Articles | Volume 13, issue 5
https://doi.org/10.5194/cp-13-511-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-13-511-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history
Linsen Dong
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Yanguang Liu
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Xuefa Shi
CORRESPONDING AUTHOR
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Leonid Polyak
Byrd Polar and Climate Research Center, The Ohio State University, Columbus, 43210, USA
Yuanhui Huang
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Xisheng Fang
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Jianxing Liu
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Jianjun Zou
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Kunshan Wang
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Fuqiang Sun
Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
Xuchen Wang
Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266100, China
Related authors
No articles found.
Liang Su, Jian Ren, Marie-Alexandrine Sicre, Youcheng Bai, Ruoshi Zhao, Xibing Han, Zhongqiao Li, Haiyan Jin, Anatolii S. Astakhov, Xuefa Shi, and Jianfang Chen
Clim. Past, 19, 1305–1320, https://doi.org/10.5194/cp-19-1305-2023, https://doi.org/10.5194/cp-19-1305-2023, 2023
Short summary
Short summary
We reconstructed sea ice and organic carbon composition variabilities based on biomarkers and carbon stable isotopes in the northern Chukchi Sea, western Arctic Ocean, over the past 200 years. Under permanent ice cover, organic carbon was dominated by land sources transported by sea ice and ocean currents, while local primary productivity was suppressed by light limitation. Since ice retreated in 20th century, organic carbon from primary production gradually overtook the terrestrial component.
Chen Jinxia, Shi Xuefa, Liu Yanguang, Qiao Shuqing, Yang Shixiong, Yan Shijuan, Lv Huahua, Li Jianyong, Li Xiaoyan, and Li Chaoxin
Clim. Past, 16, 2509–2531, https://doi.org/10.5194/cp-16-2509-2020, https://doi.org/10.5194/cp-16-2509-2020, 2020
Short summary
Short summary
In this study, we present pollen and grain size data obtained from the Bohai Sea. The results reveal that soil development and salinity gradients are the main factors determining the vegetation dynamics of coastal wetland. Moreover, our pollen-based temperature index revealed a warm Early Holocene, a cool Middle Holocene and then a relatively warm Late Holocene. The main driving factors of temperature variation in this region are insolation, greenhouse gases and ENSO.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Ling Ding, Tiantian Ge, and Xuchen Wang
Ocean Sci., 15, 1177–1190, https://doi.org/10.5194/os-15-1177-2019, https://doi.org/10.5194/os-15-1177-2019, 2019
Short summary
Short summary
Dissolved organic carbon (DOC) is the largest OC pool in the ocean. Its dynamics are largely influenced by hydrodynamic mixing of different water masses in the East China Sea and Kuroshio Extension. Water from Kuroshio intrusion could dilute DOC in the shelf break of the ECS, and spatial variations of DOC in upper 700 m in the KE were mainly influenced by mixing of the Kuroshio and Oyashio currents. The study provides updated and useful information for understanding DOC cycles in the ECS and KE.
Sergey A. Gorbarenko, Xuefa Shi, Galina Yu. Malakhova, Aleksandr A. Bosin, Jianjun Zou, Yanguang Liu, and Min-Te Chen
Clim. Past, 13, 1063–1080, https://doi.org/10.5194/cp-13-1063-2017, https://doi.org/10.5194/cp-13-1063-2017, 2017
X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han
Clim. Past, 10, 1735–1750, https://doi.org/10.5194/cp-10-1735-2014, https://doi.org/10.5194/cp-10-1735-2014, 2014
Related subject area
Subject: Ice Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Sea ice and productivity changes over the last glacial cycle in the Adélie Land region, East Antarctica, based on diatom assemblage variability
Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka)
Reconstructing Antarctic winter sea-ice extent during Marine Isotope Stage 5e
Reconstructing the evolution of ice sheets, sea level, and atmospheric CO2 during the past 3.6 million years
The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin
A Late Pleistocene sea level stack
Sea level ~400 000 years ago (MIS 11): analogue for present and future sea-level?
