Articles | Volume 14, issue 10
https://doi.org/10.5194/cp-14-1529-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-14-1529-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The 4.2 ka BP event in the Levant
David Kaniewski
CORRESPONDING AUTHOR
Université Paul Sabatier-Toulouse 3, EcoLab (Laboratoire
d'Ecologie Fonctionnelle et Environnement), Bâtiment 4R1, 118 Route de
Narbonne, 31062 Toulouse cedex 9, France
CNRS, EcoLab (Laboratoire d'Ecologie Fonctionnelle et Environnement),
31062 Toulouse cedex 9, France
Institut Universitaire de France, Secteur
Biologie-Médecine-Santé, 103 boulevard Saint Michel, 75005 Paris,
France
Nick Marriner
CNRS, Laboratoire Chrono-Environnement UMR6249, MSHE Ledoux, USR
3124, Université de Bourgogne-Franche-Comté, UFR ST, 16 Route de
Gray, 25030 Besançon, France
Rachid Cheddadi
Université Montpellier II, CNRS-UM2-IRD, ISEM, France
Joël Guiot
Aix-Marseille Université, CEREGE, CNRS, UM34, Europôle de
l'Arbois BP80, 13545 Aix-en-Provence, France
Elise Van Campo
Université Paul Sabatier-Toulouse 3, EcoLab (Laboratoire
d'Ecologie Fonctionnelle et Environnement), Bâtiment 4R1, 118 Route de
Narbonne, 31062 Toulouse cedex 9, France
CNRS, EcoLab (Laboratoire d'Ecologie Fonctionnelle et Environnement),
31062 Toulouse cedex 9, France
Related authors
J. Bakker, E. Paulissen, D. Kaniewski, J. Poblome, V. De Laet, G. Verstraeten, and M. Waelkens
Clim. Past, 9, 57–87, https://doi.org/10.5194/cp-9-57-2013, https://doi.org/10.5194/cp-9-57-2013, 2013
Joel Guiot, Nicolas Bernigaud, Alberte Bondeau, Laurent Bouby, and Wolfgang Cramer
Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, https://doi.org/10.5194/cp-19-1219-2023, 2023
Short summary
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Clément Flaux, Matthieu Giaime, Valérie Pichot, Nick Marriner, Mena el-Assal, Abel Guihou, Pierre Deschamps, Christelle Claude, and Christophe Morhange
E&G Quaternary Sci. J., 70, 93–104, https://doi.org/10.5194/egqsj-70-93-2021, https://doi.org/10.5194/egqsj-70-93-2021, 2021
Short summary
Short summary
Lake Mareotis (NW Nile delta, Egypt) was a gateway between the Nile valley and the Mediterranean during Greco-Roman times. The hydrological evolution of Lake Mareotis was reconstructed using lake sediments and archaeological archives. The data show both a rise in Nile inputs to the basin during the first millennia BC and AD and a lake-level rise of ca. 1.5 m during the Roman period. A high-energy deposit such as a tsunami also possibly affected Alexandria's lacustrine hinterland.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
B. Gambin, V. Andrieu-Ponel, F. Médail, N. Marriner, O. Peyron, V. Montade, T. Gambin, C. Morhange, D. Belkacem, and M. Djamali
Clim. Past, 12, 273–297, https://doi.org/10.5194/cp-12-273-2016, https://doi.org/10.5194/cp-12-273-2016, 2016
Short summary
Short summary
Based on the study of ancient microfossils, such as pollen and spores, this paper explores climate change in a Mediterranean island context. Using a multi-disciplinary approach this original research corroborates existing archaeological and historical data. It also uses comparative data from elsewhere in the central Mediterranean to ensure that the current research is placed within the appropriate geographic context.
G. Gea-Izquierdo, F. Guibal, R. Joffre, J. M. Ourcival, G. Simioni, and J. Guiot
Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015, https://doi.org/10.5194/bg-12-3695-2015, 2015
Short summary
Short summary
We developed a process-based model for evergreen Mediterranean forests. We used multiproxy data including eddy covariance CO2 flux and annual growth dendrochronological time series. The model explicitly takes into account the influence of climatic variability to calculate photosynthesis and carbon allocation. We analyzed long-time acclimation processes and climatic trade-offs between the C-source and the C-sink. There is much potentiality to apply the model at a larger scale.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
J. Bakker, E. Paulissen, D. Kaniewski, J. Poblome, V. De Laet, G. Verstraeten, and M. Waelkens
Clim. Past, 9, 57–87, https://doi.org/10.5194/cp-9-57-2013, https://doi.org/10.5194/cp-9-57-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Holocene
Internal climate variability and spatial temperature correlations during the past 2000 years
Mid-Holocene climate change over China: model–data discrepancy
Climate change and ecosystems dynamics over the last 6000 years in the Middle Atlas, Morocco
The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations
Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene
Proxy benchmarks for intercomparison of 8.2 ka simulations
Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene
Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves
Mechanisms for European summer temperature response to solar forcing over the last millennium
Holocene land-cover reconstructions for studies on land cover-climate feedbacks
On the importance of paleoclimate modelling for improving predictions of future climate change
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
Majda Nourelbait, Ali Rhoujjati, Abdelfattah Benkaddour, Matthieu Carré, Frederique Eynaud, Philippe Martinez, and Rachid Cheddadi
Clim. Past, 12, 1029–1042, https://doi.org/10.5194/cp-12-1029-2016, https://doi.org/10.5194/cp-12-1029-2016, 2016
Short summary
Short summary
The present study is related the climate changes and their environmental impacts during the last 6 ky from a fossil record collected in the Middle Atlas, Morocco. We used the reconstruction of three climate variables and geo-chemical elements to evaluate the relationships between all the environmental variables. In summary, this present study confirms the overall climate stability over the last 6 ky and highlights the presence of a short and abrupt climate event at about 5.2 ka cal BP.
