Articles | Volume 13, issue 2
https://doi.org/10.5194/cp-13-149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera
Rosanna Greenop
CORRESPONDING AUTHOR
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
School of Geography & Geosciences,
Irvine Building, University of St Andrews, North Street, St
Andrews, KY16 9AL, UK
Mathis P. Hain
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Sindia M. Sosdian
School of Earth & Ocean Sciences, Cardiff
University, Cardiff, CF10 3AT, UK
Kevin I. C. Oliver
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Philip Goodwin
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Thomas B. Chalk
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Department of Physical
Oceanography, Woods Hole Oceanographic Institution, Woods Hole,
Massachusetts, USA
Caroline H. Lear
School of Earth & Ocean Sciences, Cardiff
University, Cardiff, CF10 3AT, UK
Paul A. Wilson
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Gavin L. Foster
Ocean and Earth Science, National Oceanography Centre Southampton,
University of Southampton, Waterfront Campus, European Way,
Southampton SO14 3ZH, UK
Related authors
No articles found.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael
EGUsphere, https://doi.org/10.5194/egusphere-2023-2307, https://doi.org/10.5194/egusphere-2023-2307, 2023
Short summary
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Charles E. Turner, Peter J. Brown, Kevin I. C. Oliver, and Elaine L. McDonagh
Ocean Sci., 18, 523–548, https://doi.org/10.5194/os-18-523-2022, https://doi.org/10.5194/os-18-523-2022, 2022
Short summary
Short summary
Ocean heat and carbon content increase proportionately as the planet warms. However, circulation changes in response to changing heat content, redistributing preindustrial heat, carbon, and salinity fields. Redistribution leaves properties unchanged, so we may leverage our skill identifying preindustrial carbon in order to trace preindustrial heat and salinity field redistribution. Excess salinity opposes excess-temperature-induced density change, and redistribution grows continually.
Philip Goodwin and B. B. Cael
Earth Syst. Dynam., 12, 709–723, https://doi.org/10.5194/esd-12-709-2021, https://doi.org/10.5194/esd-12-709-2021, 2021
Short summary
Short summary
Climate sensitivityis a key measure of how sensitive Earth's climate is to human release of greenhouse gasses, such as from fossil fuels. However, there is still uncertainty as to the value of climate sensitivity, in part because different climate feedbacks operate over multiple timescales. This study assesses hundreds of millions of climate simulations against historical observations to reduce uncertainty in climate sensitivity and future climate warming.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Yingxu Wu, Mathis P. Hain, Matthew P. Humphreys, Sue Hartman, and Toby Tyrrell
Biogeosciences, 16, 2661–2681, https://doi.org/10.5194/bg-16-2661-2019, https://doi.org/10.5194/bg-16-2661-2019, 2019
Short summary
Short summary
This study takes advantage of the GLODAPv2 database to investigate the processes driving the surface ocean dissolved inorganic carbon distribution, with the focus on its latitudinal gradient between the polar oceans and the low-latitude oceans. Based on our quantitative study, we find that temperature-driven CO2 gas exchange and high-latitude upwelling of DIC- and TA-rich deep waters are the two major drivers, with the importance of the latter not having been previously realized.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Matthew P. Couldrey, Kevin I. C. Oliver, Andrew Yool, Paul R. Halloran, and Eric P. Achterberg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-16, https://doi.org/10.5194/bg-2019-16, 2019
Revised manuscript not accepted
Short summary
Short summary
Determining how much carbon dioxide (CO2) the oceans absorb is key to predicting human-caused climate change. A computer model of the ocean shows how the North Atlantic will change up to the end of the century. Year-to-year variations are mostly caused by changes in ocean temperature and seawater chemistry, altering CO2 solubility. By 2100, human emissions cause the biggest changes. The near term changes are physically driven, which may be more predictable than biological changes.