Lea Pesjak, Andrew McMinn, Zanna Chase, and Helen Bostock
Clim. Past, 19, 419–437, https://doi.org/10.5194/cp-19-419-2023, https://doi.org/10.5194/cp-19-419-2023, 2023
Short summary
Short summary
This study uses diatom assemblages, biogenic silica and Si/Al data over the last 140 kyr from core TAN1302-44 (64°54' S, 144°32' E) to define glacial-to-interglacial paleoenvironments near Antarctica with respect to sea ice duration and ocean circulation. It has found that the sea ice season increased gradually during the last glacial, reaching a maximum before decreasing at the end of MIS 2. Following this, Circumpolar Deep Water increased relative to other times prior to ice sheet retreat.
Matthew Chadwick, Xavier Crosta, Oliver Esper, Lena Thöle, and Karen E. Kohfeld
Clim. Past, 18, 1815–1829, https://doi.org/10.5194/cp-18-1815-2022, https://doi.org/10.5194/cp-18-1815-2022, 2022
Short summary
Short summary
Algae preserved in seafloor sediments have allowed us to reconstruct how Antarctic sea ice has varied between cold and warm time periods in the last 130 000 years. The patterns and timings of sea-ice increase and decrease vary between different parts of the Southern Ocean. Sea ice is most sensitive to changing climate at the external edges of Southern Ocean gyres (large areas of rotating ocean currents).
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, https://doi.org/10.5194/cp-17-361-2021, 2021
Short summary
Short summary
For the past 2.6 million years, the Earth has experienced glacial cycles, where vast ice sheets periodically grew to cover large parts of North America and Eurasia. In the earlier part of this period, this happened every 40 000 years. This value changed 1.2 million years ago to 100 000 years: the Mid-Pleistocene Transition. We investigate this interesting period using an ice-sheet model, studying the interactions between ice sheets and the global climate.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Rachel M. Spratt and Lorraine E. Lisiecki
Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, https://doi.org/10.5194/cp-12-1079-2016, 2016
Short summary
Short summary
This study presents an average of seven Late Pleistocene sea level records, which improves the signal-to-noise ratio for estimates of sea level change during glacial cycles of the past 800 000 years.
D. Q. Bowen
Clim. Past, 6, 19–29, https://doi.org/10.5194/cp-6-19-2010, https://doi.org/10.5194/cp-6-19-2010, 2010
Cited articles
Adler, R. E., Polyak, L., Ortiz, J. D., Kaufman, D. S., Channell, J. E. T., Xuan, C., Grottoli, A. G., Sellén, E., and Crawford, K. A.: Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge, Global Planet. Change, 68, 18–29, 2009.
Andrews, J. T.: Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: Facts and assumptions, Oceanography, 13, 100–108, 2000.
Basilyan, A. E., Nikol'skyi, P. A., Maksimov, F. E., and Kuznetsov, V. Y.: Age of Cover Glaciation of the New Siberian Islands Based on 230Th/U-dating of Mollusk Shells, Structure and Development of the Lithosphere, Paulsen, Moscow, 506–514, 2010.
Bazhenova, E., Fagel, N., and Stein, R.: North American origin of “pink–white” layers at the Mendeleev Ridge (Arctic Ocean): New insights from lead and neodymium isotope composition of detrital sediment component, Mar. Geol., 386, 44–55, 2017.
Behrends, M.: Reconstruction of sea-ice drift and terrigenous sediment supply in the Late Quaternary: heavy-mineral associations in sediments of the Laptev-Sea continental margin and the central Arctic Ocean, Rep. Polar Res., 310, 1–167, 1999.
Beuselinck, L., Govers, G., Poesen, J., Degraer, G., and Froyen, L.: Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method, Catena, 32, 193–208, 1998.
Biscaye, P. F.: Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction, Am. Mineral., 49, 1281–1289, 1964.
Biscaye, P. F.: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans, Geol. Soc. Am. Bull., 76, 803–832, 1965.
Bischof, J. F. and Darby, D. A.: Mid-to Late Pleistocene ice drift in the Western Arctic Ocean: evidence for a different circulation in the past, Science, 277, 74–78, 1997.
Bischof, J. F., Clark, D. L., and Vincent, J. S.: Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean, Paleoceanography, 11, 743–756, 1996.
Blott, S. J. and Pye, K.: Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures, Sedimentology, 59, 2071–2096, 2012.
Chamley, H.: Clay Sedimentology, Springer, Berlin, 623 pp., 1989.
Clark, D. L., Whitman, R. R., Morgan, K. A., and Mackey, S. D.: Stratigraphy and glacialmarine sediments of the Amerasian Basin, central Arctic Ocean, Special Paper 181, Geological Society of America, The Geological Society of America, INC. 3300, Penrose Palce, P.O. Box 9140 Boulder, Colorado 80301, 57 pp., 1980.