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
C. Morrill, D. M. Anderson, B. A. Bauer, R. Buckner, E. P. Gille, W. S. Gross, M. Hartman, and A. Shah
Clim. Past, 9, 423–432, https://doi.org/10.5194/cp-9-423-2013, https://doi.org/10.5194/cp-9-423-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
A. Wackerbarth, P. M. Langebroek, M. Werner, G. Lohmann, S. Riechelmann, A. Borsato, and A. Mangini
Clim. Past, 8, 1781–1799, https://doi.org/10.5194/cp-8-1781-2012, https://doi.org/10.5194/cp-8-1781-2012, 2012
D. Swingedouw, L. Terray, J. Servonnat, and J. Guiot
Clim. Past, 8, 1487–1495, https://doi.org/10.5194/cp-8-1487-2012, https://doi.org/10.5194/cp-8-1487-2012, 2012
M.-J. Gaillard, S. Sugita, F. Mazier, A.-K. Trondman, A. Broström, T. Hickler, J. O. Kaplan, E. Kjellström, U. Kokfelt, P. Kuneš, C. Lemmen, P. Miller, J. Olofsson, A. Poska, M. Rundgren, B. Smith, G. Strandberg, R. Fyfe, A. B. Nielsen, T. Alenius, L. Balakauskas, L. Barnekow, H. J. B. Birks, A. Bjune, L. Björkman, T. Giesecke, K. Hjelle, L. Kalnina, M. Kangur, W. O. van der Knaap, T. Koff, P. Lagerås, M. Latałowa, M. Leydet, J. Lechterbeck, M. Lindbladh, B. Odgaard, S. Peglar, U. Segerström, H. von Stedingk, and H. Seppä
Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, https://doi.org/10.5194/cp-6-483-2010, 2010
J. C. Hargreaves and J. D. Annan
Clim. Past, 5, 803–814, https://doi.org/10.5194/cp-5-803-2009, https://doi.org/10.5194/cp-5-803-2009, 2009
Cited articles
Arz, H. W., Lamy, F., Pätzold, P., Müller, P. J., and Prins, M.:
Mediterranean moisture source for early-Holocene humid period in the Red
Sea, Science, 300, 118–121, 2003.
Arz, H. W., Lamy, F., and Pätzold, J.: A pronounced dry event recorded
around 4.2 ka in brine sediments from the northern Red Sea, Quaternary Res., 66, 432–441, 2006.
Baioumy, H. M., Kayanne, H., and Tada, R.: Reconstruction of lake-level and
climate changes in Lake Qarun, Egypt, during the last 7000 years, J. Great Lakes Res., 36, 318–327, 2010.
Baker, P., Fritz, S., Burns, S., Ekdahl, E., and Rigsby, C.: The nature and
origin of decadal to millennial scale climate variability in the southern
tropics of South America: the Holocene record of Lago Umayo, Peru, in: Past
climate variability in South America and surrounding regions: from the last
glacial maximum to the Holocene, Developments in Paleoenvironmental Research
14, edited by: Vimeux, F., Sylvestre, F., and Khodri, M., Springer-Verlag,
301–322, 2009.
Bar-Matthews, M., Ayalon, A., and Kaufman, A.: Late Quaternary paleoclimate
in the Eastern Mediterranean region from stable isotope analysis of
speleothems at Soreq Cave, Israel, Quaternary Res., 47, 155–168, 1997.
Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G. J.: The Eastern
Mediterranean palaeoclimate as a reflection of regional events: Soreq Cave,
Israel, Earth Planet. Sc. Lett., 166, 85–95, 1999.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth,
C. J.: Sea-land oxygen isotopic relationship from planktonic foraminifera and
speleothems in the Eastern Mediterranean region and their implication for
paleorainfall during interglacial intervals, Geochim. Cosmochim. Ac., 67, 3181–3199,
2003.
Bar-Matthews, M. and Ayalon, A.: Mid-Holocene climate variations revealed
by high-resolution speleothem records from Soreq Cave, Israel and their
correlation with cultural changes, Holocene, 21, 163–171, 2011.
Bartov, Y., Goldstien, S. L., Stein, M., and Enzel, Y.: Catastrophic arid
events in the East Mediterranean linked with the North Atlantic Heinrich
events, Geology, 31, 439–442, 2003.
Baruch, U.: The late Holocene vegetational history of Lake Kinneret (sea of
Galilee), Israel, Paléorient, 12, 37–47, 1986.
Baruch, U. and Bottema, S.: A new pollen diagram from Lake Hula:
vegetational, climatic and anthropogenic implications, in: Ancient lakes:
their cultural and biological diversity, edited by: Kawanabe, H., Coulter, G. W., and
Roosevelt, A. C., Kenobi Productions, Ghent, 75–86, 1999.
Benito, G., Macklin, M. G., Zielhofer, C., Jones, A. F., and Machado, M. J.:
Holocene flooding and climate change in the Mediterranean, Catena, 130,
13–33, 2015.
Bernhardt, C., Horton, B. P., and Stanley, J. D.: Nile Delta vegetation
response to Holocene climate variability, Geology, 40, 615–618, 2012.
Bianchi, G. G. and McCave, I. N.: Holocene periodicity in North Atlantic
climate and deep-ocean flow south of Iceland, Nature, 397, 515–517, 1999.
Blair, C. L., Geirsdóttir, Á., and Miller, G. H.: A high-resolution
multi-proxy lake record of Holocene environmental change in southern
Iceland, J. Quaternary Sci., 30, 281–292, 2015.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P.,
Priore, P., Cullen, H., Hadjas, I., and Bonani, G.: A pervasive
millennial-scale cycle in North Atlantic Holocene and glacial climates,
Science, 278, 1257–1266, 1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar
Influence on North Atlantic Climate during the Holocene, Science, 294,
3130–2136, 2001.
Bookman (Ken-Tor), R., Enzel, Y., Agnon, A., and Stein, M.: Late Holocene
lake levels of the Dead Sea, Geol. Soc. Am. Bull., 116,
555–571, 2004.
Booth, R. K., Jackson, S. T., Forman, S. L., Kutzbach, J. E., Bettis, E. A.,
Kreig, J., and Wright, D. K.: A severe centennial-scale drought in
mid-continental North America 4200 years ago and apparent global linkages,
Holocene 15, 321–328, 2005.
