Greenland, Geophys. Res. Lett., 25, 1939–1942, https://doi.org/10.1029/98GL01227, 1998.
Armstrong, R. A.: Lichens, lichenometry and global warming, Microbiologist, 5, 32–35, 2004.
Axford, Y., Geirsdóttir, Á., Miller, G. H., and Langdon, P. G.: Climate of the Little Ice Age and the past 2000 years in northeast Iceland inferred from chironomids and other lake sediment proxies, J. Palaeolimnol., 41, 7–24, https://doi.org/10.1007/s10933-008-9251-1, 2009.
Baker, A., Hellstrom, J. C., Kelly, B. F. J., Mariethoz, G., and Trouet, V.: A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia, Sci. Rep., 5, 10307, https://doi.org/10.1038/srep10307, 2015.
Bakke, J., Lie, Ø., Dahl, S. O., Nesje, A., and Bjune, A.: Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region, Global Planet. Change, 60, 28–41, https://doi.org/10.1016/j.gloplacha.2006.07.030, 2008.
Balascio, N. L. and Bradley, R. S.: Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems, J. Paleolimnol., 48, 259–273, https://doi.org/10.1007/s10933-012-9604-7, 2012.
Balascio, N. L., D'Andrea, W. J., Bradley, R. S., and Perren, B. B.: Biogeochemical evidence for hydrologic changes during the Holocene in a lake sediment record from southeast Greenland, Holocene, 23, 1428–1439, https://doi.org/10.1177/0959683613493938, 2013.
Balascio, N. L., D'Andrea, W. J., Gjerde, M., and Bakke, J.: Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes, Quaternary Sci. Rev., https://doi.org/10.1016/j.quascirev.2016.11.036, 2017.
Barber, K. E., Chambers, F. M., Maddy, D., Stoneman, R., and Brew, J.: A sensitive high-resolution record of late-Holocene climatic change from a raised bog in northern England, Holocene 4, 198–205, https://doi.org/10.1177/095968369400400209, 1994.
Barber, K. E., Dumayne-Peaty, L., Hughes, P. D. M., Mauquoy, D., and Scaife, R. G.: Replicability and variability of the recent macrofossil and proxy-climate record from raised bogs: field stratigraphy and macrofossil data from Bolton Fell Moss and Walton Moss, Cumbria, England, J. Quaternary Sci., 13, 515–528, https://doi.org/10.1002/(SICI)1099-1417(1998110)13:6<515::AID-JQS393>3.0.CO;2-S, 1998.
Barbour, M. M., Andrews, T. J., and Farquhar, G. D.: Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world, Funct. Plant Biol., 28, 335–348, https://doi.org/10.1071/PP00083, 2001.
Barley, E. M., Walker, I. R., Kurek, J. Cwynar, L. C., Mathewes, R. W., Gajewski, K., and Finney, B. P.: A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth, J. Palaeolimnol., 36, 295–314, https://doi.org/10.1007/s10933-006-0014-6, 2006.
Beilman, D. W., MacDonald, G. M., Smith, L. C., and Reimer, P. J.: Carbon accumulation in peatlands of West Siberia over the last 2000 years, Global Biogeochem. Cy., 23, GB1012, https://doi.org/10.1029/2007GB003112, 2009.
Bekryaev, R. V., Ployakov, I. V., and Alexeev, V. A.: Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming, J. Climate, 23, 3888–3906, https://doi.org/10.1175/2010JCLI3297.1, 2010.
Belyea, L. R. and Baird A. J.: Beyond “the limits to peat bog growth”: Cross-scale feedback in peatland development, Ecol. Monogr., 76, 299–322, https://doi.org/10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2, 2006.
Berntsson, A., Jansson, K. N., Kylander, M. E., De Vleeschouwer, F., and Bertrand, S.: Late Holocene high precipitation events recorded in lake sediments and catchment geomorphology, Lake Vuoksjávrátje, NW Sweden, Boreas, 44, 676–692, https://doi.org/10.1111/bor.12127, 2015.
Bickerton, R. W. and Matthews, J. A.: On the accuracy of lichenometric dates: an assessment based on the “Little Ice Age” moraine sequence of Nigardsbreen, southern Norway, Holocene, 2, 227–237, https://doi.org/10.1177/095968369200200304, 1992.
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat, Nature, 509, 479–482, https://doi.org/10.1038/nature13259, 2014.
Birks, S. J. and Edwards, T. W. D.: Atmospheric circulation controls on precipitation isotope–climate relations in western Canada, Tellus B, 61, 566–576, https://doi.org/10.1111/j.1600-0889.2009.00423.x, 2009.
Björnsson, H., Pálsson, F., Guðmundsson, S., Magnússon, E., Aðalgeirsdóttir, G., Jóhannesson, T., Berthier, E., Sigurðsson, O., and Thorsteinsson, Th.: Contribution of Icelandic ice caps to sea level rise: trends and variability since the Little Ice Age, Geophys. Res. Lett., 40, 1546–1550, https://doi.org/10.1002/grl.50278, 2013.
Blackford, J.: Palaeoclimatic records from peat bogs, Trends Ecol. Evol., 15, 193–198, https://doi.org/10.1016/S0169-5347(00)01826-7, 2000.
Blackford, J. J. and Chambers, F. M.: Proxy records of climate from blanket mires: Evidence for a Dark Age (1400 BP) climatic deterioration in the British Isles, Holocene, 1, 63–67, https://doi.org/10.1177/095968369100100108, 1991.
Boettger, T., Hiller, A., and Kremenetski, C.: Mid-Holocene warming in northwest Kola Peninsula, Russia: northern pine limit movement and stable isotope evidence, Holocene, 13, 405–412, https://doi.org/10.1191/0959683603hl633rp, 2003.
Boldt, B. R.: A multi-proxy approach to reconstructing Holocene climate variability at Kurupa River valley, Arctic Alaska, Master's Thesis, Northern Arizona University, 114 pp., 2013.
Boldt, B. R., Kaufman, D. S., McKay, N. P., and Briner, J. P.: Holocene summer temperature reconstructions from sedimentary chlorophyll content, with treatment of age uncertainties, Kurupa Lake, Arctic Alaska, Holocene, 25, 641–650, https://doi.org/10.1177/0959683614565929, 2015.
Booth, R. K., Notaro, M., Jackson, S. T., and Kutzbach, J. E.: Widespread drought episodes in the western Great Lakes region during the past 2000 years: geographic extent and potential mechanisms, Earth Planet. Sc. Lett., 242, 415–427, https://doi.org/10.1016/j.epsl.2005.12.028, 2006.
Booth, R. K., Lamentowicz, M., and Charman, D. J.: Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies, Mires Peat, 7, 2, available at: http://mires-and-peat.net/pages/volumes/map07/map0702.php (last access: 5 April 2018), 2010.
Borgmark, A.: Holocene climatic variability and periodicities in south-central Sweden, as interpreted from peat humification analysis, Holocene, 15, 387–395, https://doi.org/10.1191/0959683605hl816rp, 2005.
Borgmark, A. and Wastegård, S.: Regional and local patterns of peat humification in three raised peat bogs in Värmland, south-central Sweden, GFF, 130, 161–176, https://doi.org/10.1080/11035890809453231, 2008.
Bowen, G. J.: Isoscapes: Spatial Pattern in Isotopic Biogeochemistry, Annu. Rev. Earth Planet. Sci., 38, 161–187, https://doi.org/10.1146/annurev-earth-040809-152429, 2010.
Box, J. E., Cressie, N., Bromwich, D., Jung, J., van den Broeke, M., van Angelen, J., Forster, R., Miège, C., Mosley-Thompson, E., Vinther, B., and McConnell, J.: Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009), J. Climate, 26, 3919–3934, https://doi.org/10.1175/JCLI-D-12-00373.1, 2013.
Boyle, E. A.: Cool tropical temperatures shift the global δ18O-T relationship: An explanation for the ice core δ18O-borehole thermometry conflict?, Geophys. Res. Lett., 24, 273–276, https://doi.org/10.1029/97GL00081, 1997.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimate data, Nat. Clim. Chang., 2, 417–424, https://doi.org/10.1038/NCLIMATE1456, 2012.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Harris, I. C., Jones, P. D., Shiyatov, S. G., and Vaganov, E. A.: Low-frequency temperature variations from a northern tree-ring density network, J. Geophys. Res., 106, 2929–2941, https://doi.org/10.1029/2000JD900617, 2001.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G., and Vaganov, E. A.: Tree-ring width and density around the Northern Hemisphere: part 1, local and regional climate signals, Holocene, 12, 737–757, https://doi.org/10.1191/0959683602hl587rp, 2002.
Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de Vernal, A., Fisher, D., Francus, P, Fréchette, B., Gajewski, K., Jennings, A., Kaufman, D. S., Miller, G., Rouston, C., and Wagner, B.: Holocene climate change in Arctic Canada and Greenland, Quaternary Sci. Rev., 147, 340–364, https://doi.org/10.1016/j.quascirev.2016.02.010, 2016.
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S. H., Prowse, T., Semenova, O., Stuefer, S. L., and Woo, M.-K.: Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges, J. Geophys. Res.-Biogeo., 121, 621–649, https://doi.org/10.1002/2015JG003131, 2016.
Budikova, D.: Role of Arctic sea ice in global atmospheric circulation: A review, Global Planet. Change, 68, 149–163, https://doi.org/10.1016/j.gloplacha.2009.04.001, 2009.
Bunbury, J. and Gajewski, K.: Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada, Quaternary Sci. Rev., 28, 354–369, https://doi.org/10.1016/j.quascirev.2008.10.007, 2009.
Bunbury, J., Finkelstein, S. A., and Bollmann, J.: Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada, Quaternary Res., 78, 275–284, https://doi.org/10.1016/j.yqres.2012.05.013, 2012.
Camill, P., Umbanhowar, C. E., Geiss, C., Hobbs, W. O., Edlund, M. B., Shinneman, A. C., Dorale, J. A., and Lynch, J.: Holocene climate change and landscape development from a low-Arctic tundra lake in the western Hudson Bay region of Manitoba, Canada, J. Paleolimnol., 48, 175–192, https://doi.org/10.1007/s10933-012-9619-0, 2012.
Carmack, E. C., Yamamoto-Kawai, M., Haine, T. W. N., Bacon, S., Bluhm, B. A., Lique, C., Melling, H., Polyakov, I. V., Straneo, F., Timmermans, M.-L., and Williams, W. J.: Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans, J. Geophys. Res.-Biogeo., 121, 675–717, https://doi.org/10.1002/2015JG003140, 2016.
Carter, R., LeRoy, S., Nelson, T., Laroque, C. P., and Smith, D. J.: Dendroglaciological investigations at Hilda Creek rock glacier, Banff National Park, Canadian Rocky Mountains, Géogr. Phys. Quatern., 53, 365–371, https://doi.org/10.7202/004777ar, 1999.
Chambers, F. M., Beilman, D. W., and Yu, Z.: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics, Mires and Peat, 7, 7, available at: http://www.mires-and-peat.net/pages/volumes/map07/map0707.php (last access: 18 February 2011), 2011.
Chapligin, B., Narancic, B., Meyer, H., and Pienitz, R.: Palaeo-environmental gateways in the eastern Canadian Arctic – recent isotope hydrology and diatom oxygen isotopes from Nettilling Lake, Baffin Island, Canada, Quaternary Sci. Rev., 147, 379–390, https://doi.org/10.1016/j.quascirev.2016.03.028, 2016.
Charman, D.: Peatlands and Environmental Change, John Wiley & Sons, Chichester, 312 pp., 2002.
Charman, D. J.: Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions, Holocene, 17, 217–227, https://doi.org/10.1177/0959683607075836, 2007.
Charman, D. J., Hendon, D., and Woodland, W. A.: The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats, Technical Guide No. 9, Quaternary Research Association, London, 147 pp., 2000.
Charman, D. J., Barber, K. E., Blaauw, M., Langdon, P. G., Mauquoy, D., Daley, T. J., Hughes, P. D. M., and Karofeld, E.: Climate drivers for peatland palaeoclimate records, Quaternary Sci. Rev., 28, 1811–1819, https://doi.org/10.1016/j.quascirev.2009.05.013, 2009.