Clark, D. L. and Hanson, A.: Central Arctic Ocean sediment texture: a key to ice transport mechanisms, in: Glacial-Marine Sedimentation, edited by: Molnia, B. F., Plenum Press, New York, 301–330, 1983.
Clark, D. L., Chern, L. A., Hogler, J. A., Mennicke, C. M., and Atkins, E. D.: Late Neogene climate evolution of the central Arctic Ocean, Mar. Geol., 93, 69–94, 1990.
Colleoni, F., Kirchner, N., Niessen, F., Quiquet, A., and Liakka, J.: An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions, Quaternary Sci. Rev., 147, 148–163, 2016.
Cook, H. E., Johnson, P. D., Matti, J. C., and Zemmels, I.: Methods of sample preparation and X-ray diffraction data analysis, X-ray mineralogy laboratory, edited by: Kaneps, A. G., Init Repts, DSDP XXVIII, 999–1007, http://www.deepseadrilling.org/28/volume/dsdp28_appendixIV.pdf, 1975.
Coulthard, R. D., Furze, M. F. A., Pienkowski, A. J., Nixon, F. C., and England, J. H.: New marine ΔR values for Arctic Canada, Quatern. Geochronol., 5, 419–434, 2010.
Cronin, T. M., Polyak, L., Reed, D., Kandiano, E. S., Marzen, R. E., and Council, E. A.: A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes, Quaternary Sci. Rev., 79, 157–167, 2013.
Cronin, T. M., DeNinno, L. H., Polyak, L., Caverly, E. K., Poore, R. Z., Brenner, A., Rodriguez-Lazaro, J., and Marzen, R. E.: Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean, Mar. Micropaleontol., 111, 118–133, https://doi.org/10.1016/j.marmicro.2014.05.001, 2014.
Dalrymple, R. W. and Maass, O. C.: Clay mineralogy of late Cenozoic sediments in the CESAR cores, Alpha Ridge, central Arctic ocean, Can. J. Earth Sci., 24, 1562–1569, 1987.
Darby, D. A.: Kaolinite and other clay minerals in Arctic Ocean sediments, J. Sediment. Petrol., 45, 272–279, 1975.
Darby, D. A., Bischof, J. F., Spielhagen, R. F., Marshall, S. A., Herman, S. W.: Arctic ice export events and their potential impact on global climate during the Late Pleistocene, Paleoceanography, 17, 1025, https://doi.org/10.1029/2001PA000639, 2002.
Darby, D. A.: Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns, J. Geophys. Res., 108, 3257, https://doi.org/10.1029/2002JC001350, 2003.
Darby, D. A. and Bischof, J. F.: A Holocene record of changing Arctic Ocean ice drift, analogous to the effects of the Arctic Oscillation, Paleoceanography, 19, PA1027, https://doi.org/10.1029/2003PA000961, 2004.
Darby, D. A., Polyak, L., and Bauch, H. A.: Past glacial and interglacial conditions in the Arctic Ocean and marginal seas – a review, Prog. Oceanogr., 71, 129–144, 2006.
Darby, D. A., Ortiz, J., Polyak, L., Lund, S., Jakobsson, M., and Woodgate, R. A.: The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments, Global Planet. Change, 68, 58–72, 2009.
Darby, D. A., Myers, W., Jakobsson, M., and Rigor, I.: Modern dirty sea ice characteristics and sources: The role of anchor ice, J. Geophys. Res., 116, C09008, https://doi.org/10.1029/2010JC006675, 2011.
Darby, D. A., Ortiz, J., Grosch, C., and Lund, S.: 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift, Nat. Geosci., 5, 897–900, 2012.
Dethleff, D., Rachold, V., Tintelnot, T., and Antonow, M.: Sea-ice transport of riverine particles from the Laptev Sea to Fram Strait based on clay mineral studies, Int. J. Earth Sci., 89, 496–502, 2000.
Dethleff, D.: Entrainment and export of Laptev Sea ice sediments, Siberian Arctic, J. Geophys. Res.-Oceans, 110, C07009, https://doi.org/10.1029/2004JC002740, 2005.