Booth, R., Jackson, S., Forman, S., Kutzbach, J., Bettis, E., Kreig, J., and
Wright D.: A severe centennial-scale drought in mid-continental North
America 4200 years ago and apparent global linkages, Holocene 15,
321–328, 2006.
Bordon, A., Peyron, O., Lézine, A. M., Brewer, S., and Fouache, E.:
Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake
Maliq), Quatern. Int., 200, 19–30, 2009.
Brayshaw, D. J., Rambeau, C. M. C., and Smith, S. J.: Changes in Mediterranean
climate during the Holocene: Insights from global and regional climate
modelling, Holocene, 21, 15–31, 2011.
Bryson, R. A.: A macrophysical model of the Holocene intertropical
convergence and jetstream position and rainfall for the Saharan region,
Meteorol. Atmos. Phys., 47, 247–258, 1992.
Bryson, R. A. and Bryson, R. U.: High resolution simulations of regional
Holocene climate: North Africa and the Near East, in: Third millennium B.C.
climate change and old world collapse, NATO ASI Series, vol. I 49, edited by: Dalfes,
H. N., Kukla, G., and Weiss, H., Springer-Verlag, Berlin Heidelberg,
565–593, 1997.
Butzer, K. W.: Collapse, environment, and society, P. Natl. Acad. Sci. USA, 109,
3632–3639, 2012.
Carrión, J. S., Sánchez-Gómez, P., Mota, J. F., Yll, E. I., and
Chaín, C.: Fire and grazing are contingent on the Holocene vegetation
dynamics of Sierra de Gádor, southern Spain, Holocene, 13, 839–849,
2003.
Chalié, F. and Gasse, F.: Late-GlacialeHolocene diatom record of water
chemistry and lake-level change from the tropical East African Rift Lake
Abiyata (Ethiopa), Palaeogeogr. Palaeocl., 187,
259–283, 2002.
Cheddadi, R. and Khater, C.: Climate change since the last glacial period
in Lebanon and the persistence of Mediterranean species, Quaternary Sci. Rev., 150, 146–157, 2016.
Cheddadi, R., Lamb, H. F., Guiot, J., and van der Kaars, S.: Holocene
climatic change in Morocco: a quantitative reconstruction from pollen data,
Clim. Dynam., 14, 883–890, 1998.
Cheng, H., Sinha, A., Verheyden, S., Nader, F. H., Li, X. L., Zhang, P. Z.,
Yin, J. J., Yi, L., Peng, Y. B., Rao, Z. G., Ning, Y. F., and Edwards, R. L.: The
climate variability in northern Levant over the past 20 000 years,
Geophys. Res. Lett., 42, 8641–8650, 2015.
Clarke, J., Brooks, N., Banning, E. B., Bar-Matthews, M., Campbell, S.,
Clare, L., Cremaschi, M., di Lernia, S., Drake, N., Gallinaro, M., and
Manning, S.: Climatic changes and social transformations in the Near East
and North Africa during the “long” 4th millennium BC: A comparative study of
environmental and archaeological evidence, Quaternary Sci. Rev. 136,
96–121, 2016.
Cremaschi, M. and Di Lernia, S.: Holocene Climatic Changes and Cultural
Dynamics in the Libyan Sahara, Afr. Archaeol. Rev., 16, 211–238,
1999.
Cullen, H. M., deMenocal, P. B., Hemming, S., Brown, F., Guilderson, T., and
Sirocko, F.: Climate change and the collapse of the Akkadian Empire:
evidence from the deep sea, Geology, 28, 379–382, 2000.
Cullen, H. M., Kaplan, A., Arkin, P. A., and deMenocal, P. B.: Impact of the
North Atlantic Oscillation on Middle Eastern climate and streamflow,
Climatic Change, 55, 315–338, 2002.
Dean, J. R., Jones, M. D., Leng, M. J., Noble, S. R., Metcalfe, S. E., Sloane,
H. J., Sahy, D., Eastwood, W. J., and Roberts, N.: Eastern Mediterranean
hydroclimate over the late glacial and Holocene, reconstructed from the
sediments of Nar lake, central Turkey, using stable isotopes and carbonate
mineralogy, Quaternary Sci. Rev., 124, 162–174, 2015.
deMenocal, P. B.: Cultural responses to climatic change during the late
Holocene, Science, 292, 667–673, 2001.
Di Rita, F., Fletcher, W. J., Aranbarri, J., Margaritelli, G., Lirer, F., and
Magri, D.: Holocene forest dynamics in central and western Mediterranean:
periodicity, spatio-temporal patterns and climate influence, Sci. Rep., 8, 8929, https://doi.org/10.1038/s41598-018-27056-2, 2018.
Drysdale, R. N., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A. E.,
Pickett, M., Cartwright, I., and Piccini, L.: Late Holocene drought
responsible for the collapse of Old World civilizations is recorded in an
Italian cave flowstone, Geology, 34, 101–104, 2006.
Ducassou, E., Mulder, T., Migeon, S., Gonthier, E., Murat, A., Revel, M.,
Capotondi, L., Bernasconi, S. M., Mascle, J., and Zaragosi, S.: Nile floods
recorded in deep Mediterranean sediments, Quaternary Res., 70, 382–391,
2008.
Eastwood, W. J., Roberts, N., Lamb, H. F., and Tibby, J. C.: Holocene
environmental change in southwest Turkey: a palaeoecological record of lake
and catchment-related changes, Quaternary Sci. Rev., 18, 671–695,
1999.
Enzel, Y., Bookman, R., Sharon, D., Gvirtzman, H., Dayan, U., Ziv, B., and
Stein, M.: Late Holocene climates of the Near East deduced from Dead Sea
level variations and modern regional winter rainfall, Quaternary Res.,
60, 263–273, 2003.
Faust, D., Zielhofer, C., Baena Escudero, R., and Diaz del Olmo, F.:
High-resolution fluvial record of late Holocene geomorphic change in
northern Tunisia: climatic or human impact?, Quaternary Sci. Rev., 23,
1757–1775, 2004.