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H., and Zhao, Y.: Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, 2013.
Chipman, M. L., Clarke, G. H., Clegg, B. F., Gregory-Eaves, I., and Hu, F. S.: A 2000 year record of climatic change at Ongoke Lake, southwest Alaska, J. Paleolimnol., 41, 57–75, https://doi.org/10.1007/s10933-008-9257-8, 2009.
Clegg, B. F. and Hu, F. S.: An oxygen-isotope record of Holocene climate change in the south-central Brooks Range, Alaska, Quaternary Sci. Rev., 29, 928–939, https://doi.org/10.1016/j.quascirev.2009.12.009, 2010.
Clymo, R. S.: The limits to peat bog growth, Philos. T. Roy. Soc. B, 303, 605–654, https://doi.org/10.1098/rstb.1984.0002, 1984.
Cockburn, J. M. and Lamoureux, S. F.: Inflow and lake controls on short-term mass accumulation and sedimentary particle size in a High Arctic lake: implications for interpreting varved lacustrine sedimentary records, J. Paleolimnol., 40, 923–942, https://doi.org/10.1007/s10933-008-9207-5, 2008.
Cohen, J., Furtado, J. C., Barlow, M. A., Alexeev, V. A., and Cherry, J. E.: Arctic warming, increasing snow cover and widespread boreal winter cooling, Environ. Res. Lett., 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007, 2012.
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and Jones, J.: Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 7, 627–637, https://doi.org/10.1038/ngeo2234, 2014.
Cole, G. A. and Marsh, T. J.: The impact of climate change on severe droughts. Major droughts in England and Wales from 1800 and evidence of impact, in Science Report: SC040068/SR1, Environment Agency, Bristol, UK, 2006.
Cook, E. R., Meko, D. M., Stahle, D. W., and Cleaveland, M. K.: Drought reconstructions for the continental United States, J. Climate, 12, 1145–1162, https://doi.org/10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2, 1999.
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W.: Long-term aridity changes in the western United States, Science, 306, 1015–1018, https://doi.org/10.1126/science.1102586, 2004.
Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W.: North American drought: Reconstructions, causes and consequences. Earth-Sci. Rev., 81, 93–134, https://doi.org/10.1016/j.earscirev.2006.12.002, 2007.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian Monsoon Failure and Megadrought During the Last Millennium, Science, 328, 486–489, https://doi.org/10.1126/science.1185188, 2010.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson, R., and Zang, C.: Old World Megadroughts and Pluvials During the Common Era, Science Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015.
Courtney-Mustaphi, C. and Gajewski, K.: Holocene sediments from a coastal lake on northern Devon Island, Nunavut, Canada, Can. J. Earth Sci., 50, 564–575, https://doi.org/10.1139/cjes-2012-0143, 2013.
Cuven, S., Francus, P., and Lamoureux, S. F.: Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic, J. Paleolimnol., 44, 803–817, https://doi.org/10.1007/s10933-010-9453-1, 2010.
Cuven, S., Francus, P., and Lamoureux, S.: Mid to Late Holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic, Quaternary Sci. Rev., 30, 2651–2665, https://doi.org/10.1016/j.quascirev.2011.05.019, 2011.
Dahl, S. O. and Nesje, A.: Holocene glacier fluctuations at Hardangerjøkulen, central-southern Norway: a high resolution composite chronology from lacustrine and terrestrial deposits, Holocene 4, 269–277, https://doi.org/10.1177/095968369400400306, 1994.
Dahl, S. O. and Nesje, A.: A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway, Holocene, 6, 381–398, https://doi.org/10.1177/095968369600600401, 1996.
D'Andrea, W. J., Vaillencourt, D. A., Balascio, N. L., Werner, A., Roof, S. R., Retelle, M., and Bradley, R. S.: Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard, Geology, 40, 1007–1010, https://doi.org/10.1130/G33365.1, 2012.
Danis, P. A., Masson-Delmotte, V., Stievenard, M., Guillemin, M. T., Daux, V., Naveau, Ph., and von Grafenstein, U.: Reconstruction of past precipitation δ18O using tree-ring cellulose δ18O and δ13C: a calibration study near Lac d'Annecy, France, Earth Planet. Sc. Lett., 243, 439–448, https://doi.org/10.1016/j.epsl.2006.01.023, 2006.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
D'Arrigo, R. D. and Jacoby, G. C.: Secular trends in high northern latitude temperature reconstructions based on tree rings, Climatic Change, 25, 163–177, https://doi.org/10.1007/BF01661204, 1993.
D'Arrigo, R., Wilson, R., and Jacoby, G.: On the long-term context for late twentieth century warming, J. Geophys. Res., 111, D03103, https://doi.org/10.1029/2005JD006352, 2006.
Dearing, J., Hu, Y., Doody, P., James, P. A., and Brauer, A.: Preliminary reconstruction of sediment-source linkages for the past 6000 yrs at the petit lac d'annecy, france, based on mineral magnetic data, J. Paleolimnol., 25, 245–258, https://doi.org/10.1023/A:1008186501993, 2001.
Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J. F., Massei, N., Sebag, D., Petit, J.-R., Copard, Y., and Trentesaux, A.: The origin of the 1500-year climate cycles in Holocene North-Atlantic records, Clim. Past, 3, 569–575, https://doi.org/10.5194/cp-3-569-2007, 2007.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Edlund, S. A. and Egginton, P. A.: Morphology and Description of an Outlier Population of Tree-Sized Willows on Western Victoria Island, District of Franklin, Geological Survey of Canada, Current Research: Part A, 84, 279–285, 1984.
Edvardsson, J. G., Stoffel, M., Corona, C., Bragazza, L., Leuschner, H. H., Charman, D. J., and Helama, S.: Subfossil peatland trees as proxies for Holocene palaeohydrology and palaeoclimate, Earth-Sci. Rev., 163, 118–140, https://doi.org/10.1016/j.earscirev.2016.10.005, 2016.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability, Science, 295, 2250–2253, https://doi.org/10.1126/science.1066208, 2002.
Fang, K., Gou, X., Chen, F., Cook, E., Li, J., Buckley, B., and D'Arrigo, R.: Large-Scale Precipitation Variability over Northwest China Inferred from Tree Rings, J. Climate, 24, 3457–3468, https://doi.org/10.1175/2011jcli3911.1, 2011.
Farquhar, G. D., O'Leary, M. H., and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration of leaves, Aust. J. Plant Physiol., 9, 121–137, https://doi.org/10.1071/PP9820121, 1982.
Finkelstein, S. A, Bunbury, J., Gajewski, K., Wolfe, A. P., Adams J. K., and Devlin, J. E.: Evaluating diatom-derived Holocene pH reconstructions for arctic lakes using an expanded 171-lake training set, J. Quaternary Sci., 29, 249–260, https://doi.org/10.1002/jqs.2697, 2014.
Finney, B. P., Bigelow, N. H., Barber, V. A., and Edwards, M. E.: Holocene climate change and carbon cycling in a groundwater-fed, boreal forest lake: Dune Lake, Alaska, J. Paleolimnol., 48, 43–54, https://doi.org/10.1007/s10933-012-9617-2, 2012.
Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and Hurrell, J. W.: The summer North Atlantic Oscillation: past, present, and future, J. Climate, 22, 1082–1103, https://doi.org/10.1175/2008JCLI2459.1, 2009.
Ford, J. D., McDowell, G., and Jones, J.: The state of climate change adaptation in the Arctic, Environ. Res. Lett., 9, 104005, https://doi.org/10.1088/1748-9326/9/10/104005, 2014.
Fortin, M.-C., Medeiros, A. S. Gajewski, K., Barley, E. M., Larocque-Tobler, I., Porinchu, D. F., and Wilson, S. E.: Chironomid-environment relations in northern North America, J. Palaeolimnol., 54, 223–237, https://doi.org/10.1007/s10933-015-9848-0, 2015.
Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R., and Veron, D. E.: Winter Northern Hemisphere weather patterns remember summer Arctic sea ice extent, Geophys. Res. Lett., 36, L07503, https://doi.org/10.1029/2009GL037274, 2009.
Francus, P., Bradley, R. S., Abbott, M. B., Patridge, W., and Keimig, F.: Paleoclimate studies of minerogenic sediments using annually resolved textural parameters, Geophys. Res. Lett., 29, 59-1–59-4, https://doi.org/10.1029/2002GL015082, 2002.
Francus, P., Bradley, R. S., Lewis, T., Abbott, M., Retelle, M., and Stoner, J. S.: Limnological and sedimentary processes at Sawtooth Lake, Canadian High Arctic, and their influence on varve formation, J. Paleolimnol., 40, 963–985, https://doi.org/10.1007/s10933-008-9210-x, 2008.
Frankenberg, C., Yoshimura, K., Warneke, T., Aben, I., Butz, A., Deutscher, N., Griffith, D., Hase, F., Notholt, J., Schneider, M., and Schrijver, H.: Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground, Science, 325, 1374–1377, https://doi.org/10.1126/science.1173791, 2009.
Gagen, M. H., Zorita, E., McCarroll, D., Young, G. H. F., Grudd, H., Jalkanen, R., Loader, N. J., Robertson, I., and Kirchhefer, A. J.: Cloud response to summer temperatures in Fennoscandia over the last thousand years, Geophys. Res. Lett., 38, L05701, https://doi.org/10.1029/2010GL046216, 2011.
Gajewski, K.: Modern pollen assemblages in lake sediments from the Canadian Arctic, Arct. Antarct. Alp. Res., 34, 26–32, https://doi.org/10.2307/1552505, 2002.
Gajewski, K.: Is Arctic palynology a “blunt instrument”?, Geogr. Phy. Quat., 60, 95–102, 2006.
Gajewski, K.: Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland, Global Planet. Change, 128, 14–23, https://doi.org/10.1016/j.gloplacha.2015.02.003, 2015a.
Gajewski, K.: Impact of Holocene Climate Variability on Arctic Vegetation, Global Planet. Change, 133, 272–287, https://doi.org/10.1016/j.gloplacha.2015.09.006, 2015b.
Gajewski, K., Garneau, M., and Bourgeois, J.: Paleoenvironments of the Canadian High Arctic derived from pollen and plant macrofossils: problems and potentials, Quaternary Sci. Rev., 14, 609–629, https://doi.org/10.1016/0277-3791(95)00015-H, 1995.
Gajewski, K., Bouchard, G., Wilson, S. Kurek, J., and Cwynar, L.: Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes, Hydrobiologia, 549, 131–143, https://doi.org/10.1007/s10750-005-5444-z, 2005.
Gälman, V., Rydberg, J., De-Luna, S. S., Bindler, R., and Renberg, I.: Carbon and nitrogen loss rates during aging of lake sediment: Changes over 27 years studied in varved lake sediment, Limnol. Oceanogr., 53, 1076–1082, https://doi.org/10.4319/lo.2008.53.3.1076, 2008.
Gastaldo, R. A.: Conspectus of phytotaphonomy. The Palaeontological Society Special Publication, 3, 14–28, 1988.
Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., and Stott, P. A.: Detection of a direct carbon dioxide effect in continental river runoff records, Nature, 439, 835–838, https://doi.org/10.1038/nature04504, 2006.
Geer, A., Ng, V., and Fisman, D.: Climate change and infectious diseases in North America: the road ahead, Can. Med. Assoc. J., 178, 715–722, https://doi.org/10.1503/cmaj.081325, 2008.
Geirsdóttir, Á., Hardardóttir, J., and Andrews, J. T.: Late-Holocene terrestrial glacial history of Miki and IC Jacobsen fjords, East Greenland, Holocene, 10, 123–134, https://doi.org/10.1191/095968300666213169, 2000.
Gessler, A., Pedro Ferrio, J., Hommel, R., Treydte, K., Werner, R. A., and Monson, R. K.: Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood, Tree Physiol., 34, 796–818, https://doi.org/10.1093/treephys/tpu040, 2014.
