Articles | Volume 14, issue 3
https://doi.org/10.5194/cp-14-303-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-14-303-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, 28359, Germany
Ursula Röhl
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, 28359, Germany
Roy H. Wilkens
Hawaii Institute of Geophysics & Planetology, University of Hawaii,
Honolulu, HI, 96822, USA
Philip D. Gingerich
Museum of Paleontology, University of Michigan, Ann Arbor,
Michigan,
48109-1079, USA
William C. Clyde
Department of Earth Sciences, University of New Hampshire, 56 College
Rd., Durham, NH 03824, USA
Scott L. Wing
Department of Paleobiology, P.O. Box 37012, National Museum of Natural
History, Smithsonian Institution, Washington, D.C. 20013 USA
Gabriel J. Bowen
Department of Geology & Geophysics, University of Utah, Salt Lake
City, UT 84112, USA
Mary J. Kraus
Department of Geological Sciences, University of Colorado at Boulder,
UCB 399, Boulder, CO 80309, USA
Related authors
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Deming Yang and Gabriel J. Bowen
Clim. Past, 18, 2181–2210, https://doi.org/10.5194/cp-18-2181-2022, https://doi.org/10.5194/cp-18-2181-2022, 2022
Short summary
Short summary
Plant wax lipid ratios and their isotopes are used in vegetation and paleoclimate reconstructions. While studies often use either type of data, both can inform the mixing pattern of source plants. We developed a statistic model that evaluates ratios and isotopes together. Through case studies, we showed that the approach allows more detailed interpretations of vegetation and paleoclimate than traditional methods. This evolving framework can include more geochemical tracers in the future.
Sarah J. Widlansky, Ross Secord, Kathryn E. Snell, Amy E. Chew, and William C. Clyde
Clim. Past, 18, 681–712, https://doi.org/10.5194/cp-18-681-2022, https://doi.org/10.5194/cp-18-681-2022, 2022
Short summary
Short summary
New stable isotope records from pedogenic carbonates through the ETM2, H2, and possibly I1 hyperthermals from the Bighorn Basin highlight significant spatial variability in the preservation and magnitude of these global climate events in paleosol records. These data also provide important climate context for the extensive early Eocene mammal fossil record from the southern Bighorn Basin and support previous hypotheses that pulses in mammal turnover corresponded to the ETM2 and H2 hyperthermals.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Annie L. Putman and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 23, 4389–4396, https://doi.org/10.5194/hess-23-4389-2019, https://doi.org/10.5194/hess-23-4389-2019, 2019
Short summary
Short summary
We describe an open-access, global database of stable water isotope ratios of various water types. The database facilitates data archiving, supports standardized metadata collection, and decreases the time investment for metanalyses. To promote data discovery and collaboration, the database exposes metadata and data owner contact information for private data but only permits download of public data. Two companion apps support digital data collection and processing and upload of analyzed data.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Yusuf Jameel, Simon Brewer, Richard P. Fiorella, Brett J. Tipple, Shazelle Terry, and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 22, 6109–6125, https://doi.org/10.5194/hess-22-6109-2018, https://doi.org/10.5194/hess-22-6109-2018, 2018
Short summary
Short summary
Public water supply systems (PWSSs) are important infrastructure susceptible to contamination and physical disruption. In general, PWSSs are analyzed using hydrodynamic models, which requires detailed supply infrastructure information. In this paper, we have shown that stable isotope mixing models can also provide useful information on PWSSs. The method developed here can be useful in studying decentralized PWSSs, validating hydrodynamic models and solving water right issues.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Richard P. Fiorella, Ryan Bares, John C. Lin, James R. Ehleringer, and Gabriel J. Bowen
Atmos. Chem. Phys., 18, 8529–8547, https://doi.org/10.5194/acp-18-8529-2018, https://doi.org/10.5194/acp-18-8529-2018, 2018
Short summary
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Erik Oerter, Molly Malone, Annie Putman, Dina Drits-Esser, Louisa Stark, and Gabriel Bowen
Hydrol. Earth Syst. Sci., 21, 3799–3810, https://doi.org/10.5194/hess-21-3799-2017, https://doi.org/10.5194/hess-21-3799-2017, 2017