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S. J., Scholz, D., Pätzold,
J., Al-Rousan, S. A., and Al-Moghrabi, S. M.: Increased seasonality in Middle East
temperatures during the last interglacial period, Nature, 429, 164–168,
2004.
Finné, M., Holmgren, K., Sundqvist, H. S., Weiberg, E., and Lindblom, M.:
Climate in the Eastern Mediterranean, and adjacent regions, during the past
6000 years – a review, J. Archaeol. Sci., 28, 3153–3173,
2011.
Finné, M., Holmgren, K., Shen, C. C., Hu, H. M., Boyd, M., and Stocker, S.:
Late Bronze Age climate change and the destruction of the Mycenaean Palace
of Nestor at Pylos, Plos One, 12, e0189447, doi.org/10.1371/journal.pone.0189447, 2017.
Fiorentino, G., Caracuta, V., Calcagnile, L., D'Elia, M., Matthiae, P.,
Mavelli, F., and Quarta, G.: Third millennium B.C. climate change in Syria
highlighted by carbon stable isotope analysis of 14C-AMS dated plant
remains from Ebla, Palaeogeogr. Palaeocl., 266,
51–58, 2008
Fisher, D., Osterberg, E., Dyke, A., Dahl-Jensen, D., Demuth, M., Zdanowicz,
C., Bourgeois, J., Koerner, R., Mayewski, P., Wake, C., Kreutz, K., Steig,
E., Zheng, J., Yalcin, K., Goto-Azuma, K., Luckman, B., and Rupper, S.: The
Mt Logan Holocene late Wisconsinan isotope record: tropical Pacific-Yukon
connections, Holocene, 18, 667–677, 2008.
Flaux, C., Claude, C., Marriner, N., and Morhange, C.: A 7500-year strontium
isotope record from the northwestern Nile delta (Maryut lagoon, Egypt),
Quaternary Sci. Rev., 78, 22–33, 2013.
Francke, A., Wagner, B., Leng, M. J., and Rethemeyer, J.: A Late Glacial to Holocene record of environmental change from Lake Dojran
(Macedonia, Greece), Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, 2013.
Frumkin, A., Ford, D. C., and Schwarcz, H. P.: Continental oxygen isotopic
record of the last 170,000 years in Jerusalem, Quaternary Res., 51,
317–327, 1999.
Gasse, F.: Hydrological changes in the African tropics since the last
glacial maximum, Quaternary Sci. Rev. 19, 189–212, 2000.
Geirsdóttir, Á., Miller, G. H., Larsen, D. J., and
Ólafsdóttir, S.: Abrupt Holocene climate transitions in the northern
North Atlantic region recorded by synchronized lacustrine records in
Iceland, Quaternary Sci. Rev., 70, 48–62, 2013.
Giraudi, C., Mercuri, A. M., and Esu, D.: Holocene palaeoclimate in the
northern Sahara margin (Jefara Plain, northwestern Libya), Holocene, 23,
339–352, 2013.
Göktürk, O. M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards,
R. L., Leuenberger, M., Fankhauser, A., Tüysüz, O., and Kramers, J.:
Climate on the southern Black Sea coast during the Holocene: implications
from the Sofular Cave record, Quaternary Sci. Rev., 30, 2433–2445,
2011.
Grant, K. M., Grimm, R., Mikolajewicz, U., Marino, G., Ziegler, M., and
Rholing, E. J.: The timing of Mediterranean sapropel deposition relative to
insolation, sea-level and African monsoon changes, Quaternary Sci. Rev., 140, 125–141, 2016.
Guiot, J. and Kaniewski, D.: The Mediterranean basin in a warmer and drier
world: what can we learn from the past?, Front. Earth Sci., 3, 1–16,
https://doi.org/10.3389/feart.2015.00028, 2015.
Hajar, L., Khater, C., and Cheddadi, R.: Vegetation changes during the late
Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa valley,
Holocene, 18, 1089–1099, 2008.
Hajar, L., Haïdar-Boustani, M., Khater, C., and Cheddadi, R.:
Environmental changes in Lebanon during the Holocene: man vs. climate
impacts, J. Arid Environ., 74, 746–755, 2010.
Hassan, F. A.: Holocene lakes and prehistoric settlements of the western
Faiyum, Egypt, J. Archaeol. Sci., 13, 483–501, 1986.
Hassan, F. A.: The dynamics of a riverine civilization: a geoarchaeological
perspective on the Nile Valley, Egypt, World Archaeol., 29, 51–74, 1997.
Heim, C., Nowaczyk, N. R., and Negendank, J. F. W.: Near East desertification:
evidence from the Dead Sea, Naturwissenschaften, 84, 398–401, 1997.
Ilijanič, N., Miko, S., Hasan, O., and Bakrač, K.: Holocene
environmental record from lake sediments in the Bokanjačko blato karst
polje (Dalmatia, Croatia), Quatern. Int., in press, 2018.
Indeje, M., Semazzi, F. H. M., and Ogallo, L. J.: ENSO signals in East African
rainfall seasons, Int. J. Climatol., 20, 19–46, 2000.
Jiménez-Moreno, G. and Anderson, R. S.: Holocene vegetation and climate
change recorded in alpine bog sediments from the Borreguiles de la Virgen,
Sierra Nevada, southern Spain, Quaternary Res., 77, 44–53, 2012.
Jiménez-Moreno, G., Rodríguez-Ramírez, A., Pérez-Asensio,
J. N., Carrión, J. S., López-Sáez, J. A., Villarías-Robles,
J. J., Celestino-Pérez, S., Cerrillo-Cuenca, E., León, Á., and
Contreras, C.: Impact of late-Holocene aridification trend, climate
variability and geodynamic control on the environment from a coastal area in
SW Spain, Holocene, 25, 607–617, 2015.
Kagan, E., Stein, M., Agnon, A., and Neumann, F.: Intrabasin paleoearthquake
and quiescence correlation of the Late Holocene Dead Sea, J. Geophys. Res., 116, B04311, https://doi.org/10.1029/2010JB007452, 2011.