Gorham, E., Lehman, C., Dyke, A., Janssens, J., and Dyke, L.: Temporal and spatial aspects of peatland initiation following deglaciation in North America, Quaternary Sci. Rev., 26, 300–311, https://doi.org/10.1016/j.quascirev.2006.08.008, 2007.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Granger, D. E., Lifton, N. A., and Willenbring, J. K.: A cosmic trip: 25 years of cosmogenic nuclides on geology, Geol. Soc. Am. Bull., 125, 1379–1402, https://doi.org/10.1130/B30774.1, 2013.
Gray, S. T., Betancourt, J. L. Fastie, C. L., and Jackson, S. T.: Patterns and sources of multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky Mountains, Geophys. Res. Lett., 30, 1316, https://doi.org/10.1029/2002GL016154, 2003.
Gunnarson, B. E.: Temporal distribution pattern of subfossil pines in central Sweden: perspective on Holocene humidity fluctuations, Holocene, 18, 569–577, https://doi.org/10.1177/0959683608089211, 2008.
Gunnarson, B. E., Borgmark, A., and Wastegård, S.: Holocene humidity fluctuations in Sweden inferred from dendrochronology and peat stratigraphy, Boreas, 32, 347–360, https://doi.org/10.1111/j.1502-3885.2003.tb01089.x, 2003.
Guo, D., Gao, Y., Bethke, I., Gong, D., Johannessen, O. M., and Wang, H.: Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon, Theor. Appl. Climatol., 115, 107–119, https://doi.org/10.1007/s00704-013-0872-6, 2014.
Haeberli, W. and Hoelzle, M.: Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps, Ann. Glaciol., 21, 206–212, https://doi.org/10.1017/S0260305500015834, 1995.
Hanhijärvi, S., Tingley, M. P., and Korhola, A.: Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic region over the last 2,000 years, Clim. Dynam., 41, 2039–2060, https://doi.org/10.1007/s00382-013-1701-4, 2013.
Hardy, D. R., Bradley, R. S., and Zolitschka, B.: The climatic signal in varved sediments from Lake C2, northern Ellesmere, J. Paleolimnol., 16, 227–238, https://doi.org/10.1007/BF00176938, 1996.
Hari, P. and Nöjd, P.: The effect of temperature and PAR on the annual photosynthetic production of Scots pine in northern Finland during 1906–2002, Boreal Environ. Res., 14, 5–18, 2009.
Hassan, U. and Anwar, M. S.: Reducing noise by repetition: introduction to signal averaging, Eur. J. Phys., 31, 453–465, https://doi.org/10.1088/0143-0807/31/3/003, 2010.
Heikkilä, M., Edwards, T. W., Seppä, H., and Sonninen, E.: Sediment isotope tracers from Lake Saarikko, Finland, and implications for Holocene hydroclimatology, Quaternary Sci. Rev., 29, 2146–2160, https://doi.org/10.1016/j.quascirev.2010.05.010, 2010.
Helama, S. and Lindholm, M.: Droughts and rainfall in southeastern Finland since AD 874, inferred from Scots pine ring widths, Boreal Environ. Res., 8, 171–183, 2003.
Helama, S., Lindholm, M., Timonen, M., and Eronen, M.: Mid- and late Holocene tree population density changes in northern Fennoscandia derived by a new method using megafossil pines and their tree-ring series, J. Quat. Sci., 20, 567–575, https://doi.org/10.1002/jqs.929, 2005.
Helama, S., Merilainen, J., and Tuomenvirta, H.: Multicentennial megadrought in northern Europe coincided with a global El Niño–Southern Oscillation drought pattern during the Mediaeval Climate Anomaly, Geology, 37, 175–178, https://doi.org/10.1130/G25329A.1, 2009.
Helama, S., Eronen, M., and Timonen, M.: Dendroécologie des bois fossiles dans le nord de la Laponie, in: La Dendroécologie: Principes, méthodes et applications, edited by: Payette, S. and Filion, L., Presses de l'Université Laval, Québec, Québec, 709–730, 2010.
Helama, S., Luoto, T. P., Nevalainen, L., and Edvardsson, J.: Rereading a tree-ring database to illustrate depositional histories of subfossil trees, Palaeontol. Electronica, 20, 1–12, 2017a.
Helama, S., Jones, P. D., and Briffa, K. R.: Dark Ages Cold Period: A literature review and directions for future research, Holocene, 27, 1600–1606, https://doi.org/10.1177/0959683617693898, 2017b.
Helama, S., Jones, P. D., and Briffa, K. R.: Limited Late Antique cooling. Nat. Geosci., 10, 242–243, https://doi.org/10.1038/ngeo2926, 2017c.
Helama, S., Sohar, K., Läänelaid, K., Bijak, S., and Jaagus, J.: Reconstruction of precipitation variability in Estonia since the eighteenth century, inferred from oak and spruce tree rings, Clim. Dynam., https://doi.org/10.1007/s00382-017-3862-z, 2017d.
Hellmann, L., Agafonov, L., Ljungqvist, F. C., Churakova, O., Düthorn, E., Esper, J., Hülsmann, L., Kirdyanov, A. V., Moisev, P., Myglan, W. S., Nikolaev, A. N., Reinig, F., Schweingruber, F. H., Solomina, O., Tegel, W., and Büntgen, U.: Diverse growth trends and climate responses across Eurasia's boreal forest, Environ. Res. Lett., 11, 074021, https://doi.org/10.1088/1748-9326/11/7/074021, 2016.
Hemming D., Griffiths, H., Loader, N. J., Marca, A., Robertson, I., Williams, D., Wingate, L., and Yakir, D.: The future of large scale stable isotope networks, Terrest. Ecol., 1, 361–381, https://doi.org/10.1016/S1936-7961(07)01023-8, 2007.
Henderson, K. A.: An ice core palaeoclimate study of Windy Dome, Franz Josef Land, Russia: development of a recent climate history for the Barents Sea, PhD thesis, Ohio State University, Columbus, Ohio, 218 pp., 2002.
Hendon, D., Charman, D. J., and Kent, M.: Palaeohydrological records derived from testate amoebae analysis from peatlands in northern England: within-site variability, between-site comparability and palaeoclimatic implications, Holocene 11, 127–148, https://doi.org/10.1191/095968301674575645, 2001.
Hilasvuori, E. and Berninger, F.: Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak, Tree Physiol., 30, 636–647, https://doi.org/10.1093/treephys/tpq019, 2010.
Hilbert, D. W., Roulet, N., and Moore, T.: Modelling and analysis of peatlands as dynamical systems, J. Ecol., 88, 230–242, https://doi.org/10.1046/j.1365-2745.2000.00438.x, 2000.
Hind, A., Zhang, Q., and Brattström, G.: Problems encountered when defining Arctic amplification as a ratio, Scientific Reports, 6, 30469, https://doi.org/10.1038/srep30469, 2016.
Holzkämper, S., Kuhry, P., Kultti, S., Gunnarson, B., and Sonninen, E.: Stable isotopes in tree rings as proxies for winter precipitation changes in the Russian arctic over the past 150 years, Geochronometria, 32, 37–46, https://doi.org/10.2478/v10003-008-0025-6, 2008.
Holzkämper, S., Tillman, P. K., Khury, P., and Esper, J.: Comparison of stable carbon and oxygen isotopes in Picea glauca tree rings and Sphagnum fuscum moss remains from subarctic Canada, Quaternary Res., 78, 295–302, https://doi.org/10.1016/j.yqres.2012.05.014, 2012.
Hou, J., D'Andrea, W. J., and Huang, Y.: Can sedimentary leaf waxes record D ∕ H ratios of continental precipitation? Field, model, and experimental assessments, Geochim. Cosmochim. Ac., 72, 3503–3517, https://doi.org/10.1016/j.gca.2008.04.030, 2008.
Hua, T., Wang, X. M., Zhang, C. X., and Lang, L. L.: Temporal and spatial variations in the Palmer Drought Severity Index over the past four centuries in arid, semiarid, and semihumid East Asia, Chinese Sci. Bull., 58, 4143–4152, https://doi.org/10.1007/s11434-013-5959-z, 2013.
Huang, Y., Shuman, B., Wang, Y., and Webb, T.: Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test, J. Paleolimnol., 31, 363–375, https://doi.org/10.1023/B:JOPL.0000021855.80535.13, 2004.
Hughes, P. D. M., Mauquoy, D., Barber, K. E., and Langdon, P. G.: Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England, Holocene, 10, 465–479, https://doi.org/10.1191/095968300675142023, 2000.
Humlum, O., Elberling, B., Hormes, A., Fjordheim, K., Hansen, O. H., and Heinemeier, J.: Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes, Holocene, 15, 396–407, https://doi.org/10.1191/0959683605hl817rp, 2005.
Huntington, T. G.: Evidence for intensification of the global water cycle: Review and synthesis, J. Hydrol., 319, 83–95, https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation, Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
Ingram, H. A. P.: Hydrology, in: Ecosystems of the World, 4A: Mires: swamp, bog, fen and moor, edited by: Gore, A. J. P., 67–158, Elsevier, Oxford, 1983.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013
Ireland, A. W., Booth, R. K., Hotchkiss, S. C., and Schmitz, J. E.: Drought as a trigger for rapid state shifts in kettle ecosystems: implications for ecosystem responses to climate change, Wetlands, 32, 989–1000, https://doi.org/10.1007/s13157-012-0324-6, 2012.
Itkonen, A. and Salonen, V.-P.: The response of sedimentation in three varved lacustrine sequences to air temperature, precipitation and human impact, J. Paleolimnol., 11, 323–332, https://doi.org/10.1007/BF00677992, 1994.
Jahren, A. H. and Sternberg, L. S. L.: Annual patterns within tree rings of the Arctic middle Eocene (ca. 45 Ma): Isotopic signatures of precipitation, relative humidity and deciduousness, Geology, 36, 99–102, https://doi.org/10.1130/G23876A.1, 2008.
Janbu, A. D., Paasche, Ø., and Talbot, M. R.: Paleoclimate changes inferred from stable isotopes and magnetic properties of organic-rich lake sediments in Arctic Norway, J. Paleolimnol., 46, 29–44, https://doi.org/10.1007/s10933-011-9512-2, 2011.
Johannessen, O. M., Miles, M. W., Bengtsson, L., Bobylev, L. P., and Kuzmina, S. I.: Arctic climate change, in: Arctic Environment Variability in the Context of Global Change, edited by: Bobylerv, P. K., Kondratyev, K. Y., and Johannessen, O. M., Springer-Verlag Berlin Heidelberg, 1–15, 2003.
Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.: High resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures, Holocene, 8, 455–471, https://doi.org/10.1191/095968398667194956, 1998.
Jönsson, K. and Nilsson, C.: Scots pine (Pinus sylvestris L.) on shingle fields: A dendrochronologic reconstruction of early summer precipitation in mideast Sweden, J. Climate, 22, 4710–4722, https://doi.org/10.1175/2009JCLI2401.1, 2009.
Jungclaus, J. H., Lohmann, K., and Zanchettin, D.: Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium, Clim. Past, 10, 2201–2213, https://doi.org/10.5194/cp-10-2201-2014, 2014.
Karlén, W. and Denton, G. H.: Holocene glacial variations in Sarek National Park, northern Sweden, Boreas, 5, 25–56, https://doi.org/10.1111/j.1502-3885.1976.tb00329.x, 1976.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T., and Vinther, B. M.: Arctic Lakes 2k Project Members.: Recent warming reverses long-term Arctic cooling, Science, 325, 1236–1239, https://doi.org/10.1126/science.1173983, 2009.
Keisling, B. A., Castañeda, I. S., and Brigham-Grette, J.: Hydrological and temperature change in Arctic Siberia during the intensification of Northern Hemisphere Glaciation, Earth Plan. Sc. Lett., 457, 136–148, https://doi.org/10.1016/j.epsl.2016.09.058, 2017.
Kelly, P. M., Jones, P. D., Sear, B. C. B., Cherry, S. G., and Tavakol, R. K.: Variations in Surface Air Temperatures: Part 2. Arctic Regions, 1881–1980, Mon. Weather Rev., 110, 71–83, https://doi.org/10.1175/1520-0493(1982)110<0071:VISATP>2.0.CO;2, 1982.
Kendall, M. G.: Rank Correlation Methods, Griffin, London, UK, 1975.