Short summary
Short summary
Fruits take up soil water as they grow, and thus the fruit water is related to the rain or irrigation the crop receives. We used a novel sampling system to measure the stable isotopes of H and O in the fruit water to determine its geographic origin by comparing it to maps of isotopes in rain. We used this approach to teach an audience of science students and teachers about water cycle concepts and how humans may modify the water cycle through agriculture and irrigation water diversions.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Cenozoic
Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up
Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany)
Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming
Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary
Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, and Andreas Mulch
Clim. Past, 15, 1741–1755, https://doi.org/10.5194/cp-15-1741-2019, https://doi.org/10.5194/cp-15-1741-2019, 2019
Short summary
Short summary
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen, DE) and assess paleoenvironmental changes in midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast (Schöningen, Cobham, Vasterival). These records share major characteristics of a reduced CIE (~ -1.3 ‰) in terms of bulk organic matter, increased fire activity (pre-CIE), minor plant species changes, and drowning of near-coastal mires during the CIE.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
Margret Steinthorsdottir, Amanda S. Porter, Aidan Holohan, Lutz Kunzmann, Margaret Collinson, and Jennifer C. McElwain
Clim. Past, 12, 439–454, https://doi.org/10.5194/cp-12-439-2016, https://doi.org/10.5194/cp-12-439-2016, 2016
Short summary
Short summary
Our manuscript "Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary" reports that ~ 40 % decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene–Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene–Oligocene climate change, and a "tipping point" was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.
D. V. Kent and G. Muttoni
Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, https://doi.org/10.5194/cp-9-525-2013, 2013
Cited articles
Abdul Aziz, H., Hilgen, F. J., van Luijk, G. M., Sluijs, A., Kraus, M. J.,
Pares, J. M., and Gingerich, P. D.: Astronomical climate control on paleosol
stacking patterns in the upper Paleocene–lower Eocene Willwood Formation,
Bighorn Basin, Wyoming, Geology, 36, 531–534, https://doi.org/10.1130/g24734a.1, 2008.
Abels, H. A., Clyde, W. C., Gingerich, P. D., Hilgen, F. J., Fricke, H. C.,
Bowen, G. J., and Lourens, L. J.: Terrestrial carbon isotope excursions and
biotic change during Palaeogene hyperthermals, Nat. Geosci., 5, 326–329,
https://doi.org/10.1038/ngeo1427, 2012.
Abels, H. A., Kraus, M. J., and Gingerich, P. D.: Precession-scale cyclicity
in the fluvial lower Eocene Willwood Formation of the Bighorn Basin, Wyoming
(USA), Sedimentology, 60, 1467–1483, https://doi.org/10.1111/sed.12039, 2013.
Abels, H. A., Lauretano, V., van Yperen, A. E., Hopman, T., Zachos, J. C.,
Lourens, L. J., Gingerich, P. D., and Bowen, G. J.: Environmental impact and
magnitude of paleosol carbonate carbon isotope excursions marking five early
Eocene hyperthermals in the Bighorn Basin, Wyoming, Clim. Past, 12,
1151–1163, https://doi.org/10.5194/cp-12-1151-2016, 2016.
Agnini, C., Fornaciari, E., Raffi, I., Rio, D., Röhl, U., and Westerhold,
T.: High-resolution nannofossil biochronology of middle Paleocene to early
Eocene at ODP Site 1262: Implications for calcareous nannoplankton evolution,
Mar. Micropaleontol., 64, 215–248, https://doi.org/10.1016/j.marmicro.2007.05.003, 2007.
Bains, S., Corfield, R. M., and Norris, R. D.: Mechanisms of Climate Warming
at the End of the Paleocene, Science, 285, 724–727,
https://doi.org/10.1126/science.285.5428.724, 1999.
Bowen, G. J.: Up in smoke: A role for organic carbon feedbacks in Paleogene
hyperthermals, Global Planet. Change, 109, 18–29,
https://doi.org/10.1016/j.gloplacha.2013.07.001, 2013.
Bowen, G. J., Koch, P. L., Gingerich, P. D., Norris, R. D., Bains, S., and
Corfield, R. M.: Refined Isotope Stratigraphy across the Continental
Paleocene-Eocene Boundary on Polecat Bench in the Northern Bighorn Basin, in:
Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks
Fork Basins, Wyoming, edited by: Gingerich, P. D., University of Michigan
Papers on Paleontology, 73–88, 2001.