Janet E. Burke, Willem Renema, Michael J. Henehan, Leanne E. Elder, Catherine V. Davis, Amy E. Maas, Gavin L. Foster, Ralf Schiebel, and Pincelli M. Hull
Biogeosciences, 15, 6607–6619, https://doi.org/10.5194/bg-15-6607-2018, https://doi.org/10.5194/bg-15-6607-2018, 2018
Short summary
Short summary
Metabolic rates are sensitive to environmental conditions and can skew geochemical measurements. However, there is no way to track these rates through time. Here we investigate the controls of test porosity in planktonic foraminifera (organisms commonly used in paleoclimate studies) as a potential proxy for metabolic rate. We found that the porosity varies with body size and temperature, two key controls on metabolic rate, and that it can respond to rapid changes in ambient temperature.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
Michael J. Henehan, David Evans, Madison Shankle, Janet E. Burke, Gavin L. Foster, Eleni Anagnostou, Thomas B. Chalk, Joseph A. Stewart, Claudia H. S. Alt, Joseph Durrant, and Pincelli M. Hull
Biogeosciences, 14, 3287–3308, https://doi.org/10.5194/bg-14-3287-2017, https://doi.org/10.5194/bg-14-3287-2017, 2017
Short summary
Short summary
It is still unclear whether foraminifera (calcifying plankton that play an important role in cycling carbon) will have difficulty in making their shells in more acidic oceans, with different studies often reporting apparently conflicting results. We used live lab cultures, mathematical models, and fossil measurements to test this question, and found low pH does reduce calcification. However, we find this response is likely size-dependent, which may have obscured this response in other studies.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Daniel J. Lunt, Alex Farnsworth, Claire Loptson, Gavin L. Foster, Paul Markwick, Charlotte L. O'Brien, Richard D. Pancost, Stuart A. Robinson, and Neil Wrobel
Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, https://doi.org/10.5194/cp-12-1181-2016, 2016
Short summary
Short summary
We explore the influence of changing geography from the period ~ 150 million years ago to ~ 35 million years ago, using a set of 19 climate model simulations. We find that without any CO2 change, the global mean temperature is remarkably constant, but that regionally there are significant changes in temperature which we link back to changes in ocean circulation. Finally, we explore the implications of our findings for the interpretation of geological indicators of past temperatures.
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
Giang T. Tran, Kevin I. C. Oliver, András Sóbester, David J. J. Toal, Philip B. Holden, Robert Marsh, Peter Challenor, and Neil R. Edwards
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 17–37, https://doi.org/10.5194/ascmo-2-17-2016, https://doi.org/10.5194/ascmo-2-17-2016, 2016
Short summary
Short summary
In this work, we combine the information from a complex and a simple atmospheric model to efficiently build a statistical representation (an emulator) of the complex model and to study the relationship between them. Thanks to the improved efficiency, this process is now feasible for complex models, which are slow and costly to run. The constructed emulator provide approximations of the model output, allowing various analyses to be made without the need to run the complex model again.
O. Friedrich, R. D. Norris, P. A. Wilson, and B. N. Opdyke
Sci. Dril., 19, 39–42, https://doi.org/10.5194/sd-19-39-2015, https://doi.org/10.5194/sd-19-39-2015, 2015
Short summary
Short summary
This workshop brought together specialists from various fields to develop a drilling proposal to fill the “Oligo-Miocene Gap” that exists in our understanding of the functions of Earth’s systems. We propose to establish the first continuous high-deposition record of the Oligo-Miocene through International Ocean Discovery Program (IODP) drilling in the North Atlantic. We give a short overview of the major topics discussed during the workshop and the scientific goals of the resulting pre-proposal.
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
R. Marsh, A. Sóbester, E. E. Hart, K. I. C. Oliver, N. R. Edwards, and S. J. Cox
Geosci. Model Dev., 6, 1729–1744, https://doi.org/10.5194/gmd-6-1729-2013, https://doi.org/10.5194/gmd-6-1729-2013, 2013
P. B. Holden, N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death, and A. Ridgwell
Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, https://doi.org/10.5194/bg-10-1815-2013, 2013
Related subject area
Subject: Greenhouse Gases | Archive: Marine Archives | Timescale: Cenozoic
Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section)
L. Giusberti, F. Boscolo Galazzo, and E. Thomas
Clim. Past, 12, 213–240, https://doi.org/10.5194/cp-12-213-2016, https://doi.org/10.5194/cp-12-213-2016, 2016
Cited articles
Al-Rousan, S., Pätzold, J., Al-Moghrabi, S., and Wefer, G.: Invasion of anthropogenic CO2 recorded in planktonic foraminifera from the northern Gulf of Aqaba, Int. J. Earth Sci., 93, 1066–1076, 2004.