Kirkbride, M. P. and Dugmore, A. J.: Responses of mountain lee caps in central Iceland to Holocene climate change, Quaternary Sci. Rev., 25, 1692–1707, https://doi.org/10.1016/j.quascirev.2005.12.004, 2006.
Knorre, A. A., Siegwolf, R. T. W., Saurer, M., Sidorova, O. V., Vaganov, E. A., and Kirdyanov, A. V.: Twentieth century trends in tree ring stable isotopes (δ13C and δ18O) of Larix sibirica under dry conditions in the forest steppe in Siberia, J. Geophys. Res., 115, G03002, https://doi.org/10.1029/2009JG000930, 2010.
Koch, J. and Clague, J. J.: Extensive glaciers in northwest North America during Mediaeval time, Climatic Change, 107, 593–613, https://doi.org/10.1007/s10584-010-0016-2, 2011.
Koerner, R. M.: Mass balance of glaciers in the Queen Elizabeth Islands, Nunavut, Canada, Ann. Glaciol., 42, 417–423, https://doi.org/10.3189/172756405781813122, 2005.
Kopec, B. G., Feng, X., Michel, F. A., and Posmentier, E. S.: Influence of sea ice on Arctic precipitation, P. Natl. Acad. Sci. USA, 113, 46–51, https://doi.org/10.1073/pnas.1504633113, 2016.
Korhola, A.: The Early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains, J. Palaeolimnol., 7, 1–22, https://doi.org/10.1007/BF00197028, 1992.
Kremenetski, K. V., Boettger, T., MacDonald, G. M., Vaschalova, T., Sulerzhitsky, L., and Hiller, A.: Mediaeval climate warming and aridity as indicated by multiproxy evidence from the Kola Peninsula, Russia, Palaeogeogr. Palaeocl., 209, 113–125, https://doi.org/10.1016/j.palaeo.2004.02.018, 2004.
Kress, A., Young, G. H. F., Saurer, M., Loader, N. J., Siegwolf, R. T. W., and McCarroll, D.: Stable isotope coherence in the earlywood and latewood of tree-line conifers, Chem. Geol., 268, 52–57, https://doi.org/10.1016/j.chemgeo.2009.07.008, 2009.
Kwok, R. and Cunningham, G. F.: Variability of Arctic sea ice thickness and volume from CryoSat-2, Philos. T. Roy. Soc. A, 373, 20140157, https://doi.org/10.1098/rsta.2014.0157, 2015.
Labuhn, I., Daux, V., Pierre, M., Stievenard, M., Girardclos, O., Feŕon, A., Genty, D., Masson-Delmotte, V., and Mestre, O.: Tree age, site and climate controls on tree ring cellulose δ18O: a case study on oak trees from south-western France, Dendrochronologia, 32, 78–89, https://doi.org/10.1016/j.dendro.2013.11.001, 2014.
Lamarre, A., Garneau, M., and Asnong, H.: Holocene palaeohydrological reconstruction and carbon accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, Kuujjuarapik, subarctic Québec, Canada, Rev. Palaeobot. Palynol., 186, 131–141, https://doi.org/10.1016/j.revpalbo.2012.04.009, 2012.
Lamarre, A., Magnan, G., Garneau, M., and Boucher, É.: A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada, Quaternary Int., 306, 88–96, https://doi.org/10.1016/j.quaint.2013.05.054, 2013.
Lamoureux, S.: Five centuries of interannual sediment yield and rainfall-induced erosion in the Canadian High Arctic recorded in lacustrine varves, Water Resour. Res., 36, 309–318, https://doi.org/10.1029/1999WR900271, 2000.
Lamoureux, S. and Gilbert, R.: A 750-yr record of autumn snowfall and temperature variability and winter storminess recorded in the varved sediments of Bear Lake, Devon Island, Arctic Canada, Quaternary Res., 61, 134–147, https://doi.org/10.1016/j.yqres.2003.11.003, 2004.
Lamoureux, S., Stewart, K., Forbes, A., and Fortin, D.: Multidecadal variations and decline in spring discharge in the Canadian middle Arctic since 1550 AD, Geophys. Res. Lett., 33, L02403, doi10.1029/2005GL024942, 2006.
Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J., Rosenbloom, N., and Teng, H.: Last millennium climate and its variability in CCSM4, J. Climate, 26, 1085–1111, https://doi.org/10.1175/JCLI-D-11-00326.1, 2013.
Lapointe, F., Francus, P., Lamoureux, S. F., Saïd, M., and Cuven, S.: 1750 years of large rainfall events inferred from particle size at East Lake, Cape Bounty, Melville Island, Canada, J. Paleolimnol., 48, 159–173, https://doi.org/10.1007/s10933-012-9611-8, 2012.
Lapointe, F., Francus, P., Lamoureux, S. F., Vuille, M., Jenny, J.-P., Bradley, R. S., and Massa, C.: Influence of North Pacific decadal variability on the western Canadian Arctic over the past 700 years, Clim. Past, 13, 411–420, https://doi.org/10.5194/cp-13-411-2017, 2017.
Larsen, D. J., Miller, G. H., Geirsdottir, A., and Thordarson, T.: A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland, Quaternary Sci. Rev., 30, 2715–2731, https://doi.org/10.1016/j.quascirev.2011.05.026, 2011.
Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang, T.: Observations: changes in snow, ice and frozen ground, in: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 337–383, 2007.
Le Roux, G. and Marshall, W. A.: Constructing recent peat accumulation chronologies using atmospheric fall-out radionuclides, Mires and Peat, 7, 8, available at: http://www.mires-and-peat.net/pages/volumes/map07/map0708.php (last access: 24 February 2011), 2011.
Lewis, D. and Smith, D.: Dendrochronological mass balance reconstruction, Strathcona Provincial Park, Vancouver Island, British Columbia, Canada, Arct. Antarct. Alp. Res., 36, 598–606, https://doi.org/10.1657/1523-0430(2004)036[0598:DMBRSP]2.0.CO;2, 2004.
Lewis, T., Braun, C., Hardy, D. R., Francus, P., and Bradley R. S.: An Extreme Sediment Transfer Event in a Canadian High Arctic Stream, Arct. Antarct. Alp. Res., 37, 477–482, https://doi.org/10.1657/1523-0430(2005)037[0477:AESTEI]2.0.CO;2, 2005.
Lewis, T., Francus, P., and Bradley R. S.: Recent occurrence of large jökulhlaups at Lake Tuborg, Ellesmere Island, Nunavut, J. Paleolimnol., 41, 491–506, https://doi.org/10.1007/s10933-008-9240-4, 2009.
Li, W. K. W., McLaughlin, F. A., Lovejoy, C., and Carmack, E. C.: Smallest Algae Thrive as the Arctic Ocean Freshens, Science, 326, 539 pp., https://doi.org/10.1126/science.1179798, 2009.
Linderholm, H. W. and Chen, D.: Central Scandinavian winter precipitation variability during the past five centuries reconstructed from Pinus sylvestris tree rings, Boreas, 34, 43–52, https://doi.org/10.1111/j.1502-3885.2005.tb01003.x, 2005.
Linderholm, H. W. and Jansson, P.: Proxy data reconstructions of the Storglaciären (Sweden) mass-balance record back to AD 1500 on annual to decadal timescales, Ann. Glaciol., 46, 261–267, https://doi.org/10.3189/172756407782871404, 2007.
Linderholm, H. W., Björklund, J. A., Seftigen, K., Gunnarson, B. E., Grudd, H., Jeong, J.-H., Drobyshev, I., and Liu, Y.: Dendroclimatology in Fennoscandia – from past accomplishments to future potential, Clim. Past, 6, 93–114, https://doi.org/10.5194/cp-6-93-2010, 2010.
Ljungqvist, F. C.: A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia, Geogr. Ann. A, 92, 339–351, https://doi.org/10.1111/j.1468-0459.2010.00399.x, 2010.
Ljungqvist, F. C., Krusic, P. J., Sundqvist, H. S., Zorita, E., Brattström, G., and Frank, D.: Northern Hemisphere hydroclimatic variability over the past twelve centuries, Nature 532, 94–98, https://doi.org/10.1038/nature17418, 2016.
Loader, N. J., Young, G. H. F., Grudd, H., and McCarroll, D.: Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation, Quaternary Sci. Rev., 62, 97–113, https://doi.org/10.1016/j.quascirev.2012.11.014, 2013.
Loisel, J. and Garneau, M.: Late Holocene palaeoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multi-proxy archives, Palaeogeogr. Palaeocl., 291, 493–533, https://doi.org/10.1016/j.palaeo.2010.03.020, 2010.
Loisel, J. and Yu, Z.: Surface vegetation patterning controls carbon accumulation in peatlands, Geophys. Res. Lett., 40, 5508–5513, https://doi.org/10.1002/grl.50744, 2013.
Loisel, J., Garneau, M., and Hélie, J.-F.: Modern Sphagnum δ13C signatures follow a surface moisture gradient in two boreal peat bogs, James Bay lowlands, Québec, J. Quaternary Sci., 24, 209–214, https://doi.org/10.1002/jqs.1221, 2009.
Lubinski, D. J., Forman, S. L., and Miller, G. H.: Holocene glacier and climate fluctuations on Franz Josef Land, Arctic Russia, 80° N, Quaternary Sci. Rev., 18, 85–108, https://doi.org/10.1016/S0277-3791(97)00105-4, 1999.
Luckman, B. H.: Glacier fluctuations and tree-ring records for the last millennium in the Canadian Rockies, Quaternary Sci. Rev., 12, 441–450, https://doi.org/10.1016/S0277-3791(05)80008-3, 1993.
Luoto, T. P.: A Finnish chironomid- and chaoborid-based inference model for reconstructing past lake levels, Quaternary Sci. Rev., 28, 1481–1489, https://doi.org/10.1016/j.quascirev.2009.01.015, 2009.
Luoto, T. P. and Helama, S.: Palaeoclimatological and palaeolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age, Quaternary Sci. Rev., 29, 2411–2423, https://doi.org/10.1016/j.quascirev.2010.06.015, 2010.
Luoto, T. P. and Nevalainen, L.: Late Holocene precipitation and temperature changes in Northern Europe linked with North Atlantic forcing, Clim. Res., 66, 37–48, https://doi.org/10.3354/cr01331, 2015.
Luoto, T. P. and Nevalainen, L.: Quantifying climate changes of the Common Era for Finland, Clim. Dynam., 49, 2557–2567, https://doi.org/10.1007/s00382-016-3468-x, 2017.
Luoto, T. P., Helama, S., and Nevalainen, L.: Stream flow intensity of the Saavanjoki River, eastern Finland, during the past 1500 years reflected by mayfly and caddisfly mandibles in adjacent lake sediments, J. Hydrol., 476, 147–153, https://doi.org/10.1016/j.jhydrol.2012.10.029, 2013.
Mann, D. H., Heiser, P. A., and Finney, B. P.: Holocene history of the Great Kobuk sand dunes, northwestern Alaska, Quaternary Sci. Rev., 21, 709–731, https://doi.org/10.1016/S0277-3791(01)00120-2, 2002.
Mann, H. B.: Nonparametric test against trend, Econometrica, 13, 245–259, 1945.
Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A., Bernardo, R. T., Bromwich, D., Cattani, O., Delmotte, M., Falourd, S., Frezzotti, M., Gallée, H., Genoni, L., Isaksson, E., Landais, A., Helsen, M. M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit, J. R., Royer, A., Uemura, R., Schmidt, G. A., Schlosser, E., Simões, J. C., Steig, E. J., Stenni, B., Stievenard, M., van den Broeke, M. R., van de Wal, R. S. W., van de Berg, W. J., Vimeux, F., and White, J. W. C.: A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling, J. Climate, 21, 3359–3387, https://doi.org/10.1175/2007JCLI2139.1, 2008.
Mathijssen, P., Tuovinen, J.-P., Lohila, A., Aurela, M., Juutinen, S., Laurila, T., Niemelä, E., Tuittila, E.-S., and Väliranta, M.: Development, carbon accumulation and radiative forcing of a subarctic fen over the Holocene, Holocene, 24, 1156–1166, https://doi.org/10.1177/0959683614538072, 2014.