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Röhl, U., Westerhold, T.,
Steimke, A., Gingerich, P. D., Wing, S. L., and Clyde, W. C.: Two massive,
rapid releases of carbon during the onset of the Palaeocene-Eocene thermal
maximum, Nat. Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316, 2015.
Broecker, W. S. and Peng, T.-H.: Tracers in the sea, Lamont-Doherty
Geological Observatory, 690 pp., 1982.
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J.
E. A., Cui, Y., Kump, L., and Croudace, I. W.: Constraints on the numerical
age of the Paleocene-Eocene boundary, Geochem. Geophy. Geosy., 12, Q0AA17,
https://doi.org/10.1029/2010gc003426, 2011.
Chew, A. E.: Paleoecology of the early Eocene Willwood mammal fauna from the
central Bighorn Basin, Wyoming, Paleobiology, 35, 13–31, 2009.
Chew, A. E.: Mammal faunal change in the zone of the Paleogene hyperthermals
ETM2 and H2, Clim. Past, 11, 1223–1237,
https://doi.org/10.5194/cp-11-1223-2015, 2015.
Chew, A. E. and Oheim, K. B.: Diversity and climate change in the middle-late
Wasatchian (early Eocene) Willwood Formation, central Bighorn Basin, Wyoming,
Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 67–78,
https://doi.org/10.1016/j.palaeo.2012.10.004, 2013.
Clyde, W. C., Stamatakos, J., and Gingerich, P. D.: Chronology of the
Wasatchian land-mammal age: magnetostratigraphic results from the McCullough
Peaks section, northern Bighorn Basin, Wyoming, J. Geology, 102, 367–377,
1994.
Clyde, W. C., Hamzi, W., Finarelli, J. A., Wing, S. L., Schankler, D., and
Chew, A.: Basin-wide magnetostratigraphic framework for the Bighorn Basin,
Wyoming, GSA Bulletin, 119, 848–859, 2007.
Clyde, W. C., Gingerich, P. D., Wing, S. L., Röhl, U., Westerhold, T.,
Bowen, G., Johnson, K., Baczynski, A. A., Diefendorf, A., McInerney, F.,
Schnurrenberger, D., Noren, A., Brady, K., and the BBCP Science Team: Bighorn
Basin Coring Project (BBCP): a continental perspective on early Paleogene
hyperthermals, Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013,
2013.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M.-P.: Orbital climate
forcing of d13C excursions in the late Paleocene–Eocene (chrons C24n–C25n),
Paleoceanography, 18, 1097, https://doi.org/10.1029/2003PA000909, 2003.
D'Ambrosia, A. R., Clyde, W. C., Fricke, H. C., Gingerich, P. D., and Abels,
H. A.: Repetitive mammalian dwarfing during ancient greenhouse warming
events, Science Advances, 3, e1601430, https://doi.org/10.1126/sciadv.1601430, 2017.
Dickens, G. R.: Down the Rabbit Hole: toward appropriate discussion of
methane release from gas hydrate systems during the Paleocene-Eocene thermal
maximum and other past hyperthermal events, Clim. Past, 7, 831–846,
https://doi.org/10.5194/cp-7-831-2011, 2011.
Farley, K. A. and Eltgroth, S. F.: An alternative age model for the
Paleocene-Eocene thermal maximum using extraterrestrial 3He, Earth Planet.
Sc. Lett., 208, 135–148, 2003.
Gingerich, P. D.: New earliest Wasatchian mammalian fauna from the Eocene of
northwestern Wyoming: composition and diversity in a rarely sampled
high-floodplain assemblage, University of Michigan Papers on Paleontology,
28, 1–97, available at: http://hdl.handle.net/2027.42/48628 (last access: 28 February 2018),
1989.
Gingerich, P. D.: Environment and evolution through the Paleocene-Eocene
thermal maximum, Trends Ecol. Evol., 21, 246–253, 2006.
Hay, W. W., DeConto, R., Wold, C. N., Wilson, K. M., Voigt, S., Schulz, M.,
Wold-Rossby, A., Dullo, W.-C., Ronov, A. B., Balukhovsky, A. N., and Soeding,
E.: Alternative Global Cretaceous Paleogeography, in: The Evolution of
Cretaceous Ocean/Climate Systems, edited by: Barrera, E. and Johnson, C.,
Geological Society of America Special Paper, 1–47, 1999.