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgewell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, 2016.
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg ∕ Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1–15, https://doi.org/10.1029/2002PA000846, 2003.
Badger, M. P. S., Lear, C. H., Pancost, R. D., Foster, G. L., Bailey, T. R., Leng, M. J., and Abels, H. A.: CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet, Paleoceanography, 28, 42–53, https://doi.org/10.1002/palo.20015, 2013.
Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations, Paleoceanography, 26, PA4213, https://doi.org/10.1029/2010PA002055, 2011.
Beerling, D. J. and Royer, D. L.: Convergent Cenozoic CO2 history, Nat. Geosci., 4, 418–420, 2011.
Berner, R. A. and Kothavala, Z.: GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182–204, 2001.
Brennan, S. T., Lowenstein, T. K., and Cendón, D. I.: The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite, Am. J. Sci., 313, 713–775, 2013.
Broecker, W. S. and Peng, T. H.: Tracers in the Sea, Lamont-Doherty Earth Observatory, Palisades, NY, 1982.
Burton, K. W. and Vigier, N.: Lithium isotopes as tracers in Marine and terrestrial environments, Handbook of Environmental Isotope Geochemistry, Springer, Berlin, Heidelberg, 41–59, 2012.
CARINA Group: Carbon in the Atlantic Ocean Region – the CARINA project: Results and Data, Version 1.0: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, https://doi.org/10.3334/CDIAC/otg.CARINA.ATL.V1.0, 2009.
Catanzaro, E. J., Champion, C., Garner, E., Marinenko, G., Sappenfield, K., and W., S.: Boric Acid: Isotopic and Assay Standard Reference Materials NBS (US) Special Publications. National Bureau of Standards, Institute for Materials Research, Washington, DC, 1970.
Cramer, B., Miller, K., Barrett, P., and Wright, J.: Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg ∕ Ca) with sea level history, J. Geophys. Res.-Oceans, 116, C12023, https://doi.org/10.1029/2011JC007255, 2011.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the Western Atlantic Ocean. Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021, 2005,
Delaney, M. L., Be, A. W. H., and Boyle, E. A.: Li, Sr, Mg and Na in foraminiferal calcite shells from laboratory culture, sediment traps and sediment cores, Geochim. Cosmochim. Ac., 49, 1327–1341, 1985.
Deyhle, A. and Kopf, A.: Possible influence of clay contamination on B isotope geochemistry of carbonaceous samples, Appl. Geochem., 19, 737–745, 2004.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport- parameter sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24, 415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibrations for benthic foraminiferal Mg ∕ Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sc. Lett., 250, 633–649, 2006.
Evans, D. and Muller, W.: Deep time foraminifera Mg ∕ Ca paleothermometry: Nonlinear correction for secular change in seawater Mg ∕ Ca, Paleoceanography, 27, PA4205, https://doi.org/10.1029/2012PA002315, 2012.
Fantle, M. S. and Tipper, E. T.: Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy, Earth-Sci. Rev., 129, 148–177, 2014.
Foster, G., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice volume and climate during the middle Miocene, Earth Planet. Sc. Lett., 341–344, 243–254, 2012.
Foster, G., Hönisch, B., Paris, G., Dwyer, G., Rae, J., Elliott, T., Gaillardet, J., Hemming, N., Louvat, P., and Vengosh, A.: Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS, Chem. Geol., 358, 1–14, 2013.
Foster, G. L.: Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B ∕ Ca study of planktic forminifera, Earth Planet. Sc. Lett., 271, 254–266, 2008.
Foster, G. L., Pogge von Strandmann, P. A. E., and Rae, J. W. B.: Boron and magnesium isotopic composition of seawater, Geochem. Geophy. Geosy., 11, Q08015, https://doi.org/10.1029/2010GC003201, 2010.
Froelich, F. and Misra, S.: Was the late Paleocene-early Eocene hot because Earth was flat? An ocean lithium isotope view of mountain building, continental weathering, carbon dioxide, and Earth's Cenozoic climate, Oceanography, 27, 36–49, 2014.
Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P., and Sarmiento, J. L.: The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean, Global Biogeochem. Cy., 9, 307–324, https://doi.org/10.1002/2014GB004929, 2015,
Goodwin, P., and Lauderdale, J. M.: Carbonate ion concentrations, ocean carbon storage, and atmospheric CO2, Global Biogeochem. Cy., 27, 882–893, https://doi.org/10.1002/gbc.20078, 2013.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The Geologic Time Scale 2012, Boston, Elsevier, 1144 pp., https://doi.org/10.1016/B978-0-444-59425-9.00004-4, 2012.
Greenop, R., Foster, G. L., Wilson, P. A., and Lear, C. H.: Middle Miocene climate instability associated with high-amplitude CO2 variability, Paleoceanography, 29, 845–853, 2014.
Greenop, R., Hain, M. P., Sosdian, S. M., Oliver, K. I. C., Goodwin, P., Chalk, T. B., Lear, C. H., Wilson, P. A., and Foster, G. L.: Planktic and benthic boron and carbon isotopes from ODP sites 121–758, 165–999, 154–926 and 122–761, Dataset #871900, https://doi.pangaea.de/10.1594/PANGAEA.871900, 2017.
Griffith, E., Paytan, A., Caldeira, K., Bullen, T., and Thomas, E.: A Dynamic Marine Calcium Cycle During the Past 28 Million Years, Science, 322, 1671–1674, 2008.
Hain, M. P., Sigman, D. M., and Haug, G. H.: Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: Diagnosis and synthesis in a geochemical box model, Global Biogeochem. Cy., 24, GB4023, https://doi.org/10.1029/2010GB003790, 2010.
Hain, M. P, Sigman, D. M., and Haug, G. H.: The Biological Pump in the Past, Treatise on Geochemistry, 2nd Edn., 8, 485–517, https://doi.org/10.1016/B978-0-08-095975-7.00618-5, 2014a.
Hain, M. P, Sigman, D. M., and Haug, G. H.: Distinct roles of the Southern Ocean and North Atlantic in the deglacial atmospheric radiocarbon decline, Earth Planet. Sc. Lett., 394, 198–208, https://doi.org/10.1016/j.epsl.2014.03.020, 2014b.
Hain, M. P, Sigman, D. M., Higgins, J. A., and Haug, G. H.: The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering, Global Biogeochem. Cy., 29, 517–533, https://doi.org/10.1002/2014GB004986, 2015.
Hasiuk, F. and Lohmann, K.: Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg ∕ Ca, Geochim. Cosmochim. Ac., 74, 6751–6763, 2010.
Hathorne, E. C. and James, R. H.: Temporal record of lithium in seawater: A tracer for silicate weathering?, Earth Planet. Sc. Lett., 246, 393–406, 2006.
Haug, G. H. and Tiedemann, R.: Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673–676, 1998.
Hemleben, Ch., Spindler, M., Breitinger, I., and Ott, R.: Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions, Mar. Micropaleontol., 12, 305–324, 1987.
Hemming, N. G. and Hanson, G. N.: Boron isotopic composition and concentration in modern marine carbonates, Geochim. Cosmochim. Ac., 56, 537–543, 1992.
Henehan, M. J., Rae, J. W. B., Foster, G. L., Erez, J., Prentice, K. C., Kucera, M., Bostock, H. C., Martìnez-Botì, M. A., Milton, J. A., Wilson, P. A., Marshall, B. J., and Elliott, T.: Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction, Earth Planet. Sc. Lett., 364, 111–122, 2013.
Hindshaw, R. S., Bourdon, B., Pogge von Strandmann, P. A. E., Vigier, N., and Burton, K. W.: The stable calcium isotopic composition of rivers draining basaltic catchments in Iceland, Earth Planet. Sc. Lett., 374, 173–184, 2013.
Hodell, D. A., Mueller, P. A., and Garrido, J. R.: Variations in the strontium isotopic composition of seawater during the Neogene, Geology, 11, 24–27, 1991.
Holbourn, A., Kuhnt, W., Simo, J., and Li, Q.: Middle Miocene isotope stratigraphy and paleoceanographic evolution of the northwest and southwest Australian margins (Wombat Plateau and Great Australian Bight), Palaeogeogr. Palaeocl., 208, 1–22, 2004.