Kagan, E. J., Stein, M., Agnon, A., and Bronk Ramsey, C.: Paleoearthquakes as
anchor points in Bayesian radiocarbon deposition models: a case study from
the Dead Sea, Radiocarbon, 54, 1018–1026, 2010.
Kagan, E. J., Langgut, D., Boaretto, E., Neumann, F. H., and Stein, M.: Dead
Sea levels during the Bronze and Iron Ages, Radiocarbon 57, 237–252, 2015.
Kaniewski, D., Paulissen, E., Van Campo, E., Al-Maqdissi, M., Bretschneider,
J., and Van Lerberghe, K.: Middle East coastal ecosystem response to
middle-to-late Holocene abrupt climate changes, P. Natl. Acad. Sci. USA,105, 13941–13946,
2008.
Kaniewski, D., Paulissen, E., Van Campo, E., Bakker, J., Van Lerberghe, K.,
and Waelkens, M.: Wild or cultivated Olea europaea L. in the Eastern
Mediterranean during the middle-late Holocene? A pollen-numerical approach,
Holocene, 19, 1039–1047, 2009.
Kaniewski, D., Van Campo, E., Morhange, C., Guiot, J., Zviely, D., Shaked,
I., Otto, T., and Artzy, M.: Early urban impact on Mediterranean coastal
environments, Sci. Rep., 3, 1–5, https://doi.org/10.1038/srep03540, 2013.
Kaniewski, D., Van Campo, E., Morhange, C., Guiot, J., Zviely, D., Le Burel,
S., Otto, T., and Artzy, M.: Vulnerability of Mediterranean ecosystems to
long-term changes along the coast of Israel, Plos One, 9, e102090,
https://doi.org/10.1371/journal.pone.0102090, 2014.
Kaniewski, D., Marriner, N., Ilan, D., Morhange, C., Thareani, Y., and Van
Campo, E.: Climate change and water management in the biblical city of Dan,
Sci. Adv., 3, e1700954, https://doi.org/10.1126/sciadv.1700954, 2017.
Kolodny, Y., Stein, M., and Machlus, M.: Sea-rain-lake relation in the last
glacial east Mediterranean revealed by d18O – d13C in lake Lisan
aragonites, Geochim. Cosmochim. Ac., 69, 4045–4060, 2005.
Kröpelin, S., Verschuren, D., Lézine, A. M., Eggermont, H., Cocquyt,
C., Francus, P., Cazet, J. P., Fagot, M., Rumes, B., Russel, J. M., Darius,
F., Conley, D. J., Schuster, M., von Suchodoletz, H., and Engstrom, D. R.:
Climate-driven ecosystem succession in the Sahara: the past 6000 years,
Science, 320, 765–768, 2008.
Kushnir, Y.: Interdecadal variations in North-Atlantic sea-surface
temperature and associated atmospheric conditions, J. Climate, 7,
141–157, 1994.
Kushnir, Y. and Stein, M.: North Atlantic influence on 19th–20th
century rainfall in the Dead Sea watershed, teleconnections with the Sahel,
and implication for the Holocene climate fluctuations, Quaternary Sci. Rev., 29, 3843–3860, 2010.
Kutiel, H., Maheras, P., and Guika, S.: Circulation and extreme rainfall
conditions in the eastern Mediterranean during the last century,
Int. J. Climatol. 16, 73–92, 1996.
Lamb, H. F., Gasse, F., Benkaddour, A., El Hamouti, N., van der Kaars, S.,
Perkins, W. T., Pearce, N. J., and Roberts, C. N.: Relation between
century-scale Holocene arid intervals in tropical and temperate zones,
Nature, 373, 134–137, 1995.
Lamy, F., Arz, H. W., Bond, G. C., Bahr, A., and Pätzold, J.:
Multicentennial-scale hydrological changes in the Black Sea and northern Red
Sea during the Holocene and the Arctic/North Atlantic Oscillation,
Paleoceanography, 21,
1–11, https://doi.org/10.1029/2005PA001184, 2006.
Langgut, D., Finkelstein, I., and Litt, T.: Climate and the Late Bronze
collapse: new evidence from the Southern Levant, Tel Aviv, 40, 149–175,
2013.
Langgut, D., Neumann, F. H., Stein, M., Wagner, A., Kagan, E. J., Boaretto,
E., and Finkelstein, I.: Dead Sea pollen record and history of human
activity in the Judean Highlands (Israel) from the Intermediate Bronze into
the Iron Ages (∼2500-500 BCE), Palynology, 38, 280–302, 2014.
Langgut, D., Adams, M. J., and Finkelstein, I.: Climate, settlement patterns
and olive horticulture in the southern Levant during the Early Bronze and
Intermediate Bronze Ages (c. 3600–1950 BC), Levant, 48, 117–134, 2016.
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E., Modes of Eastern
Equatorial Pacific thermocline variability: implications for ENSO dynamics
over the last glacial period, Paleoceanography, 24, PA3202,
https://doi.org/10.1029/2008PA001701, 2009.
Lemcke, G. and Sturm, M.: 18O and trace elements measurements as proxy
for reconstruction of climate change at Lake Van (Turkey), in: Third
Millenium BC: climate change and old world collapse, NATO ASI Series I vol.
49, edited by: Dalfes, H. N., Kukla, G. H., and Weiss, H., Springer, Berlin,
653–678, 1996.
Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R.: The Mediterranean
climate: an overview of the main characteristics and issues, Elsevier,
Netherlands, 2006.
Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R.: Mediterranean climate
variability: 4 (Developments in Earth and Environmental Sciences), Elsevier,
Amsterdam, 2013.
Litt, T., Ohlwein, C., Neumann, F. H., Hense, A., and Stein, M.: Holocene
climate variability in the Levant from the Dead Sea pollen record,
Quaternary Sci. Rev., 49, 95–105, 2012.
Lo Gullo, M. A. and Salleo, S.: Different strategies of drought resistance
in three Mediterranean sclerophyllous trees growing in the same
environmental conditions, New Phytol., 108, 267–76, 1988.