Dong, L., Shi, X., Liu, Y., Fang, X., Chen, Z., Wang, C., Zou, J., and Huang, Y.: Mineralogical study of surface sediments in the western Arctic Ocean and their implications for material sources, Adv. Polar Sci., 25, 192–203, 2014.
Dove, D., Polyak, L., and Coakley, B.: Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean, Quaternary Sci. Rev., 92, 112–122, 2014.
Dowdeswell, J. A., Villinger, H., Whittington, R. J., and Marienfeld, P.: Iceberg scouring in Scores by Sund and on the East Greenland continental shelf, Mar. Geol., 111, 37–53, 1993.
Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H., Shaw, J., and Veillette, J. J.: The Laurentide and Innuitian ice sheets during the Last Glacial Maximum, Quaternary Sci. Rev., 21, 9–31, 2002.
England, J. H., Furze, M. F. A., and Doupé, J. P.: Revision of the NW Laurentide Ice Sheet: implications for paleoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation, Quaternary Sci. Rev., 28, 1573–1596, 2009.
Fagel, N., Not, C., Gueibe, J., Mattielli, N., and Bazhenova, E.: Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge, Quaternary Sci. Rev., 92, 140–154, 2014.
Grosswald, M. G.: An ice sheet on the East Siberian shelf in the late Pleistocene, in: The Pleistocene of Siberia. Stratigraphy and interregional correlations, Novosibirsk, Nauka, Sibirskoye otdeleniye, 48–57, 1989.
Grosswald, M. G. and Hughes, T. J.: The Russian component of an Arctic Ice Sheet during the Last Glacial Maximum, Quaternary Sci. Rev., 21, 121–146, 2002.
Haley, B. A. and Polyak, L.: Pre-modern Arctic Ocean circulation from surface sediment neodymium isotopes, Geophys. Res. Lett., 40, 1–5, 2013.
Hanslik, D., Jakobsson, M., Backman, J., Björck, S., Sellén, E., O'Regan, M., Fornaciari, E., and Skog, G.: Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections, Quaternary Sci. Rev., 29, 3430–3441, 2010.
Harrison, J.C., St-Onge, M.R., Petrov, O., Strelnikov, S., Lopatin, B., Wilson, F., Tella, S., Paul, D., Lynds, T., Shokalsky, S., Hults, C., Bergman, S., Jepsen, H. F., and Solli, A.: Geological Map of the Arctic, Open File, Geol. Survey Canada, p. 5816, 2008.
Head, M. J. and Gibbard, P. L.: Early-Middle Pleistocene transitions: linking terrestrial and marine realms, Quatern. Int., 389, 7–46, 2015.
Hebbeln, D.: Flux of ice-rafted detritus from sea ice in the Fram Strait, Deep-Sea Res. Pt. II, 47, 1773–1790, 2000.
Hesse, R. and Khodabakhsh, S.: Anatomy of Labrador Sea Heinrich layers, Mar. Geol., 380, 44–66, 2016.
Hughes, T. J., Denton, G. H., and Grosswald, M. G.: Was there a late-Würm Arctic ice sheet?, Nature, 266, 596–602, 1977.
Ivanova, V. V.: Geochemicalfeatures of formation of massive ground ice bodies (New Siberian Island, Siberian Arctic) as the evidence of their genesis, Earth's Cryosphere, 16, 56–70, 2012.
Jakobsson, M., Løvlie, R., Al-Hanbali, H., Arnold, E., Backman, J., and Mörth, M.: Manganese and color cycle in Arctic Ocean sediments constrain Pleistocene chronology, Geology, 28, 23–26, 2000.
Jakobsson, M., Polyak, L., Edwards, M., Kleman, J., and Coakley, B.: Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge, Earth Surf. Proc. Land., 33, 526–545, 2008.
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., Dove, D., Dowdeswell, J. A., England, J. H., Funder, S., Hogan, K., Ingólfsson,Ó., Jennings, A., Larsen, N, K., Kirchner, N., Landvik, J. Y., Mayer, L., Mikkelsen, N., Möller, P., Niessen, F., Nilsson, J., O'Regan, M., Polyak, L., Nørgaard-Pedersen, N., and Stein, R.: Arctic Ocean glacial history, Quaternary Sci. Rev., 92, 40–67, 2014.
Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Björk, G., Cronin, T. M., Kirchner, N., Koshurnikov, A., Mayer, L., Noormets, R., O'Regan, M., Stranne, C., Ananiev, R., Macho, N. B., Cherniykh, D., Coxall, H., Eriksson, B., Flodén, T., Gemery, L., Gustafsson, O., Jerram, K., Johansson, C., Khortov, A., Mohammad, R., and Semiletov, I.: Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation, Nat. Commun., 1–10, https://doi.org/10.1038/ncomms10365, 2016.
Jang, K., Han, Y., Huh, Y., Nam, S., Stein, R., Mackensen, A., and Matthiessen, J.: Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean, Earth Planet. Sc. Lett., 369–370, 148–157, 2013.
Junttila, J.: Clay minerals in response to Mid-Pliocene glacial history and climate in the polar regions (ODP, Site 1165, Prydz Bay, Antarctica and Site 911, Yermak Plateau, Arctic Ocean), Acta Universitat Ouluensis, A 481, 48 pp., 2007.
Kalinenko, V. V.: Clay minerals in sediments of the Arctic Seas, Lithol. Mineral Resour., 36, 362–372, 2001.
Kaparulina, E., Strand, K., and Lunkka, J. P.: Provenance analysis of central Arctic Ocean sediments: Implications for circum-Arctic ice sheet dynamics and ocean circulation during Late Pleistocene, Quaternary Sci. Rev., 147, 210–220, 2016.
Keigwin, L. D., Donnelly, J. P., Cook, M. S., Driscoll, N. W., and Brigham-Grette, J.: Rapid sea-level rise and Holocene climate in the Chukchi Sea, Geology, 34, 861–864, https://doi.org/10.1130/G22712.1, 2006.
Kim, B. I. and Slobodin, V. Y.: Main stages of the evolution of East Arctic shelves of Russia and Canadian Arctic in the Paleogene and Neogene, in: Geologiya skladchatogo obramleniya Ameraziiskogo subbasseina (Geology of the Folded Framing of the Amerasian Subbasin), Sevmorgeologiya, 1St. Petersburg, 04–116, 1991.
Knies, J. and Vogt, C.: Freshwater pulses in the eastern Arctic Ocean during Saalian and early Weichselian ice-sheet collapse, Quatern. Res., 60, 243–251, 2003.
Knies, J., Kleiber, H. P., Matthiessen, J., Müller, C., and Nowaczyk, N.: Marine ice-rafted debris records constrain maximum extent of Saalian and Weichselian ice-sheets along the northern Eurasian margin, Global Planet. Change, 31, 45–64, 2001.
Kobayashi, D., Yamamoto, M., TIrino, T., Nam, S.-I., Park, Y.-H., Harada, N., Nagashima, K., Chikita, K., a nd Saitoh, S. I.: Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: changes in the provenance of western Arctic Ocean sediments since the last glacial period, Polar Science, 10, 519–531, 2016.
Krylov, A. A., Andreeva, I. A., Vogt, C., Backman, J., Krupskaya, V. V., Grikurov, G. E., Moran, K., and Shoji, H.: A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean, Paleoceanography, 23, PA1S06, https://doi.org/10.1029/2007PA001497, 2008.
Krylov, A. A., Stein, R., and Ermakova, L. A.: Clay minerals as indicators of late quaternary sedimentation constraints in the Mendeleev Rise, Amerasian Basin, Arctic Ocean, Lithol. Mineral Resour., 49, 103–116, 2014.
Larsen, E., Kjær, K. H., Demidov, I. N., Funder, S., Grøsfjeld, K., Houmark-Nielsen, M.,Jensen, M., Linge, H., and Lyså, A.: Late Pleistocene glacial and lake history of northwestern Russia, Boreas, 35, 394–424, 2006.
Lazar, K. B. and Polyak, L.: Pleistocene benthic foraminifers in the Arctic Ocean: Implications for seaice and circulation history, Mar Micropaleontol, 126, 19–30, 2016.
Löwemark, L., Jakobsson, M., Mörth, M., and Backman, J.: Arctic Ocean Mn contents and sediment colour cycles, Polar Res., 27, 105–113, 2008.
Löwemark, L., März, C., O'Regan, M., and Gyllencreutz, R. Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation, Quaternary Sci. Rev., 92, 97–111, 2014.
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide Ice Sheet: Identification, characteristics and comparison to modern ice sheets, Earth-Sci. Rev., 143, 117–146, 2015.