Holden, P. B., Edwards, N. R., Müller, S. A., Oliver, K. I. C., Death, R. M., and Ridgwell, A.: Controls on the spatial distribution of oceanic δ13CDIC, Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, 2013.
Hönisch, B., Hemming, N. G., Archer, D., Siddall, M., and McManus, J. F.: Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition, Science, 324, 1551–1554, 2009.
Horita, J., Zimmermann, H., and Holland, H. D.: Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites, Geochim. Cosmochim. Ac., 66, 3733–3756, 2002.
Kaczmarek, K., Nehrke, G., Misra, S., Bijma, J., and Elderfield, H.: Investigating the effects of growth rate and temperature on the B ∕ Ca ratio and δ11B during inorganic calcite formation, Chem. Geol., 421, 81–92, 2016.
Kakihana, H., Kotaka, M., Satoh, S., Nomura, M., and Okamoto, M.: Fundamental studies on ion-exchange separation of boron isotopes, Bull. Chem. Soc. Japn., 50, 158–163, 1977.
Keeling, C. D.: The Suess effect: 13Carbon-14Carbon interrelations, Environ. Int., 2, 229–300, 1979.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004.
Kisakũrek, B., James, R. H., and Harris, N. B. W.: Li and δ7Li in Himalayan rivers: Proxies for silicate weathering?, Earth Planet. Sc. Lett., 237, 387–401, 2005.
Klochko, K., Kaufman, A. J., Yao, W. S., Byrne, R. H., and Tossell, J. A.: Experimental measurement of boron isotope fractionation in seawater, Earth Planet. Sc. Lett., 248, 276–285, 2006.
Lear, C. H., Mawbey, E. M., and Rosenthal, Y.: Cenozoic benthic foraminiferal Mg ∕ Ca and Li ∕ Ca records: Toward unlocking temperatures and saturation states, Paleoceanography, 25, PA4215, https://doi.org/10.1029/2009PA001880, 2010.
Lee, K., Kim, T. W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y. M.: The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811, 2010.
Lemarchand, D. and Gaillardet, J.: Transient features of the erosion of shales in the Mackenzie basin (Canada), evidences from boron isotopes, Earth Planet. Sc. Lett., 245, 174–189, 2006.
Lemarchand, D., Gaillardet, J., Lewin, E., and Allegre, C. J.: The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH, Nature, 408, 951–954, 2000.
Li, G.-J. and West, A. J.: Evolution of Cenozoic seawater lithium isotopes: coupling of global denudation regime and shifting seawater sinks, Earth Planet. Sc. Lett., 401, 284–293, 2014.
Liu, W. G., Xiao, Y. K., Peng, Z. C., An, Z. S., and He, X. X.: Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin, Geochim. Cosmochim. Ac., 64, 2177–2183, 2000.
Liu, X.-M., Wanner, C., Rudnick, R. L., and McDonough, W. F.: Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts, Earth Planet. Sc. Lett., 409, 212–224, 2015.
Lynch-Steiglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G.: The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling, Global Biogeochem. Cy., 9, 653–665, 1995.
Martìnez-Botì, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D. N.: Plio-Pleistocene climate sensitivity from on a new high-resolution CO2 record, Nature, 518, 49–54, 2015a.
Martìnez-Botì, M. A., Marino, G., Foster, G. L., Ziveri, P., Henehan, M. J., Rae, J. W. B., Mortyn, P. G., and Vance, D.: Boron isotope evidence for oceanic CO2 leakage during the last deglaciation, Nature, 518, 219–222, 2015b.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.: Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins, Deep-Sea Res. Pt. I, 44, 983–1024, 1997.
Millot, R., Vigier, N., and Gaillardet, J.: Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada, Geochim. Cosmochim. Ac., 74, 3897–3912, 2010.
Misra, S. and Froelich, P.: Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering, Science, 335, 818–823, 2012.
Ockert, C., Gussone, N., Kaufhold, S., and Teichert, B. M. A.: Isotope fractionation during Ca exchange on clay minerals in a marine environment, Geochim. Cosmochim. Ac., 112, 374–388, 2013.
Olsen, A. and Ninneman, U. S.: Large δ13C gradients in the preindustrial North Atlantic revealed, Science, 330, 658–659, 2010.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K. M., Evans, H., Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore, T. C., Murphy, B. H., Murphy, D. P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609–614 2012.