Lončar, N., Bar-Matthews, M., Ayalon, A., Surić, M., and Faivre, S.:
Early and Mid-Holocene environmental conditions in the Eastern Adriatic
recorded in speleothems from Mala špilja Cave and Velika špilja Cave
(Mljet Island, Croatia), Acta Carsologica, 46, 229–249, 2017.
Macklin, M. G., Toonen, W. H. J., Woodward, J. C., Williams, M. A. J., Flaux, C.,
Marriner, N., Nicoll, K., Verstraeten, G., Spencer, N., and Welsby, D.: A
new model of river dynamics, hydroclimatic change and human settlement in
the Nile Valley derived from meta-analysis of the Holocene fluvial archive,
Quaternary Sci. Rev., 130, 109–123, 2015.
Manning, J. G.: The open sea, the economy and life of the ancient
Mediterranean world from the Iron Age to the rise of Rome, Princeton
University Press, Princeton and Oxford, 2018.
Magny, M., Vannière, B., Zanchetta, G., Fouache, E., Touchais, G.,
Petrika, L., Coussot, C., Walter-Simonnet, A. V., and Arnaud, F.: Possible
complexity of the climatic event around 4300–3800 cal. BP in the central
and western Mediterranean, Holocene, 19, 823–833, 2009.
Magny, M., Combourieu-Nebout, N., de Beaulieu, J. L., Bout-Roumazeilles, V., Colombaroli, D., Desprat, S., Francke, A., Joannin, S.,
Ortu, E., Peyron, O., Revel, M., Sadori, L., Siani, G., Sicre, M. A., Samartin, S., Simonneau, A., Tinner, W., Vannière, B., Wagner, B.,
Zanchetta, G., Anselmetti, F., Brugiapaglia, E., Chapron, E., Debret, M., Desmet, M., Didier, J., Essallami, L., Galop, D., Gilli, A.,
Haas, J. N., Kallel, N., Millet, L., Stock, A., Turon, J. L., and Wirth, S.: North-south palaeohydrological contrasts in the central
Mediterranean during the Holocene: tentative synthesis and working hypotheses, Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, 2013.
Marks, L., Salem, A., Welc, F., Nitychoruk, J., Chen, Z., Blaauw, M., Zalat,
A., Majecka, A., Szymanek, M., Chodyka, M., Tołoczko-Pasek, A., Sun, Q.,
Zhao, X., and Jiang, J.: Holocene lake sediments from the Faiyum Oasis in
Egypt: a record of environmental and climate change, Boreas, 47, 62–79,
2018.
Marriner, N., Flaux, C., Kaniewski, D., Morhange, C., Leduc, G., Moron, V.,
Chen, Z., Gasse, F., Empereur, J. Y., and Stanley, J. D.: ITCZ and ENSO-like
modulation of Nile delta hydro-geomorphology during the Holocene, Quaternary Sci. Rev., 45, 73–84, 2012.
Marriner, N., Flaux, C., Morhange, C., and Stanley, J. D.: Tracking Nile Delta
vulnerability to Holocene change, Plos One, 8, 7, e69195, https://doi.org/10.1371/journal.pone.0069195, 2013.
Marshall, M., Lamb, H. F., Huws, D., Davies, S. J., Bates, R., Bloemendal, J.,
Boyle, J., Leng, M. J., Umer, M., and Bryant, C.: Late Pleistocene and
Holocene drought events at Lake Tana, the source of the Blue Nile, Global Planet. Change, 78, 147–161, 2011.
Mayewski, P. A., Rohling, E. J., Stager, J. C., Karlén, W., Maasch, K. A.,
Meeker, L. D., Meyerson, E. A., Gasse, F., Van Kreveld, S., Holmgren, K.,
Lee-Thorp, K., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and
Steig, E. J.: Holocene Climate Variability, Quaternary Res., 62, 243–255,
2004.
Meadows, J.: The Younger Dryas episode and the radiocarbon chronologies of
the Lake Huleh and Ghab Valley pollen diagrams, Israel and Syria,
Holocene, 15, 631–636, 2005.
Miebach, A., Chen, C. Z., Schwab, M. J., Stein, M., and Litt, T.: Vegetation
and climate during the Last Glacial high stand (ca. 28–22 ka bp) of the Sea
of Galilee, northern Israel, Quaternary Sci. Rev., 156, 47–56, 2017.
Migowski, C., Stin, M., Prasad, S., Negendank, J. F. W., and Agnon, A.:
Holocene climate variability and cultural evolution in the Near East from
the Dead Sea sedimentary record, Quaternary Res., 66, 421–431, 2006.
Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M.: Variability of
El Niño southern oscillation activity at millennial timescales during
the Holocene epoch, Nature, 420, 162–165, 2002.
Neumann, F., Schölzel, C., Litt, T., Hense, A., and Stein, M.: Holocene
vegetation history and climate history of the north Golan Heights (Near
East), Veg. Hist. Archaeobot., 16, 329–46, 2007a.
Neumann, F. H., Kagan, E. J., Schwab, M. J., and Stein, M.: Palynology,
sedimentology and palaeoecology of the late Holocene Dead Sea, Quaternary Sci. Rev., 26, 1476–1498, 2007b.
Nicholson, S. E. and Selato, J. C.: The influence of La Nina on African
rainfall, Int. J. Climatol., 20, 1761–1776, 2000.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North
Atlantic Oscillation over the past 5,200 years, Nat. Geosci., 5,
808–812, https://doi.org/10.1038/ngeo1589, 2012.
Regattieri, E., Zanchetta, G., Drysdale, R. N., Isola, I., Hellstrom, J. C.,
and Dallai, L.: Lateglacial to Holocene trace element record (Ba, Mg, Sr)
from Corchia Cave (Apuan Alps, central Italy): paleoenvironmental
implications, J. Quaternary Sci., 29, 381–392, 2014.
Revel, M., Ducassou, E., Grousset, F. E., Bernasconi, S. M., Migeon, S.,
Revillon, S., Mascle, J., Murat, A., Zaragosi, S., and Bosch, D.: 100,000
years of African monsoon variability recorded in sediments of the Nile next
term margin, Quaternary Sci. Rev., 29, 1342–1362, 2010.