März, C., Stratmann, A., Matthiessen, J., Meinhardt, A., Eckert, S., Schnetger, B., Vogt, C., Stein, R., and Brumsack, H.: Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint, Geochim. Cosmochim. Acta, 75, 7668–7687, 2011.
MathWorks: MATLAB, Statistical Package, MathWorks, 2014.
Matthiessen, J., Niessen, F., Stein, R., and Naafs, B. D.: Pleistocene Glacial Marine Sedimentary Environments at the Eastern Mendeleev Ridge, Arctic Ocean, Polarforschung, 79, 123–137, 2010.
Naidu, A. S., Burrell, D. C., and Hood, D. W.: Clay mineral composition and geological significance of some Beaufort Sea sediments, J. Sediment. Petrol., 41, 691–694, 1971.
Naidu, A. S., Creager, J. S., and Mowatt, T. C.: Clay mineral dispersal patterns in the north Bering and Chukchi Seas, Mar. Geol., 47, 1–15, 1982.
Niessen, F., Hong, J. K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H., Kim, S., Jensen, L., Jokat, W., Nam, S.-I., and Kang, S.-H.: Repeated Pleistocene glaciation of the East Siberian Continental Margin, Nat. Geosci., 6, 842–846, 2013.
Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E., and Thiede, J.: Sediments in Arctic sea ice: Implications for entrainment, transport and release, Mar. Geol., 119, 185–214, 1994.
Nwaodua, E. C., Ortiz, J. D., and Griffith, E. M.: Diffuse spectral reflectance of surficial sediments indicates sedimentary environments on the shelves of the Bering Sea and western Arctic, Mar. Geol., 355, 218–233, 2014.
Okulitch, A. V. (compiler): Geology of the Canadian Archipelago and North Greenland, in: Innuitian orogen and Arctic Platform: Canada and Greenland, 1 : 200 000, edited by: Trettiln, H. P., The Geology of North America, The Geological Society of America, Boulder, Colorado, 1991.
O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran, K., Heil, C., Sakamoto, T., Cronin, T. M., and Jordan, R. W.: Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge, Paleoceanography, 23, PA1S19, https://doi.org/10.1029/2007PA001551, 2008.
Ortiz, J. D., Polyak, L., Grebmeier, J. M., Darby, D., Eberl, D. D., Naidu, S., and Nof, D.: Provenance of Holocene sediment on the Chukchi–Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray diffraction analysis, Global Planet. Change, 68, 73–84, 2009.
Pelto, B. M.: Sedimentological, geochemical and isotopic evidence for the establishment of modern circulation through the Bering Strait and depositional environment history of the Bering and Chukchi seas during the last deglaciation, Paper 108, Ms Thesis, University of Massachusetts, Amherst, 134 pp., http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1078&context=masters_theses_2, 2014.
Phillips, R. L. and Grantz, A.: Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic, Mar. Geol., 172, 91–115, 2001.
Poirier, R. K., Cronin, T. M., Briggs Jr., W. M., and Lockwood, R.: Central Arctic paleoceanography for the last 50 kyr based on ostracode faunal assemblages, Mar. Micropaleontol., 88–89, 65–76, 2012.
Polyak, L., Edwards, M. H., Coakley, B. J., and Jakobsson, M.: Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms, Nature, 410, 453–459, 2001.
Polyak, L., Curry, W. B., Darby, D. A., Bischof, J., and Cronin, T. M.: Contrasting glacial/interglacial regimes in the Western Arctic Ocean as exemplied by a sedimentary record from the Mendeleev Ridge, Palaeogeogr. Palaeocl., 203, 73–93, 2004.
Polyak, L., Darby, D. A., Bischof, J., and Jakobsson, M.: Stratigraphic constraints on late Pleistocene glacial erosion and deglaciation of the Chukchi margin, Arctic Ocean, Quatern. Res., 67, 234–245, https://doi.org/10.1016/j.yqres.2006.08.001, 2007.
Polyak, L., Bischof, J., Ortiz, J. D., Darby, D. A., Channell, J. E. T., Xuan, C., Kaufman, D. S., Lovlie, R., Schneider, D. A., Eberl, D. D., Adler, R. E., and Council, E. A.: Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean, Global Planet. Change, 68, 5–17, 2009.