Palmer, M. R., Pearson, P. N., and Cobb, S. J.: Reconstructing past ocean pH-depth profiles, Science, 282, 1468–1471, 1998.
Paris, G., Gaillardet, J., and Louvat, P.: Geological evolution of seawater boron isotopic composition recorded in evaporites, Geology, 38, 1035–1038, 2010.
Park, H. and Schlesinger, W. H.: Global biogeochemical cycle of boron, Global Biogeochem. Cy., 16, 1072, https://doi.org/10.1029/2001GB001766, 2002.
Pearson, P. N. and Palmer, M. R.: Middle Eocene seawater pH and atmospheric carbon dioxide concentrations, Science, 284, 1824–1826, 1999.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695–699, 2000.
Pearson, P. N. and Wade, B. S.: Taxonomy and Stable Isotope Paleoecology of Well-Preserved Planktonic Foraminifera from the Uppermost Oligocene of Trinidad, J. Foramin. Res., 39, 191–217, 2009.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the Eocene-Oligocene climate transition, Nature, 461, 1110–1113, 2009.
Pistiner, J. S. and Henderson, G. M.: Lithium-isotope fractionation during continental weathering processes, Earth Planet. Sc. Lett., 214, 327–339, 2003.
Pogge von Strandmann, P. A. E., Burton, K. W., James, R. H., van Calsteren, P., Gislason, S. R., and Sigfússon, B.: The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain, Earth Planet. Sc. Lett., 276, 187–197, 2008.
Pogge von Strandmann, P. A. E., Forshaw, J., and Schmidt, D. N.: Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes, Biogeosciences, 11, 5155–5168, https://doi.org/10.5194/bg-11-5155-2014, 2014.
Pogge von Strandmann, P. A. E. and Henderson, G. M.: The Li isotope response to mountain uplift, Geology, 43, 67–70, https://doi.org/10.1130/G36162.1, 2014.
Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes and B ∕ Ca in benthic foraminifera: Proxies for the deep ocean carbonate system, Earth Planet. Sc. Lett., 302, 403–413, 2011.
Raitzsch, M. and Hönisch, B.: Cenozoic boron isotope variations in benthic foraminifers, Geology, 41, 591–594, 2013.
Ridgewell, A.: A mid Mesozoic revolution in the regulation of ocean chemistry, Mar. Geol., 217, 339–357, 2005.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geo-chemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Rose, E. F., Chaussidon, M., and France-Lanord, C.: Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers, Geochim. Cosmochim. Ac., 64, 397–408, 2000.
Rose-Koga, E. F., Sheppard, S. M. F., Chaussidon, M., and Carignan, J.: Boron isotopic composition of atmospheric precipitations and liquid–vapour fractionations, Geochim. Cosmochim. Ac., 70, 1603–1615 2006.
Sanyal, A., Hemming, N. G., Hanson, G. N., and Broecker, W. S.: Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera, Nature, 373, 243–236, 1995.
Sanyal, A., Bijma, J., Spero, H., and Lea, D. W.: Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy, Paleoceanography, 16, 515–519, 2001.
Schlitzer, R.: Ocean Data View, http://www.awi-bremerhaven.de/GEO/ODV, 2016.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sc. Lett., 292, 201–211, 2010.
Shipboard Scientific Party: Proc. ODP, Init. Repts., edited by: Peirce, J., Weissel, J., Taylor, E., Dehn, J., Driscoll, M., Farrell, J., Fourtanier, E., Frey, F., Garrison, P. D., Gee, J. S., Gibson, I.L., Janecek, T., Klootwijk, C., Lawrence, J. R., Littke, R., Newman, J. S., Nomura, R., Owen, R. M., Pospichal, J. J., Rea, D. K., Resiwati, P., Saunders, A. D., Smit, J., Smith, G. M., Tamaki, K., Weis, D., and Wilkinson, K., College Station, TX (Ocean Drilling Program), 121, 359–453, https://doi.org/10.2973/odp.proc.ir.121.112.1989, 1989.