Roberts, N., Jones, M. D., Benkaddour, A., Eastwood, W. J., Filippi, M. L.,
Frogley, M. R., Lamb, H. F., Leng, M. J., Reed, J. M., Stein, M., Stevens, L.,
Valero-Garces, B., and Zanchetta, G.: Stable isotope records of Late
Quaternary climate and hydrology from Mediterranean lakes: the ISOMED
synthesis, Quaternary Sci. Rev., 27, 2426–2441, 2008.
Roberts, N., Moreno, A., Valero-Garces, B. L., Corella, J. P., Jones, M.,
Allcock, S., Woodbridge, J., Morellon, M., Luterbacher, J., Xoplaki, E., and
Turkes, M.: Palaeolimnological evidence for an east-west climate see-saw in
the Mediterranean since AD 900, Global Planet. Change, 84–85, 23–34,
2012.
Rohling, E. J., Mayewski, P. A., Abu-Zied, R. H., Caford, J. S. L., and Hayes, A.:
Holocene atmosphere–ocean interactions: records from Greenland and the
Aegean Sea, Clim. Dynam., 18, 587–593, 2002.
Rossignol-Strick, M.: African monsoons, an immediate climate response to
orbital insolation, Nature, 304, 46–49, 1983.
Rossignol-Strick, M.: Sea-land correlation of pollen records in the Eastern
Mediterranean for the glacial-interglacial transition: biostratigraphy
versus radiometric time-scale, Quaternary Sci. Rev., 14, 8930–915,
1995.
Rothacker, L., Dosseto, A., Francke, A., Chivas, A., Vigier, N.,
Kotarba-Morley, A. M., and Menozzi, D.: Impact of climate change and human
activity on soil landscapes over the past 12,300 years, Sci. Rep.,
8, 1–7, https://doi.org/10.1038/s41598-017-18603-4, 2018.
Ruan, J., Kherbouche, F., Genty, D., Blamart, D., Cheng, H., Dewilde, F., Hachi, S., Edwards, R. L., Régnier, E., and Michelot, J.-L.:
Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave,
Northern Algeria, Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, 2016.
Saaroni, H., Halfon, N., Ziv, B., Alpert, P., and Kutiel, H.: Links between
the rainfall regime in Israel and location and intensity of Cyprus lows,
Int. J. Climatol., 30, 1014–1025, 2010.
Schiebel V. and Litt, T.: Holocene vegetation history of the southern
Levant based on a pollen record from Lake Kinneret (Sea of Galilee), Israel,
Veg. Hist. Archaeobot., 27, 577–590, 2018.
Schilman, B., Bar-Matthews, M., Almogi-Labin, A., and Luz, B.: Global
climate instability reflected by Eastern Mediterranean marine records during
the Late Holocene, Palaeogeogr. Palaeocl., 176,
157–176, 2001.
Schmidt, R., Müller, J., Drescher-Schneider, R., Krisai, R.,
Szeroczyńska, K., and Barić, A.: Changes in lake level and trophy at
Lake Vrana, a large karstic lake on the Island of Cres (Croatia), with
respect to palaeoclimate and anthropogenic impacts during the last approx.
16,000 years, J. Limnol., 59, 113–130, 2000.
Schwab, M. J., Neumann, F., Litt, T., Negendank, J. F. W., and Stein, M.:
Holocene palaeoecology of the Golan Heights (Near East): investigation of
lacustrine sediments from Birkat Ram crater lake, Quaternary Sci. Rev., 23, 1723–1731, 2004.
Scussolini, P., Vegas-Vilarrúbia, T., Rull, V., Corella J. P.,
Valero-Garcés, B., and Gomà, J.: Middle and late Holocene climate
change and human impact inferred from diatoms, algae and aquatic macrophyte
pollen in sediments from Lake Montcortès (NE Iberian Peninsula), J. Paleolimnol., 46, 369–385, 2011.
Sharifi, A., Pourmand, A., Canuel, E. A., Ferer-Tyler, E., Peterson, L. C.,
Aichner, B., Feakins, S. J., Daryaee, T., Djamali, M., Naderi, A., Lahijani,
H. A. K., and Swart, P. K.: Abrupt climate variability since the last
deglaciation based on a high-resolution, multi-proxy peat record from NW
Iran: the hand that rocked the Cradle of Civilization?, Quaternary Sci. Rev., 123, 215–230, 2015.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and Young,
N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev., 111, 9–34,
2015.
Sorrel, P. and Mathis, M.: Mid- to late Holocene coastal vegetation
patterns in Northern Levant (Tell Sukas, coastal Syria): Olive tree
cultivation history and climatic change, Holocene, 26, 858–873, 2016.
Stanley, J. D., Krom, M. D., Cliff, R. A., and Woodward J. C.: Short
Contribution: Nile flow failure at the end of the Old Kingdom, Egypt:
strontium isotopic and petrologic evidence, Geoarchaeology, 18, 395–402,
2003.
Staubwasser, M. and Weiss, H.: Holocene climate and cultural evolution in
late prehistoric-early historic West Asia, Quaternary Res., 66, 372–387,
2006.
Styllas, M., Dimitriou, E., Gritzalis, K., Koutsodimou, M., Karaouzas, I.,
Skoulikidis, N., and Gogou, A.: Mid-Holocene changes in the geochemical and
biotic conditions of an aquatic ecosystem, in Eastern Mediterranean. Annales
de Limnologie-International J. Limnol., 54, 1–15,
https://doi.org/10.1051/limn/2018013, 2018.
Telford, R. J., Heegaard, E., and Birks, H. J. B.: The intercept is a poor
estimate of a calibrated radiocarbon age, Holocene, 14, 296–298, 2004.