Polyak, L., Alley, R. B., Andrews, J. T., Brigham-Grette, J., Cronin, T. M., Darby, D. A., Dyke, A. S., Fitzpatrick, J. J., Funder, S., Holland, M., Jennings, A. E., Miller, G. H., O'Regan, M., Savelle, J., Serreze, M., St. John, K., White, J. W. C., and Wolff, E.: History of sea ice in the Arctic, Quaternary Sci. Rev., 29, 1757–1778, 2010.
Polyak, L., Best, K. M., Crawford, K. A., Council, E. A., and St-Onge, G.: Quaternary history of sea ice in the western Arctic Ocean based on foraminifera, Quaternary Sci. Rev., 79, 145–156, 2013.
Ramaswamy, V. and Rao, P. S.: Grain Size Analysis of Sediments from the Northern Andaman Sea: Comparison of Laser Diffraction and Sieve-Pipette Techniques, J. Coast. Res., 22, 1000–1009, 2006.
Rigor, I. G., Wallace, J. M., and Colony, R. L.: Response of sea ice to the Arctic Oscillation, J. Climate, 15, 2648–2663, 2002.
Rudels, B.: Arctic Ocean circulation, in: Encyclopedia of Ocean Sciences, edited by: Steele, J. H., Turekian, K. K., and Thorpe, S. A., Elsevier, Amsterdam, Elsevier Science Direct, 211–225, 2009.
Schoster, F., Behrends, M., Müller, C., Stein, R., and Wahsner, M.: Modern river discharge in the Eurasian Arctic Ocean: Evidence from mineral assemblages and major and minor element distributions, Int. J. Earth Sci., 89, 486–495, 2000.
Sellén, E., O'Regan, M., and Jakobsson, M.: Spatial and temporal Arctic Ocean depositional regimes: a key to the evolution of ice drift and current patterns, Quaternary Sci. Rev., 29, 3644–3664, 2010.
Sharma, M., Basu, A. R., and Nesterenko, G. V.: Temporal Sr-, Nd- and Pb isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics, Earth Planet. Sc. Lett., 113, 365–381, 1992.
Simon, Q., Hillaire-Marcel, C., St-Onge, G., and Andrews, J.: North-eastern Laurentide, western Greenland and southern Innuitian ice stream dynamics during the last glacial cycle, J. Quaternary Sci., 29, 14–26, 2014.
Slobodin, V. Y., Kim, B. I., Stepanova, G. V., and Kovalenko, F. Y.: Differentiation of the Aion borehole section based on the biostratigraphic data, in: Stratigrafiya i paleontologiya mezo-kainozoya Sovetskoi Arktiki (Stratigraphy and Paleontology of the Meso-Cenozoic in the Soviet Arctic), Sevmorgeologiya, Leningrad, 43–58, 1990.
Spielhagen, R. F., Bonani, G., Eisenhauer, A., Frank, M., Frederichs, T., Kassens, H., Kubik, P. W., Mangini, A., Nörgaard-Pedersen, N., Nowaczyk, N. R., Schäper, S., Stein, R., Thiede, J., Tiedemann, R., Wahsner, M.: Arctic Ocean evidence for Late Quaternary initiation of northern Eurasian ice sheets, Geology, 25, 783–786, 1997.
Spielhagen, R. F., Baumann, K. H., Erlenkeuser, H., Nowaczyk, N. R., Nørgaard-Pedersen, N., Vogt, C., and Weiel, D.: Arctic Ocean deep-sea record of Northern Eurasian ice sheet history, Quaternary Sci. Rev., 23, 1455–1483, 2004.
Stärz, M., Gong, X., Stein, R., Darby, D. A., Kauker, F., and Lohmann, G.: Glacial shortcut of Arctic sea-ice transport, Earth Planet. Sc. Lett., 357–358, 257–267, 2012.
Stein, R., Grobe, H., and Wahsner, M.: Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments, Mar. Geol., 119, 269–285, 1994.
Stein, R.: Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment, Elsevier, Amsterdam, 1–592, 2008.
Stein, R., Matthiessen, J., and Niessen, F.: Re-Coring at Ice Island T3 Site of Key Core FL-224 (Nautilus Basin, Amerasian Arctic): Sediment Characteristics and Stratigraphic Framework, Polarforschung, 79, 81–96, 2010a.
Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S., and Bazhenova, E.: Shipboard Geology Group.: Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean), Polarforschung, 79, 97–121, 2010b.