Mathijssen, P. J. H., Väliranta, M., Korrensalo, A., Alekseychik, P., Vesala, T., Rinne, J., and Tuittila, E.-S.: Holocene carbon dynamics reconstruction from a large boreal peatland complex, southern Finland, Quaternary Sci. Rev., 142, 1–15, https://doi.org/10.1016/j.quascirev.2016.04.013, 2016.
Mathijssen, P. J. H., Kähkölä, N., Tuovinen, J.-P., Lohila, A., Minkkinen, K., Laurila, T., and Väliranta, M.: Lateral expansion and carbon exchange of a boreal peatland in Finland resulting in 7000 years of positive radiative forcing, J. Geophys. Res.-Biogeo., 122, 562–577, https://doi.org/10.1002/2016JG003749, 2017.
Matthews, J. A., Berrisford, M. S., Dresser, P. Q., Nesje, A., Dahl, S. O., Bjune, A. E., Bakke, J., Birks, H. J. B., Lie, Ø., Dumayne-Peaty, L., and Barnett, C.: Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, Norway, based on proximal glaciofluvial stream-bank mires, Quaternary Sci. Rev., 24, 67–90, https://doi.org/10.1016/j.quascirev.2004.07.003, 2005.
Mauquoy, D., van Geel, B., Blaauw, M., and van der Plicht, J.: Evidence from northwest European bogs shows “Little Ice Age” climatic changes driven by variations in solar activity, Holocene, 12, 1–6, https://doi.org/10.1191/0959683602hl514rr, 2002.
Mauquoy, D., van Geel, B., Blaauw, M., Speranza, A., and van der Plicht, J.: Changes in solar activity and Holocene climate shifts derived from 14C wiggle-match dated peat deposits, Holocene, 14, 45–52, https://doi.org/10.1191/0959683604hl688rp, 2004.
Mauquoy, D., Yeloff, D., van Geel, B., Charman, D. J., and Blundell, A.: Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene, J. Quaternary Sci., 23, 745–763, https://doi.org/10.1002/jqs.1158, 2008.
Mauquoy, D., Hughes, P. D. M., and van Geel, B.: A protocol for plant macrofossil analysis of peat deposits, Mires and Peat, 7, 6, available at: http://www.mires-and-peat.net/pages/volumes/map07/map0706.php (last access: 18 November 2010), 2010.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quaternary Sci. Rev., 23, 771–801, https://doi.org/10.1016/j.quascirev.2003.06.017, 2004.
McCarroll, D. and Pawellek, F.: Stable carbon isotope ratios of latewood cellulose in Pinus sylvestris from northern Finland: variability and signal strength, Holocene, 8, 693–702, https://doi.org/10.1191/095968398675987498, 1998.
McCarroll, D. and Pawellek, F.: Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies, Holocene, 11, 517–526, https://doi.org/10.1191/095968301680223477, 2001.
McCarroll, D., Jalkanen, R., Hicks, S., Tuovinen, M., Pawellek, F., Gagen, M., Eckstein, D., Schmitt, U., Autio, J., and Heikkinen, O.: Multi-proxy dendroclimatology: a pilot study in northern Finland, Holocene, 13, 829–838, https://doi.org/10.1191/0959683603hl668rp, 2003.
McCarroll, D., Gagen, M. H., Loader, N. J., Robertson, I., Anchukaitis, K. J., Los, S., Young, G. H. F., Jalkanen, R., Kirchhefer, A. J., and Waterhouse, J. S.: Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim. Cosmochim. Ac., 73, 1539–154, https://doi.org/10.1016/j.gca.2008.11.041, 2009.
McCarroll, D., Tuovinen, M., Campbell, R., Gagen, M., Grudd, H., Jalkanen, R., Loader, N. J., and Robertson, I.: A critical evaluation of multi-proxy dendroclimatology in northern Finland, J. Quaternary Sci., 26, 7–14, https://doi.org/10.1002/jqs.1408, 2011.
McCarroll, D., Loader, N. J., Jalkanen, R., Gagen, M., Grudd, H., Gunnarson, B. E., Kirchhefer, A. J., Friedrich, M., Linderholm, H. W., Lindholm, M., Boettger, T., Los, S. O., Remmele, S., Kononov, Y. M., Yamazaki, Y. H., Young, G. H. F., and Zorita, E.: A 1200-year multi-proxy record of tree growth and summer temperature at the northern pine forest limit of Europe, Holocene, 23, 471–484, https://doi.org/10.1177/0959683612467483, 2013.
McKay, N. P. and Kaufman, D. S.: Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska, J. Paleolimnol., 41, 143–159, https://doi.org/10.1007/s10933-008-9260-0, 2009.
McKay, N. P. and Kaufman, D. S.: An extended Arctic proxy temperature database for the past 2,000 years, Sci. Data, 1, 140026, https://doi.org/10.1038/sdata.2014.26, 2014.
Medeiros, A. S. K., Gajewski, J., Vermaire, D., Porinchu, J. C., and Wolfe, B. B.: Detecting the influence of secondary environmental gradients on chironomid-inferred palaeotemperature reconstructions, Quaternary Sci. Rev., 124, 265–274 https://doi.org/10.1016/j.quascirev.2015.07.010, 2015.
Meese, D. A., Gow, A. J., Grootes, P., Mayewski, P. A., Ram, M., Stuiver, M., Taylor, K. C., Waddington, E. D., and Zielinski, G. A.: The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene, Science, 1680–1682, https://doi.org/10.1126/science.266.5191.1680, 1994.
Meko, D. M., Therrell, M. D., Baisan, C. H., and Hughes, M. K.: Sacramento River flow reconstructed to A.D. 869 from tree rings, J. Am. Water Resour. Assoc., 37, 1029–1039, https://doi.org/10.1111/j.1752-1688.2001.tb05530.x, 2001.
Menounos, B., Osborn, G., Clague, J. J., and Luckman, B. H.: Latest Pleistocene and Holocene glacier fluctuations in western Canada, Quaternary Sci. Rev., 28, 2049–2074, https://doi.org/10.1016/j.quascirev.2008.10.018, 2009.
Mernild, S. H., Hanna, E., McConnell, J. R., Sigl, M., Beckerman, A. P., Yde, J. C., Cappelen, J., Malmros, J. K., and Steffen, K.: Greenland precipitation trends in a long-term instrumental climate context (1890–2012): evaluation of coastal and ice core records, Int. J. Climatol., 35, 303–320, https://doi.org/10.1002/joc.3986, 2015.
Min, S. K., Zhang, X., and Zweirs, F.: Human-induced Arctic moistening, Science, 320, 518–520, https://doi.org/10.1126/science.1153468, 2008.
Mitchell, E. A. D., Charman, D. J., and Warner, B. G.: Testate amoebae analysis in ecological and palaeoecological studies of wetlands: past, present and future, Biodivers. Conserv., 17, 2115–2137, https://doi.org/10.1007/s10531-007-9221-3, 2008.
Moore, T. A. and Shearer, J. C.: Evidence for aerobic degradation of Palangka Raya peat and implications for its sustainability, in: Biodiversity and Sustainability of Tropical Peatlands, edited by: Rieley, J. O. and Page, S. E., Samara Publishing, Cardigan, UK, 157–168, 1997.
Moossen, H., Bendle, J., Seki, O., Quillmann, U., and Kawamura, K.: North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records, Quaternary Sci. Rev., 129, 111–127, https://doi.org/10.1016/j.quascirev.2015.10.013, 2015.
Moron, V., Robertson, A. W., and Ward, M. N.: Seasonal predictability and spatial coherence of rainfall characteristics in the tropical settings of Senegal, Mon. Weather Rev., 134, 3248–3262, https://doi.org/10.1175/MWR3252.1, 2006.
Mosley-Thompson, E., McConnell, J. R., Bales, R. C., Li, Z., Lin, P.-N., Steffen, K., Thompson, L. G., Edwards, R., and Bathke, D.: Local to regionalscale variability of annual net accumulation on the Greenland Ice Sheet from PARCA cores, J. Geophys. Res., 106, 33839–33851, https://doi.org/10.1029/2001JD900067, 2001.
Muschitiello, F., Pausata, F. S., Watson, J. E., Smittenberg, R. H., Salih, A. A., Brooks, S. J., Whitehouse, N. J., Karlatou-Charalampopoulou, A., and Wohlfarth, B.: Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas, Nature Commun., 6, 8939, https://doi.org/10.1038/ncomms9939, 2015.
Naulier, M., Savard, M. M., Bégin, C., Marion, J., Arseneault, D., and Bégin, Y.: Carbon and oxygen isotopes of lakeshore black spruce trees in northeastern Canada as proxies for climatic reconstruction, Chem. Geol., 37, 374–375, https://doi.org/10.1016/j.chemgeo.2014.02.031, 2014.
Nesje, A.: Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia, Quaternary Sci. Rev., 28, 2119–2136, https://doi.org/10.1016/j.quascirev.2008.12.016, 2009.
Nesje, A. and Dahl, S. O.: The “Little Ice Age” – only temperature?, Holocene, 13, 139–145, https://doi.org/10.1191/0959683603hl603fa, 2003.
Nesje, A., Dahl, S. O., Thun, T., and Nordli, Ø.: The “Little Ice Age” glacial expansion in western Scandinavia e summer temperature or winter precipitation?, Clim. Dynam., 30, 789–801, https://doi.org/10.1007/s00382-007-0324-z, 2007.
Nevalainen, L. and Luoto, T. P.: Intralake training set of fossil Cladocera for palaeohydrological inferences: evidence for multicentennial drought during the Mediaeval Climate Anomaly, Ecohydrology, 5, 834–840, https://doi.org/10.1002/eco.275, 2012.
Nevalainen, L., Sarmaja-Korjonen, K., and Luoto, T. P.: Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes, Quaternary Res., 75, 430–437, https://doi.org/10.1016/j.yqres.2011.02.007, 2011.
Nevalainen, L., Helama, S., and Luoto T. P.: Hydroclimatic variations over the last millennium in eastern Finland disentangled by fossil Cladocera, Palaeogeogr. Palaeocl., 378, 13–21, https://doi.org/10.1016/j.palaeo.2013.03.016, 2013.
Nicault, A., Alleaume, S., Brewer, S., Carrer, M., Nola, P., Guttierez, E., Edouard, J. L., Urbinati, C., and Guiot, J.: Mediterranean Drought fluctuation during the last 500 years based on tree-ring data, Clim. Dynam., 31, 227–245, https://doi.org/10.1007/s00382-007-0349-3, 2007.
Nichols, J. E., Walcott, M., Bradley, R., Picher, J., and Youngsong, H.: Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland, Quaternary Res., 72, 443–451, https://doi.org/10.1016/j.yqres.2009.07.007, 2009.
Nilsson, M., Klarqvist, M., Bohlin, E., and Possnert, G.: Variation in radiocarbon age of macrofossils and different fractions of minute peat samples dates by AMS, Holocene, 11, 579–586, https://doi.org/10.1191/095968301680223521, 2001.
Nordli, Ø., Lie, Ø., Nesje, A., and Benestad, R. E.: Glacier mass balance in southern Norway modelled by circulation indices and spring–summer temperatures AD 1781–2000, Geogr. Ann., 87, 431–445, https://doi.org/10.1111/j.0435-3676.2005.00269.x, 2005.
Oerlemans, J.: Quantifying global warming from the retreat of glaciers, Science, 264, 243–245, https://doi.org/10.1126/science.264.5156.243, 1994.
Oerlemans, J.: Glaciers and climate change, 148 pp., A. A. Balkema Publishers, 2001.
Ojala, A. E. K. and Alenius, T.: 10000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic–organic varves, Palaeogeogr. Palaeocl., 219, 285–302, https://doi.org/10.1016/j.palaeo.2005.01.002, 2005.
Ojala, A. E. K. and Francus, P.: X-ray densitometry vs. BSE-image analysis of thin-sections: a comparative study of varved sediments of Lake Nautajärvi, Finland, Boreas 31, 57–64, https://doi.org/10.1111/j.1502-3885.2002.tb01055.x, 2002.
Ojala, A. E. K., Saarinen, T., and Salonen, V.-P.: Preconditions for the formation of annually laminated lake sediments in southern and central Finland, Boreal Environ. Res., 5, 243–255, 2000.