Kelly, D. C., Zachos, J. C., Bralower, T. J., and Schellenberg, S. A.:
Enhanced terrestrial weathering/runoff and surface ocean carbonate production
during the recovery stages of the Paleocene-Eocene thermal maximum,
Paleoceanography, 20, PA4023, https://doi.org/10.1029/2005PA001163, 2005.
Kelly, D. C., Nielsen, T. M. J., McCarren, H. K., Zachos, J. C., and
Röhl, U.: Spatiotemporal patterns of carbonate sedimentation in the South
Atlantic: Implications for carbon cycling during the Paleocene-Eocene thermal
maximum, Palaeogeogr. Palaeocl., 293, 30–40,
https://doi.org/10.1016/j.palaeo.2010.04.027, 2010.
Kennett, J. P. and Stott, L. D.: Abrupt deep sea warming, paleoceanographic
changes and benthic extinctions at the end of the Paleocene, Nature, 353,
225–229, 1991.
Kirtland Turner, S. and Ridgwell, A.: Development of a novel empirical
framework for interpreting geological carbon isotope excursions, with
implications for the rate of carbon injection across the PETM, Earth Planet.
Sc. Lett., 435, 1–13, https://doi.org/10.1016/j.epsl.2015.11.027, 2016.
Kirtland Turner, S., Sexton, P. F., Charles, C. D., and Norris, R. D.:
Persistence of carbon release events through the peak of early Eocene global
warmth, Nat. Geosci., 7, 748–751, https://doi.org/10.1038/ngeo2240, 2014.
Koch, P. L., Zachos, J. C., and Gingerich, P.: Correlation between isotope
records in marine and continental carbon reservoirs near the Paleocene/Eocene
boundary, Nature, 358, 319–322, 1992.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard,
B.: A long-term numerical solution for the insolation quantities of the
Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335,
2004.
Littler, K., Röhl, U., Westerhold, T., and Zachos, J. C.: A
high-resolution benthic stable-isotope record for the South Atlantic:
Implications for orbital-scale changes in Late Paleocene–Early Eocene
climate and carbon cycling, Earth Planet. Sc. Lett., 401, 18–30,
https://doi.org/10.1016/j.epsl.2014.05.054, 2014.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl,
U., Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to
early Eocene global warming events, Nature, 435, 1083–1087,
https://doi.org/10.1038/nature03814, 2005.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for
the Future, Annu. Rev. Earth Planet. Sc., 39, 489–516,
https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
Meyers, S. R.: Astrochron: An R Package for Astrochronology, available at:
https://CRAN.R-project.org/package=astrochron (last access: 5 September
2017), 2014.
Murphy, B. H., Farley, K. A., and Zachos, J. C.: An extraterrestrial
3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from
Walvis Ridge, IODP Site 1266, Geochim. Cosmochim. Ac., 74, 5098–5108,
https://doi.org/10.1016/j.gca.2010.03.039, 2010.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs
time-series analysis, Eos T. Am. Geophys. Un., 77, 79–379, https://doi.org/10.1029/96EO00259, 1996.
Revelle, R. and Suess, H. E.: Carbon dioxide exchange between atmosphere and
ocean and the question of an increase of atmospheric CO2 during the past
decades, Tellus, 9, 18–27, 1957.
Röhl, U., Bralower, T. J., Norris, R. D., and Wefer, G.: New chronology
for the late Paleocene thermal maximum and its environmental implications,
Geology, 28, 927–930, https://doi.org/10.1130/0091-7613(2000)28<927:ncftlp>2.0.co;2,
2000.
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the
duration of the Paleocene-Eocene thermal maximum (PETM), Geochem. Geophy.
Geosy., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007.
Schankler, D.: Faunal zonation of the Willwood Formation in the central
Bighorn Basin, Wyoming, in: Early Cenozoic paleontology and stratigraphy of
the Bighorn Basin, Wyoming, edited by: Gingerich, P. D., University of
Michigan Papers on Paleontology, Ann Arbor, MI, 99–114, 1980.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C
of sedimentary components and the global exogenic carbon pool across early
Paleogene carbon cycle perturbations, Global Biogeochem. Cy., 26, GB4005,
https://doi.org/10.1029/2011gb004224, 2012.
Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J., and Thomas, E.: The
Palaeocene–Eocene Thermal Maximum super greenhouse: biotic and geochemical
signatures, age models and mechanisms of global change, in: Deep-Time
Perspectives on Climate Change: Marrying the Signal from Computer Models and
Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J.,
and Schmidt, D. N., The Micropalaeontological Society Special Publications,
The Geological Society, London, 323–349, 2007.
Stap, L., Sluijs, A., Thomas, E., and Lourens, L.: Patterns and magnitude of
deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis
Ridge, southeastern Atlantic Ocean, Paleoceanography, 24, PA1211,
https://doi.org/10.1029/2008PA001655, 2009.
Thomas, E.: Development of Cenozoic deep-sea benthic foraminiferal faunas in
Antarctic waters, in: Origins and Evolution of the Antarctic Biota, edited
by: Crame, J. A., Geological Society Special Publication, 283–296, 1989.
Westerhold, T., Röhl, U., Laskar, J., Bowles, J., Raffi, I., Lourens, L.
J., and Zachos, J. C.: On the duration of magnetochrons C24r and C25n and the
timing of early Eocene global warming events: Implications from the Ocean
Drilling Program Leg 208 Walvis Ridge depth transect, Paleoceanography, 22,
https://doi.org/10.1029/2006PA001322, 2007.
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale,
V., Bowles, J., and Evans, H. F.: Astronomical calibration of the Paleocene
time, Palaeogeography, Palaeoclimatology, Palaeoecology, 257, 377–403,
https://doi.org/10.1016/j.palaeo.2007.09.016, 2008.
Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S. M., and Zachos, J.
C.: Astronomical calibration of the geological timescale: closing the middle
Eocene gap, Clim. Past, 11, 1181–1195,
https://doi.org/10.5194/cp-11-1181-2015, 2015.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos,
J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian
timescale: implications for seafloor spreading rates and the chaotic behavior
of the solar system?, Clim. Past, 13, 1129–1152,
https://doi.org/10.5194/cp-13-1129-2017, 2017a.
Westerhold, T., Röhl, U., Wilkens, R. H., Gingerich, P. D., Clyde, W. C.,
Wing, S. L., Bowen, G., and Kraus, M. J.: Synchronizing early Eocene deep-sea
and continental records from the Bighorn Basin Coring Project, PANGAEA,
https://doi.org/10.1594/PANGAEA.875685, 2017b.
Wilkens, R. H., Westerhold, T., Drury, A. J., Lyle, M., Gorgas, T., and Tian,
J.: Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope
stratigraphy of ODP Leg 154 from 0 to 5 Ma, Clim. Past, 13, 779–793,
https://doi.org/10.5194/cp-13-779-2017, 2017.
Wotzlaw, J.-F., Bindeman, I. N., Schaltegger, U., Brooks, C. K., and Naslund, H. R.:
High-resolution insights into episodes of crystallization, hydrothermal alteration
and remelting in the Skaergaard intrusive complex, Earth Planet. Sc. Lett., 355–356, 199–212, https://doi.org/10.1016/j.epsl.2012.08.043, 2012.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A.,
Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren,
H., and Kroon, D.: Rapid Acidification of the Ocean During the
Paleocene-Eocene Thermal Maximum, Science, 308, 1611–1615,
https://doi.org/10.1126/science.1109004, 2005.
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T.:
Tempo and scale of late Paleocene and early Eocene carbon isotope cycles:
Implications for the origin of hyperthermals, Earth Planet. Sc. Lett., 299,
242–249, https://doi.org/10.1016/j.epsl.2010.09.004, 2010.
Zeebe, R. E. and Zachos, J. C.: Reversed deep-sea carbonate ion basin
gradient during Paleocene-Eocene thermal maximum, Paleoceanography, 22,
PA3201, https://doi.org/10.1029/2006PA001395, 2007.
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release
rate unprecedented during the past 66 million years, Nat. Geosci., 9,
325–329, https://doi.org/10.1038/ngeo2681, 2016.
Zeebe, R. E., Westerhold, T., Littler, K., and Zachos, J. C.: Orbital forcing
of the Paleocene and Eocene carbon cycle, Paleoceanography, 32, 440–465,
https://doi.org/10.1002/2016PA003054, 2017.
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Here we present a high-resolution timescale synchronization of continental and marine deposits...