Stein, R., Fahl, K., and Müller J.: Proxy Reconstruction of Cenozoic Arctic Ocean Sea-Ice History – from IRD to IP25, Polarforschung, 82, 37–71, 2012.
Stokes, C. R., Clark, C. D., Darby, D., and Hodgson, D. A.: Late Pleistocene ice export events into the Arctic Ocean from the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, Global Planet. Change, 49, 139–162, 2005.
Stokes, C. R., Clark, C. D., and Storrar, R.: Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide Ice Sheet, Quaternary Sci. Rev., 28, 721–738, 2009.
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, O., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., Matioushkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, R., Siegert, M. J., Spielhagen, R. F., and Stein, R.: Late Quaternary ice sheet history of Northern Eurasia, Quaternary Sci. Rev., 23, 1229–1271, 2004.
Viscosi-Shirley, C., Mammone, K., Pisias, N., and Dymond, J.: Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size sorting, Cont. Shelf Res., 23, 1175–1200, 2003.
Vogt, C.: Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes, Rep. Polar Mar. Res., 251, 1–309, 1997.
Vogt, C. and Knies, J.: Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation – The clay mineral group smectite perspective, Mar. Geol., 250, 211–222, 2008.
Vogt, C. and Knies, J.: Sediment pathways in the western Barents Sea inferred from clay mineral assemblages in surface sediments, Norweg. J. Geol., 89, 41–55, 2009.
Vogt, C., Knies, J., Spielhagen, R. F., and Stein, R.: Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years, Global Planet. Change, 31, 23–44, 2001.
Wahsner, M., Müller, C., Stein, R., Ivanov, G., Levitan, M., Shelekova, E., and Tarasov, G.: Clay mineral distributions in surface sediments from the Central Arctic Ocean and the Eurasian continental margin as indicator for source areas and transport pathways: a synthesis, Boreas, 28, 215–233, 1999.
Wang, D. and Hesse, R.: Continental slope sedimentation adjacent to an ice-margin. II. Glaciomarine depositional facies on Labrador Slope and glacial cycles, Mar. Geol., 135, 65–96, 1996.
Wang, R., Xiao, W., Li, W., and Sun, Y.: Late Quaternary ice-rafted detritus events in the Chukchi Basin, western Arctic Ocean, Chinese Sci. Bull., 55, 432–440, 2010.
Wang, R., Xiao, W., März, C., and Li, Q.: Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean, Global Planet. Change, 108, 100–118, 2013.
Winkler, A., Wolf-Welling, T. C. W., Stattegger, K., and Thiede, J.: Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG), Int. J. Earth Sci., 91, 133–148, 2002.
Winter, B. L., Johnson, C. M., and Clark, D. L.: Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: implications for sediment provenance and the source of trace metals in seawater, Geochim. Cosmochim. Ac., 61, 4181–4200, 1997.
Xiao, W., Wang, R., Polyak, L., Astakhov, A., and Cheng, X.: Stable oxygen and carbon isotopes in planktonic foraminifera Neogloboquadrina pachyderma in the Arctic Ocean: an overview of published and new surface-sediment data, Mar. Geol., 352, 397–408, 2014.
Xuan, C. and Channell, J. E. T.: Origin of apparent magnetic excursions in deep-sea sediments from Mendeleev-Alpha Ridge (Arctic Ocean), Geochem. Geophy. Geosy., 11, Q02003, https://doi.org/10.1029/2009GC002879, 2010.
Yurco, L. N., Ortiz, J. D., Polyak, L., Darby, D. A., and Crawford, K. A.: Clay mineral cycles identified by diffuse spectral reflectance in Quaternary sediments from the Northwind Ridge: implications for glacial–interglacial sedimentation patterns in the Arctic Ocean, Polar Res., 29, 176–197, 2010.
Zou, H.: An X-ray diffraction approach: bulk mineral assemblages as provenance indicator of sediments from the Arctic Ocean, PhD Thesis, University of Bremen, Bremen, 1–104, 2016.
Short summary
In this manuscript, we present the results of our study conducted for a sediment core (ARC4-BN05) collected in the Arctic Ocean. Detailed examination of clay and bulk mineralogy along with grain size, content of Ca and Mn, and planktonic foraminiferal numbers in core ARC4–BN05 provides important new information about sedimentary environments and provenance. Based on these proxies, we try to reveal late to middle Pleistocene glacial history.
In this manuscript, we present the results of our study conducted for a sediment core...
Special issue