Ojala, A. E. K., Kosonen, E., Weckström, J., Korkonen, S., and Korhola, A.: Seasonal formation of clastic-biogenic varves: the potential for palaeoenvironmental interpretations, GFF, 135, 237–247, https://doi.org/10.1080/11035897.2013.801925, 2013.
Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C., Casado, M., and Yiou, P.: A model-tested North Atlantic Oscillation reconstruction for the past millennium, Nature, 523, 71–74, https://doi.org/10.1038/nature14518, 2015.
Outridge, P. M., Sanei, H., Courtney Mustaphi, C. J., and Gajewski, K.: Holocene climate change influences on trace metal and organic matter geochemistry over 7000 years in a varved Arctic lake sediment profile, Appl. Geochem., 78, 35–48, https://doi.org/10.1016/j.apgeochem.2016.11.018, 2017.
Overland, J. E.: Atmospheric Science: Long-range linkage, Nature Clim. Change, 4, 11–12, https://doi.org/10.1038/nclimate2079, 2014.
Overland, J. E., Dethloff, K., Francis, J. A., Hall, R. J., Hanna, E., Kim, S.-J., Screen, J. A., Shepherd, T. G., and Vihma, T.: Nonlinear response of mid-latitude weather to the changing Arctic, Nature Clim. Change, 6, 992–999, https://doi.org/10.1038/nclimate3121, 2016.
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G.: Arctic environmental change of the last four centuries, Science, 278, 1251–1255, https://doi.org/10.1126/science.278.5341.1251, 1997.
PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/NGEO1797, 2013.
PAGES Hydro2k Consortium: Comparing proxy and model estimates of hydroclimate variability and change over the Common Era, Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, 2017.
Pancost, R., Baas, M., van Geel, B., and Sinninghe Damsté, J. S.: Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog, Org. Geochem., 33, 675–690, https://doi.org/10.1016/S0146-6380(02)00048-7, 2002.
Parnell, A. C., Buck, C. E., and Doan, T. K.: A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction, Quaternary Sci. Rev., 30, 2948–2960, https://doi.org/10.1016/j.quascirev.2011.07.024, 2011.
Paterson, W. S. B. and Waddington E. D.: Past precipitation rates derived from ice core measurements: Methods and data analysis, Rev. Geophys., 22, 123–130, https://doi.org/10.1029/RG022i002p00123, 1984.
Payne, R. J.: Can testate amoeba-based palaeohydrology be extended to fens? J. Quaternary Sci., 26, 15–27, https://doi.org/10.1002/jqs.1412, 2011.
Payne, R. J., Kishaba, K., Blackford, J. J., and Mitchell E. A. D.: Ecology of testate amoebae (Protista) in south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies, Holocene, 16, 403–414, https://doi.org/10.1191/0959683606hl936rp, 2006.
Pedersen, R. A., Cvijanovic, I., Langen, P. L., and Vinther, B. M.: The Impact of Regional Arctic Sea Ice Loss on Atmospheric Circulation and the NAO, J. Climate, 29, 889–902, https://doi.org/10.1175/JCLI-D-15-0315.1, 2016.
Pederson, N., Jacoby, G. C., D'Arrigo, R., Buckley, B., Dugarjav, C., and Mijiddorj, R.: Hydrometeorological Reconstructions for Northeastern Mongolia Derived from Tree Rings: AD 1651–1995, J. Climate, 4, 872–881, https://doi.org/10.1175/1520-0442(2001)014<0872:HRFNMD>2.0.CO;2, 2001.
Peros, M. and Gajewski, K.: Holocene climate and vegetation change on Victoria Island, western Canadian Arctic, Quaternary Sci. Rev., 27, 235–249, https://doi.org/10.1016/j.quascirev.2007.09.002, 2008.
Peros, M. and Gajewski, K.: Pollen-based reconstructions of late Holocene climate from the central and western Canadian Arctic, J. Paleolimnol., 41, 161–175, https://doi.org/10.1007/s10933-008-9256-9, 2009.
Peros, M., Gajewski, K., Paull, T., Ravindra, R., and Podritske, B.: Multi-proxy record of postglacial environmental change, south-central Melville Island, Northwest Territories, Canada, Quaternary Res., 73, 247–258, https://doi.org/10.1016/j.yqres.2009.11.010, 2010.
Perren, B. B., Anderson, N. J., Douglas, M. S., and Fritz, S. C.: The influence of temperature, moisture, and eolian activity on Holocene lake development in West Greenland, J. Paleolimnol., 48, 223–239, https://doi.org/10.1007/s10933-012-9613-6, 2012.
Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M., Walsh, J. E., and Aagaard, K.: Trajectory Shifts in the Arctic and Subarctic Freshwater Cycle, Science, 313, 1061–1066, https://doi.org/10.1126/science.1122593, 2006.
Petterson, G., Odgaard, B. V., and Renberg, I.: Image analysis as a method to quantify sediment components, J. Paleolimnol., 22, 443–455, https://doi.org/10.1023/A:1008070811190, 1999.
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation, Geosci. Model Dev., 4, 483–509, https://doi.org/10.5194/gmd-4-483-2011, 2011.
Pierrehumbert, R. T.: Huascaran δ18O as an indicator of tropical climate during the Last Glacial Maximum, Geophys. Res. Lett., 26, 1345–1348, https://doi.org/10.1029/1999GL900183, 1999.
Pisaric, M. F. J., St-Onge, S. M., and Kokelj, S. V.: Tree-ring reconstruction of early-growing season precipitation from Yellowknife, Northwest Territories, Canada, Arctic, Arct. Antarc. Alp. Res., 41, 486–496, https://doi.org/10.1657/1938-4246-41.4.486, 2009.
Poli, P., Hersbach, H., Tan, D., Dee, D., Thépaut, J.-N., Simmons, A., Peubey, C., Laloyaux, P., Komori, T., Berrisford, P., Dragani, R., Trémolet, Y., Hølm, E., Bonavita, M., Isaksen, L., and Fisher, M.: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C), ERA Report Series no 14, ECMWF Technical Report, UK, 2013.
Polissar, P. J. and Freeman, K. H.: Effects of aridity and vegetation on plant-wax δD in modern lake sediments, Geochim. Cosmochim. Ac., 74, 5785–5797, https://doi.org/10.1016/j.gca.2010.06.018, 2010.
Polyak, L., Murdmaa, I., and Ivanova, E.: A high-resolution, 800-year glaciomarine record from Russkaya Gavan', a Novaya Zemlya fjord, eastern Barents Sea, Holocene, 14, 628–634, https://doi.org/10.1191/0959683604hl740rr, 2004.
Porter, T. J., Pisaric, M. F. J., Kokelj, S. V., and Edwards, T. D. W.: Climatic Signals in δ13C and δ18O of Tree-rings from White Spruce in the Mackenzie Delta Region, Northern Canada, Arct. Antarct. Alp. Res., 41, 497–505, https://doi.org/10.1657/1938-4246-41.4.497, 2009.
Porter, T. J., Pisaric, M. F. J., Field, R. D., Kokelj, S. V., Edwards, T. W. D., deMontigny, P., Healy, R., and LeGrande, A. N.: Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada, Clim. Dynam., 42, 771–785, https://doi.org/10.1007/s00382-013-1674-3, 2014.
Rach, O., Brauer, A., Wilkes, H., and Sachse, D.: Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe, Nat. Geosci., 7, 109–112, https://doi.org/10.1038/ngeo2053, 2014.
Rach, O., Kahmen, A., Brauer, A., and Sachse, D.: A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios, Clim. Past, 13, 741–757, https://doi.org/10.5194/cp-13-741-2017, 2017.
Rahmstorf, S.: Bifurcations of the Atlantic Thermohaline Circulation in Response to Changes in the Hydrological Cycle, Nature, 378, 146–149, https://doi.org/10.1038/378145a0, 1995.
Reusche, M., Winsor, K., Carlson, A. E., Marcott, S. A., Rood, D. H., Novak, A., Roof, S., Retelle, M., Werner, A., Caffee, M., and Clark, P. U.: 10Be surface exposure ages on the late-Pleistocene and Holocene history of Linnebreen on Svalbard, Quaternary Sci. Rev., 89, 5–12, https://doi.org/10.1016/j.quascirev.2014.01.017, 2014.
Rhein, M., Rintoul, S. R. Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F.: Observations: Ocean, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Rice, S. K.: Variation in carbon isotope discrimination within and among Sphagnum species in a temperate wetland, Oecologia, 123, 1–8, https://doi.org/10.1007/s004420050983, 2000.
Ringberg, B. and Erlström, M.: Micromorphology and petrography of Late Weichselian glaciolacustrine varves in southeastern Sweden, Catena, 35, 147–177, https://doi.org/10.1016/S0341-8162(98)00098-8, 1999.
Roden, J. S., Lin, G., and Ehleringer, J. R.: A mechanistic model for inter-pretation of hydrogen and oxygen isotope ratios in tree-ring cellulose, Geochim. Cosmochim. Ac., 64, 21–35, https://doi.org/10.1016/S0016-7037(99)00195-7, 2000.
Røthe, T. O., Bakke, J., Vasskog, K., Gjerde, M., D'Andreas, W. J., and Bradley, R. S.: Artic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen, Quaternary Sci. Rev., 109, 111–125, https://doi.org/10.1016/j.quascirev.2014.11.017, 2015.
Rowell, D. P.: Assessing potential seasonal predictability with an ensemble of multidecedal GCM simulations, J. Climate, 11, 109–120, https://doi.org/10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2, 1998.
Rozanski, K., Johnsen, S. J., Schotterer, U., and Thompson, L. G.: Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives, Hydrolog. Sci. J., 42, 725–745, https://doi.org/10.1080/02626669709492069, 1997.
Ruppel, M., Väliranta, M., Virtanen, T., and Korhola, A.: Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in Europe and North-America, Holocene, 23, 1596–1606, https://doi.org/10.1177/0959683613499053, 2013.
Rydberg, J. and Martinez-Cortizas, A.: Geochemical assessment of an annually laminated lake sediment record from northern Sweden: a multi-core, multi-element approach, J. Paleolimnol., 51, 499–514, https://doi.org/10.1007/s10933-014-9770-x, 2014.
Rydin, H. and Jeglum, J.: The Biology of Peatlands, Oxford University Press, Rochester, USA, 2006.
Saarni, S., Saarinen, T., and Lensu, A.: Organic lacustrine sediment varves as indicators of past precipitation changes: a 3,000-year climate record from Central Finland, J. Palaeolimnol., 53, 401–413, https://doi.org/10.1007/s10933-015-9832-8, 2015.
Saarni, S., Saarinen, T., and Dulski, P.: Between the North Atlantic Oscillation and the Siberian High: A 4000-year snow accumulation history inferred from varved lake sediments in Finland, Holocene, 26, 423–431, https://doi.org/10.1177/0959683615609747, 2016.
Saurer, M., Kress, A., Leuenberger, M., Rinne, K. T., Treydte, K. S., and Siegwolf, R. T. W.: Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region, J. Geophys. Res., 117, D05118, https://doi.org/10.1029/2011JD016861, 2012.
Scheidegger, Y., Saurer, M., Bahn, M., and Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model, Oecologia, 125, 350–357, https://doi.org/10.1007/s004420000466, 2000.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V. S., Kirdyanov, A. V., and Esper, J.: Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network, Geophys. Res. Lett., 42, 4556–4562, https://doi.org/10.1002/2015gl063956, 2015.
Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B., and Phipps, S. J.: Separating forced from chaotic climate variability over the Past Millennium, J. Climate, 26, 6954–6973, https://doi.org/10.1175/JCLI-D-12-00826.1, 2013.
Screen, J. A. and Francis, J. A.: Contribution of sea-ice loss to Arctic amplification regulated by Pacific Ocean decadal variability, Nature Clim. Change, 6, 1758–6798, https://doi.org/10.1038/nclimate3011, 2016.
Screen, J. A. and Simmonds, I.: Declining snowfall in the Arctic: causes, impacts and feedbacks, Clim. Dynam., 38, 2243–2256, https://doi.org/10.1007/s00382-011-1105-2, 2012.