Thienemann, M., Masi, A., Kusch, S., Sadori, L., John, S., Francke, A.,
Wagner, B., and Rethemeyer, J.: Organic geochemical and palynological
evidence for Holocene natural and anthropogenic environmental change at Lake
Dojran (Macedonia/Greece), Holocene, 27, 1103–1114, 2017.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher,
H. H., Zagorodnov, V. S., Mashiotta, T. A., and Lin, P. N.: Kilimanjaro ice core
records: evidence of Holocene climate change in tropical Africa, Science,
298, 589–593, 2002.
van Zeist, W. and Woldring, H.: Holocene vegetation and climate of
northwestern Syria, Palaeohistoria, 22, 111–125, 1980.
Van Zeist, W., Baruch, U., and Bottema, S.: Holocene palaeoecology of the
Hula area, northeastern Israel, in: A timeless vale, Archaeological Studies
Leiden University 19, edited by: Kaptijn, E. and Petit, L. P., Leiden University
Press, Leiden, 29–64, 2009.
Verheyden, S., Nader, F. H., Cheng, H. J., Edwards, L. R., and Swennen, R.:
Paleoclimate reconstruction in the Levant region from the geochemistry of a
Holocene stalagmite from the Jeita cave, Lebanon, Quaternary Res.,
70, 368–381, 2008.
Véron, A., Flaux, C., Marriner, N., Poirier, A., Rigaud, S., Morhange,
C., and Empereur, J. Y.: A 6000-year geochemical record of human activities
from Alexandria (Egypt), Quaternary Sci. Rev., 81, 138–147, 2013.
Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., Kristen, I.,
Blaauw, M., Fagot, M., Haug, G. H., and Challacea Project Members:
Half-precessional dynamics of monsoon rainfall near the East African
Equator, Nature, 462, 637–641, 2009.
Wagner, B., Vogel, H., Zanchetta, G., and Sulpizio, R.: Environmental change within the Balkan region during the past ca. 50 ka
recorded in the sediments from lakes Prespa and Ohrid, Biogeosciences, 7, 3187–3198, https://doi.org/10.5194/bg-7-3187-2010, 2010.
Walker, M. J. C., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher,
D. A., Long, A. J., Lowe, J. J., Newnham, R. M., Rasmussen, S. O., and Weiss, H.:
Formal subdivision of the Holocene Series/Epoch: A discussion paper by a
Working Group of INTIMATE (Integration of ice-core, marine and terrestrial
records) and the subcommission on quaternary stratigraphy (International
Commission on Stratigraphy), J. Quaternary Sci., 27, 649–659,
2012.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flükiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene
climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828,
2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure
and origin of Holocene cold events, Quaternary Sci. Rev., 30,
3109–3123, 2011.
Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S.: Holocene climate
variability and change; a data-based review, J. Geol.
Soc., 172, 254–263, 2015.
Weiss, H.: Global megadrought, societal collapse and resilience at 4.2–3.9 ka BP across the Mediterranean and west Asia,
PAGES, 24, 62–63, https://doi.org/10.22498/pages.24.2.62, 2016.
Weiss, H.: Megadrought and collapse, from early agriculture to Angkor,
Ox
Weiss, H. and Bradley, R. S.: What drives societal collapse?, Science, 291,
609–610, 2001.
ford University Press, Oxford, 2017.
Weiss, H., Courty, M. A.,Wetterstrom, W., Guichard, F., Senior, L., Meadow,
R., and Curnow, A.: The genesis and collapse of 3rd millennium north
Mesopotamian civilization, Science, 261, 995–1004, 1993.
Wick, L., Lemcke, G., and Sturm, M.: Evidence of Lateglacial and Holocene
climatic change and human impact in eastern Anatolia: high-resolution
pollen, charcoal, isotopic and geochemical records from the laminated
sediments of Lake Van, Turkey, Holocene, 13, 665–675, 2003.
Wolff, C., Haug, G. H., Timmermann, A., Sinninghe Damsté, J. S., Brauer,
A., Sigman, D. M., Cane, M. A., and Verschuren, D.: Reduced interannual
rainfall variability in East Africa during the last ice age, Science, 333,
743–747, 2011.
Xoplaki, E., Gonzalez-Rouco, J. F., Luterbacher, J., and Wanner, H.: Wet
season Mediterranean precipitation variability: influence of large-scale
dynamics and trends, Clim. Dynam., 23, 63–78, https://doi.org/10.1007/s00382-004-0422-0, 2004.
Yasuda, Y., Kitagawa, H., and Nakagawa, T.: The earliest record of major
anthropogenic deforestation in the Ghab Valley, northwest Syria: a
palynological study, Quatern. Int., 73/74, 127–136, 2000.
Zanchetta, G., Van Welden, A., Baneschi, I., Drysdale, R. N., Sadori, L.,
Roberts, N., Giardini, M., Beck, C., Pascucci, V., and Sulpizio, R.:
Multiproxy record for the last 4500 years from Lake Shkodra
(Albania/Montenegro), J. Quaternary Sci. 27, 780–789, 2012.
Zanchetta, G., Regattier, E., Isola, I., Drysdale, R. N., Bini, M., Baneschi,
I., and Hellstrom, J. C.: The so-called “4.2 event” in the central
Mediterranean and its climatic teleconnections, Alpine and Mediterranean
Quaternary, 29, 5–17, 2016.
Zanchetta, G., Bini, M., Di Vito, M. A., Sulpizio, R., and Sadori, L.:
Tephrostratigraphy of paleoclimatic archives in central Mediterranean during
the Bronze Age, Quatern. Int., in press,
https://doi.org/10.1016/j.quaint.2018.06.012, 2018.
Zangvil, A., Karas, S., and Sasson, A.: Connection between eastern
Mediterranean seasonal mean 500 hPa height and sea-level pressure patterns
and the spatial rainfall distribution over Israel, Int. J. Climatol., 23, 1567–1576, 2003.
Zielhofer, C. and Faust, D.: Mid- and Late Holocene fluvial chronology of
Tunisia, Quaternary Sci. Rev., 27, 580–588, 2008.
Ziv, B., Dayan, U., Kushnir, Y., Roth, C., and Enzel, Y.: Regional and
global atmospheric patterns governing rainfall in the southern Levant,
Int. J. Climatol. 26, 55–73, 2006.
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event,...
Special issue