Seager, R., Graham, N., Herweijer, C., Gordon, A. L., Kushnir, Y., and Cook, E. R.: Blueprints for medieval hydroclimate, Quaternary Sci. Rev., 26, 2322–2336, https://doi.org/10.1016/j.quascirev.2007.04.020, 2007.
Seftigen, K., Linderholm, H. W., Loader, N. J., Liu, Y., and Young, G. H. F.: The influence of climate on 13C ∕ 12C and 18O ∕ 16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains, Chem. Geol., 286, 84–93, https://doi.org/10.1016/j.chemgeo.2011.04.006, 2011.
Seftigen, K., Cook, E. R., Linderholm, H. W., Fuentes, M., and Björklund, J.: The potential of deriving tree-ring based field reconstructions of droughts and pluvials over Fennoscandia, J. Climate, 28, 3453–3471, https://doi.org/10.1175/JCLI-D-13-00734.1, 2015a.
Seftigen, K., Björklund, J., Cook, E. R., and Linderholm, H. W.: A tree-ring field reconstruction of Fennoscandian summer hydroclimate variability for the last millennium, Clim. Dynam., 44, 3141–3154, https://doi.org/10.1007/s00382-014-2191-8, 2015b.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Serreze, M. C., Walsh, J. E., Chapin, F. S., Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., Morison J., Zhang, T., and Barry, R. G.: Observational evidence of recent change in the northern high-latitude environment, Climatic Change, 46, 159–207, https://doi.org/10.1023/A:1005504031923, 2000.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Shi, F., Yang, B., Ljungqvist, F. C., and Yang, F.: Multi-proxy reconstruction of Arctic summer temperatures over the past 1400 years, Clim. Res., 54, 113–128, https://doi.org/10.3354/cr01112, 2012.
Shi, X., Déry, S. J., Groisman, P. Y., and Lettenmaier, D. P.: Relationships between recent pan-Arctic snow cover and hydroclimate trends, J. Climate, 26, 2048–2064, https://doi.org/10.1175/JCLI-D-12-00044.1, 2013.
Sidorova, O. V., Siegwolf, R. T. W., Saurer, M., Naurzbaev, M. M., and Vaganov, E. A.: Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Mediaeval and recent periods, J. Geophys. Res., 113, G02019, https://doi.org/10.1029/2007JG000473, 2008.
Sidorova, O. V., Siegwolf, R. T. W., Saurer, M., Shashkin, A. V., Knorre, A. A., Prokushkin, A. S., Vaganov, E. A., and Kirdyanov, A. V.: Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?, Oecologia, 161, 825–835, https://doi.org/10.1007/s00442-009-1411-0, 2009.
Sillasoo, Ü, Mauquoy, D., Blundell, A., Charman, D., Blaauw, M., Daniell, J. G. R., Toms, P., Newberry, J., Chambers, F. M., and Karofeld, E.: Peat multi-proxy data from Männikjärve bog as indicators of Late Holocene climate changes in Estonia, Boreas, 36, 20–37, https://doi.org/10.1111/j.1502-3885.2007.tb01177.x, 2007.
Sjolte, J., Hoffman, G., and Johnsen, S. J.: Modelling the response of stable water isotopes in Greenland precipitation to orbital configurations of the previous interglacial, Tellus B, 66, 22872, https://doi.org/10.3402/tellusb.v66.22872, 2014.
Slater, A. G., Bohn, T. J., McCreight, J. L., Serreze, M. C., and Lettenmaier, D. P.: A multimodel simulation of pan-Arctic hydrology, J. Geophys. Res., 112, G04S45, https://doi.org/10.1029/2006JG000303, 2007.
Snowball, I., Zillen, L., and Gaillard, M. J.: Rapid early-Holocene environmental changes in northern Sweden based on studies of two varved lake-sediment sequences, Holocene, 12, 7–16, https://doi.org/10.1191/0959683602hl515rp, 2002.
Solomina, O., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev., 111, 9–34, https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier fluctuations during the past 2000 years, Quaternary Sci. Rev., 149, 61–90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.
Sonninen, E. and Jungner, H.: Stable carbon isotopes in tree-ringsof a Scots pine from northern Finland, in: Problems of stable isotopes in tree rings, lake sediments and peat bogs as climatic evidence for the Holocene, edited by: Frenzel, B., Stauffer, B., and Weiss, M., Paläoklimaforschung, 15, 121–128, 1995.
Stahle, D. W. and Cleaveland, M. K.: Texas drought history reconstructed and analyzed from 1698 to 1980, J. Climate, 1, 59–74, https://doi.org/10.1175/1520-0442(1988)001<0059:TDHRAA>2.0.CO;2, 1988.
Steinhilber, F., Abreu, J. A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P. W., Mann, M., McCracken, K. G., Miller, H., Miyahara, H., Oerter, H., and Wilhelms, F.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings, P. Natl. Acad. Sci. USA, 109, 5967–5971, https://doi.org/10.1073/pnas.1118965109, 2012.
St. George, S.: An overview of tree-ring width records across the Northern Hemisphere, Quaternary Sci. Rev., 95, 132–150, https://doi.org/10.1016/j.quascirev.2014.04.029, 2014.
St. George, S. and Ault, T. R.: The imprint of climate within Northern Hemisphere trees, Quaternary Sci. Rev., 89, 1–4, https://doi.org/10.1016/j.quascirev.2014.01.007, 2014.
Stien, A., Ims, R. A., Alborn, S. D., Fuglei, E., Irvine, R. J., Ropstad, E., Halvorsen, O., Langvatn, R., Loe, L. E., Veiberg, V., and Yoccoz, N. G.: Congruent responses to weather variability in high arctic herbivores, Biol. Lett., 8, 1002–1005, https://doi.org/10.1098/rsbl.2012.0764, 2012.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B. H., Oppenheimer, C., and Lebas, N.: Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788, https://doi.org/10.1038/ngeo2526, 2015.
Stroeve, J. C., Serreze, M., Holland, M., Kay, J., Maslanik, J., and Barrett, A.: The Arctic's rapidly shrinking sea ice cover: a research synthesis, Climatic Change, 110, 1005–10027, https://doi.org/10.1007/s10584-011-0101-1, 2012.
Sundqvist, H. S., Kaufman, D. S., McKay, N. P., Balascio, N. L., Briner, J. P., Cwynar, L. C., Sejrup, H. P., Seppä, H., Subetto, D. A., Andrews, J. T., Axford, Y., Bakke, J., Birks, H. J. B., Brooks, S. J., de Vernal, A., Jennings, A. E., Ljungqvist, F. C., Rühland, K. M., Saenger, C., Smol, J. P., and Viau, A. E.: Arctic Holocene proxy climate database – new approaches to assessing geochronological accuracy and encoding climate variables, Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, 2014.
Svendsen, J. I. and Mangerud, J.: Holocene glacial and climatic variations on Svalbard, Svalbard, Holocene, 7, 45–57, https://doi.org/10.1177/095968369700700105, 1997.
Swindles, G. T., Plunkett, G., and Roe, H.: A delayed climatic response to solar forcing at 2800 cal. BP: multi-proxy evidence from three Irish peatlands, Holocene, 17, 177–182, https://doi.org/10.1177/0959683607075830, 2007.
Swindles, G. T., De Vleeschouwer, F., and Plunkett, G.: Dating peat profiles using tephra: stratigraphy, geochemistry and chronology, Mires and Peat, 7, 5, available at: http://www.mires-and-peat.net/pages/volumes/map07/map0705.php (last access: 6 November 2010), 2010.
Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M., and Plunkett, G.: Ecohydrological feedbacks confound peat-based climate reconstructions, Geophys. Res. Lett., 39, L11401, https://doi.org/10.1029/2012GL051500, 2012.
Swindles, G. T., Amesbury, M. J, Turner, T. E., Carrivick, J. L., Woulds, C., Raby, C., Mullan, D., Roland, T. P., Galloway, J. M., Parry, L., Kokfelt, U., Garneau, M., Charman, D. J., and Holden, J.: Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands, Palaeogeogr. Palaeocl., 424, 111–122, https://doi.org/10.1016/j.palaeo.2015.02.004, 2015.
Tallis, J. H.: Changes in wetland communities, in: Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. General studies, edited by: Gore, A. J. P., Elsevier Scientific Publishing Company, Amsterdam – Oxford – New York, 311–347, 1983.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Theakstone, W. H.: A seven-year study of oxygen isotopes in daily precipitation at a site close to the arctic circle, tustervatn, norway: Trajectory analysis and links with the north atlantic oscillation, Atmos. Environ., 45, 5101–5109, 2011.
Thomas, E. K., McGrane, S., Briner, J. P., and Huang, Y.: Leaf wax δ2H and varve-thickness climate proxies from proglacial lake sediments, Baffin Island, Arctic Canada, J. Paleolimnol., 48, 193–207, https://doi.org/10.1016/j.atmosenv.2011.06.034, 2012.
Thomas, E. K., Briner, J. P., Ryan-Henry, J. J., and Huang, Y.: A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea, Geophys. Res. Lett., 43, 5302–5308, https://doi.org/10.1002/2016GL068513, 2016.
Thompson, L. G., Mosely-Thompson, E., Bolzan, J. F., and Koci, B. R.: A 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru, Science, 229, 971–973, https://doi.org/10.1126/science.229.4717.971, 1985.
Thompson, L. G., Yao, T., Mosely-Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P.-N.: A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores, Science, 289, 1916–1919, https://doi.org/10.1126/science.289.5486.1916, 2000.
Tiljander, M., Saarnisto, M., Ojala, A. K., and Saarinen, T.: A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajarvi, central Finland, Boreas 32, 566–577, https://doi.org/10.1111/j.1502-3885.2003.tb01236.x, 2003.
Torbenson, M. C. A., Plunkett, G., Brown, D. M., Pilcher, J. R., and Leuschner, H. H.: Asynchrony in key Holocene chronologies: Evidence from Irish bog pines, Geology, 43, 799–802, https://doi.org/10.1130/G36914.1, 2015.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Touchan, R., Anchukaitis, K. J., Meko, D. M., Sabir, M., Attalah, S., and Aloui, A.: Spatiotemporal drought variability in northwestern Africa over the last nine centuries, Clim. Dynam., 37, 237–253, https://doi.org/10.1007/s00382-010-0804-4, 2011.
Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., Saurer, M., Siegwolf, R., Battipaglia, G., Werner, W., and Gessler, A.: Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment, New Phytol., 202, 772–783, https://doi.org/10.1111/nph.12741, 2014.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.: Persistent positive North Atlantic Oscillation Mode dominated the Mediaeval Climate Anomaly, Science, 324, 78–80, https://doi.org/10.1126/science.1166349, 2009.
Tuittila, E.-S., Väliranta, M., Laine, J., and Korhola, A.: Quantifying patterns and controls of mire vegetation succession in a southern boreal bog in Finland using partial ordinations, J. Veg. Sci., 18, 891–902, https://doi.org/10.1111/j.1654-1103.2007.tb02605.x, 2007.
Tuittila, E.-S., Juutinen, S., Frolking, S., Väliranta, M., Laine, A. M., Miettinen, A., Seväkivi, M.-L., Quillet, A., and Merilä, P.: Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation, Holocene, 23, 25–35, https://doi.org/10.1177/0959683612450197, 2013.
Vaganov, E. A., Hughes, M. K., and Shashkin, A. V.: Growth dynamics of tree rings: an image of past and future environments, Springer-Verlag, Berlin, 368 pp., 2006.
Väliranta, M., Korhola, A., Seppä, H., Tuittila, E.-S., Sarmaja-Korjonen, K., Laine, J., and Alm, J.: High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach, Holocene, 17, 1093–1107, https://doi.org/10.1177/0959683607082550, 2007.
Väliranta, M., Blundell, A., Charman, D., Karofeld, E., Korhola, A., Sillasoo, Ü., and Tuittila, E.: Reconstructing peatland water table using transfer function for plant macrofossils and testate amoebae: a methodological comparison, Quaternary Int., 268, 34–43, https://doi.org/10.1016/j.quaint.2011.05.024, 2011.
Väliranta, M., Oinonen, M., Seppä, H., Korkonen, S., and Tuittila, E.-S.: Unexpected problems in AMS 14C dating of fen peat, Radiocarbon, 56, 95–108, https://doi.org/10.2458/56.16917, 2014.
Väliranta, M., Salojärvi, N., Vuorsalo, A., Juutinen, S., Korhola, A., Luoto, M., and Tuittila, E.-S.: Holocene fen-bog transitions, current status in Finland and future perspectives, Holocene, 27, 752–764, https://doi.org/10.1177/0959683616670471, 2016.
Van Bellen, S., Dallaire, P.-L., Garneau, M., and Bergeron Y.: Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada., Glob. Biogeochem. Cy., 25, GB2016, https://doi.org/10.1029/2010GB003877, 2011.
van der Schrier, G., Briffa, K. R., Jones, P. D., and Osborn, T. J.: Summer moisture variability across Europe, J. Climate, 19, 2818–2834, https://doi.org/10.1175/JCLI3734.1, 2006a.
van der Schrier, G., Briffa, K. R., Osborn, T. J., and Cook, E. R.: Summer moisture availability across North America, J. Geoph. Res., 111, D11102, https://doi.org/10.1029/2005JD006745, 2006b.
Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F., and Birks, H. J. B. : A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier, Quaternary Res., 77, 192–204, https://doi.org/10.1016/j.yqres.2011.10.001, 2012.
Vellinga, M. and Wood, R. A.: Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation, Climatic Change, 54, 251–267, https://doi.org/10.1023/A:1016168827653, 2002.
Viau, A. and Gajewski, K.: Reconstructing millennial-scale, regional palaeoclimates of boreal Canada during the Holocene, J. Climate, 22, 316–330, https://doi.org/10.1175/2008JCLI2342.1, 2009.
Viau, A., Gajewski, K., Sawada, M., and Bunbury, J.: Low- and High-frequency climate variability in eastern Beringia during the past 25 000 years, Can. J. Earth Sci., 45, 1435–1453, https://doi.org/10.1139/E08-036, 2008.
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M., and El Kenawy, A.: A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index, J. Hydrometeorol., 11, 1033–1043, https://doi.org/10.1175/2010jhm1224.1, 2010.
Vorren, K. D., Blaauw, M., Wastegård, S., Plicht, J. V. D., and Jensen, C.: High-resolution stratigraphy of the northernmost concentric raised bog in Europe: Sellevollmyra, Andøya, northern Norway, Boreas, 36, 253–277, https://doi.org/10.1111/j.1502-3885.2007.tb01249.x, 2007.
Vorren, K. D., Jensen, C. E., and Nilssen, E.: Climate changes during the last c. 7500 years as recorded by the degree of peat humification in the Lofoten region, Norway, Boreas, 41, 13–30, https://doi.org/10.1111/j.1502-3885.2011.00220.x, 2012.
Wagner, B. and Melles, M.: Holocene environmental history of western Ymer Ø, East Greenland, inferred from lake sediments, Quaternary Int., 89, 165–176, https://doi.org/10.1016/S1040-6182(01)00087-8, 2002.
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Niedermayr, A., Riechelmann, S., Fietzke, J., Scholz, D., Jochum, K. P., Fohlmeister, J., Schröder-Ritzrau, A., Sabaooui, A., Riechelmann, D. F. C., Schneider, L., and Esper, J.: Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic Oscillation during the Mediaeval Warm Period, Earth Planet. Sc. Lett., 375, 291–302, https://doi.org/10.1016/j.epsl.2013.05.048, 2013.
Waterhouse, J. S., Barker, A. C., Carter, A. H. C., Agafonov, L. I., and Loader, N. J.: Stable carbon isotopes in Scots pine tree rings preserve a record of the flow of the river Ob, Geophys. Res. Lett., 27, 3529–3532, https://doi.org/10.1029/2000GL006106, 2000.
Watson, E. and Luckman, B. H.: Tree-ring based mass-balance estimates for the past 300 years at Peyto Glacier, Alberta, Canada, Quaternary Res., 62, 9–18, https://doi.org/10.1016/j.yqres.2004.04.007, 2004.
Weißbach, S., Wegner, A., Opel, T., Oerter, H., Vinther, B. M., and Kipfstuhl, S.: Spatial and temporal oxygen isotope variability in northern Greenland – implications for a new climate record over the past millennium, Clim. Past, 12, 171–188, https://doi.org/10.5194/cp-12-171-2016, 2016a.
Weißbach, S., Wegner, A., Opel, T., Oerter, H., Vinther, B. M., and Kipfstuhl, S.: Accumulation rate and stable oxygen isotope ratios of the ice cores from the North Greenland Traverse, PANGAEA, https://doi.org/10.1594/PANGAEA.849161, 2016b.
Weltje, G. J.: Quantitative models of sediment generation and provenance: State of the art and future developments, Sediment. Geol., 280, 4–20, https://doi.org/10.1016/j.sedgeo.2012.03.010, 2012.
Whitmore, J., Gajewski, K., Sawada, M., Williams, J. W., Minckley, T., Shuman, B., Bartlein, P. J., Webb III, T., Viau, A. E., Shafer, S., Anderson, P., and Brubaker, L.: Modern Pollen Data from North America and Greenland for Multi-scale Paleoenvironmental Applications, Quaternary Sci. Rev., 24, 1828–1848, https://doi.org/10.1016/j.quascirev.2005.03.005, 2005.
Wiles, G. C., D'Arrigo, R. D., Barclay, D., Wilson, R. S., Jarvis, S. K., Vargo, L., and Frank, D.: Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years, Holocene, 24, 198–208, https://doi.org/10.1177/0959683613516815, 2014.
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and Zorita, E.: Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context, Quaternary Sci. Rev., 134, 1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Wohlfarth, B., Holmquist, B., Cato I., and Linderson, H.: The climatic significance of clastic varves in the Ångermanälven Estuary, northern Sweden, AD 1860 to 1950, Holocene, 8, 521–534, https://doi.org/10.1191/095968398668399174, 1998.
Woodhouse, C. A.: A 431-Yr Reconstruction of Western Colorado Snowpack from Tree Rings, J. Climate, 16, 1551–1561, https://doi.org/10.1175/1520-0442-16.10.1551, 2003.
Wrona, F. J., Johansson, M., Culp, J. M., Jenkins, A., Mård, J., Myers-Smith, I. H., Prowse, T. D., Vincent, W. F., and Wookey, P. A.: Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime, J. Geophys. Res.-Biogeo., 121, 650–674, https://doi.org/10.1002/2015JG003133, 2016.
Wu, B. Y., Zhang, R. H., D'Arrigo, R., and Su, J. Z.: On the Relationship between Winter Sea Ice and Summer Atmospheric Circulation over Eurasia, J. Climate, 26, 5523–5536, https://doi.org/10.1175/JCLI-D-12-00524.1, 2013.
Yang, H., Rose, N. L., and Battarbee, R. W.: Dating of recent catchment peats using spheroidal carbonaceous particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland, Holocene, 11, 593–597, https://doi.org/10.1191/095968301680223549, 2001.
Yao, T., Duan, K., Xu, B., Wang, N., Guo, X., and Yang, X.: Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau, Clim. Past, 4, 175–180, https://doi.org/10.5194/cp-4-175-2008, 2008.
Yiou, F., Raisbeck, G. M., Baumgartner, S., Beer, J., Hammer, C., Johnsen, S., Jouzel, J., Kubik, P. W., Lestringuez, J., Stiévenards, M., Suter, M., and Yiou, P.: Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland, J. Geophys. Res., 102, 26783–26794, https://doi.org/10.1029/97JC01265, 1997.
Young, G. H. F., McCarroll, D., Loader, N. J., and Kirchhefer, A. J.: A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes, Holocene, 20, 315–324, https://doi.org/10.1177/0959683609351902, 2010.
Young, G. H. F., McCarroll, D., Loader, N. J., Gagen, M. H., Kirchhefer, A. J., and Demmler, J. C.: Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia, Clim. Dynam., 39, 495–507, https://doi.org/10.1007/s00382-011-1246-3, 2012.
Young, G. H. F., Loader, N. J., McCarroll, D., Bale, R. J., Demmler, J. C., Miles, D., Nayling, N. T., Rinne, K. T., Robertson, I., Watts, C., and Whitney, M.: Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall, Clim. Dynam., 45, 3609–3622, https://doi.org/10.1007/s00382-015-2559-4, 2015.
Yu, Z., Campbell, I. D., Vitt, D. H., and Apps, M. J.: Modelling long-term peatland dynamics. I. Concepts, review, and proposed design, Ecol. Model., 145, 197–210, https://doi.org/10.1016/S0304-3800(01)00391-X, 2001.
Yu, Z., Campbell, I. D., Campbell, C., Vitt, D. H., Bond, G. C., and Apps, M. J.: Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial time scales, Holocene, 13, 801–808, https://doi.org/10.1191/0959683603hl667ft, 2003.
Yu, Z. C., Beilman, D. W., and Jones, M. C.: Sensitivity of northern peatlands to Holocene climate change, in: AGU Geophysical Monograph Vol. 184 “Carbon Cycling in Northern Peatlands”, edited by: Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L ., 55–69, 2009.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T. Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A.: A new global climate model of the Meteorological Research Institute: MRI-CGCM3-model description and basic performance, J. Meteorol. Soc. Jpn. Ser. II, 90A, 23–64, https://doi.org/10.2151/jmsj.2012-A02, 2012.
Zackrisson, O., Nilsson, M.-C., Steijlen, I., and Hornberg, G.: Regeneration pulses and climate-vegetation interactions in nonpyrogenic boreal Scots pine stands, J. Ecol., 83, 469–483, https://doi.org/10.2307/2261600,1995.
Zalatan, R. and Gajewski, K.: Dendrochronological potential of Salix alaxensis from the Kuujjua River area, western Canadian Arctic, Tree-Ring Res., 62, 75–82, https://doi.org/10.3959/1536-1098-62.2.75, 2006.
Zander, P. D., Kaufman, D. S., Kuehn, S. C., Wallace, K. L., and Anderson, R. S.:. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska, J. Quaternary Sci., 28, 761–771, https://doi.org/10.1002/jqs.2671, 2013.
Zeeberg, J. and Forman, S. L.: Changes in glacier extent on north Novaya Zemlya in the twentieth century, Holocene, 11, 161–175, https://doi.org/10.1191/095968301676173261, 2001.
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance observations: a review of the worldwide monitoring network, Ann. Glaciol., 50, 101–111, https://doi.org/10.3189/172756409787769591, 2009.
Zhang, H., Amesbury, M., Ronkainen, T., Charman, D. J., Gallego-Sala, A. V., and Väliranta, M.: Testate amoeba as palaeohydrological indicators in the permafrost peatlands of Northeast European Russia and Finnish Lapland, J. Quaternary Sci., 32, 976–988, https://doi.org/10.1002/jqs.2970, 2017.
Zhang, H., Piilo, S., Amesbury, M., Charman, D., Gallego-Sala, A., and Väliranta, M.: The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium, Quaternary Sci. Rev., 182, 121–130, https://doi.org/10.1016/j.quascirev.2018.01.003, 2018.
Zhang, X., He, J., Zhang, J., Polyakov, I., Gerdes, R., Inoue, J., and Wu, P.: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend, Nat. Clim. Change, 3, 47–51, https://doi.org/10.1038/nclimate1631, 2013.
Zolitschka, B.: Recent sedimentation in a high arctic lake, northern Ellesmere Island, Canada, J. Paleolimnol., 16, 169–186, https://doi.org/10.1007/BF00176934, 1996.
Zolitschka, B., Francus, P., Ojala, A. E., and Schimmelmann, A.: Varves in lake sediments-a review, Quaternary Sci. Rev., 117, 1–41, https://doi.org/10.1016/j.quascirev.2015.03.019, 2015.
Zwiers, F. W.: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2, Clim. Dynam., 12, 825–847, https://doi.org/10.1007/s003820050146, 1996.
Short summary
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000 years. We discuss the current state, look into the future, and describe various archives and proxies used to infer past hydroclimate variability. We also provide regional overviews and discuss the potential of furthering our understanding of Arctic hydroclimate in the past. This paper summarises the hydroclimate-related activities of the Arctic 2k group.
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000...