Shipboard Scientific Party: Proc. ODP, Init. Repts., edited by: Curry, W. B., Shackleton, N. J., Richter, C., Backman, J. E., Bassinot, F., Bickert, T., Chaisson, W. P., Cullen, J. L., deMenocal, P., Dobson, D. M., Ewert, L., Qrutzner, J., Hagelberg, T. K., Hampt, Q., Harris, S. E., Herbert, T. D., Moran, K., Murayama M., Murra, D. W., Pearson, P. N., Raffi, I., Schneider, D. A., Tiedemann, R., Valet, J.-P., Weedon, G. P., Yasuda, H., and Zachos, J. C., College Station, TX (Ocean Drilling Program), 154, 153–232, https://doi.org/10.2973/odp.proc.ir.154.105.1995, 1995.
Shipboard Scientific Party: Proc. ODP, Init. Repts., edited by: Sigurdsson, H., Leckie, R. M., Acton, G. D.,Abrams, L. J., Bralower, T. J., Carey, S. N., Chaisson, W. P., Cotillon, P., Cunningham, A. D., D'Hondt, S. L., Droxler, A. W., Qalbrun, B., Gonzalez, J., Haug, G., Kameo, K., King, J., Lind, I. L., Louvel, V., Lyons, T. W., Murray, R. W., Mutti, M., Myers, G., Pearce, R. B., Pearson, D. G., Peterson, L. C., and Röhl, U., College Station, TX (Ocean Drilling Program), 165, 131–230, https://doi.org/10.2973/odp.proc.ir.165.104.1997, 1997.
Sigman, D. M., McCorkle, D. C., and Martin, W. R.: The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes, Global Biogeochem. Cy., 12, 409–427, 1998.
Simon, L., Lecuyer, C., Marechal, C., and Coltice, N.: Modelling the geochemical cycle of boron: Implications for the long-term δ11B evolution of seawater and oceanic crust, Chem. Geol., 225, 61–76, 2006.
Smith, H. J., Spivack, A. J., Staudigel, H., and Hart, S. R.: The boron isotopic composition of altered oceanic crust, Chem. Geol., 126, 119–135, 1995.
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and Lear, C. H.: Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy, in preparation, 2017.
Spero, H., Mielke, K., Kalve, E., Lea, D., and Pak, D.: Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr, Paleoceanography, 18, 1022, https://doi.org/10.1029/2001GC000200, 2003.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole, C. R., Morard, R., and Stalder, C.: Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of the new Genus Trilobatus, PLoS ONE, 10, e0128108, https://doi.org/10.1371/journal.pone.0128108, 2015.
Spivack, A. J. and Edmond, J. M.: Boron isotope exchange between seawater and the oceanic crust, Geochim. Cosmochim. Ac., 51, 1033–1043, 1987.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over global oceans, Deep-Sea Res. Pt. II, 56, 554–557, 2009.
Tipper, E. T., Galy, A., and Bickle, M. J.: Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle, Earth Planet. Sc. Lett., 247, 267–279, 2006a.
Tipper, E. T., Galy, A., Gaillardet, J., Bickle, M. J., Elderfield, H., and Carder, E. A.: The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios, Earth Planet. Sc. Lett., 250, 241–253, 2006b.
Tomascak, P. B.: Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences, Rev. Mineral. Geochem., 55, 153–195, 2004.
Tyrrell, T. and Zeebe, R. E.: History of carbonate ion concentration over the last 100 million years, Geochim. Cosmochim. Ac., 68, 3521–3530, 2004.
Vengosh, A., Starinsky, A., Kolodny, Y., Chivas, A. R., and Raab, M.: Boron isotope variations during fractional evaporation of sea-water – new constraints on the marine vs. nonmarine debate, Geology, 20, 799–802, 1992.
Vigier, N. and Goddéris, Y.: A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate, Clim. Past, 11, 635–645, https://doi.org/10.5194/cp-11-635-2015, 2015.
Wanner, C., Sonnenthal, E. L., and Liu, X.-M.: Seawater δ7Li: a direct proxy for global CO2 consumption by continental silicate weathering?, Chem. Geol., 381, 154–167, 2014.
Wimpenny, J., Colla, C. A., Yin, Q.-Z., Rustad, J. R., and Casey, W. H.: Investigating the behaviour of Mg isotopes during the formation of clay minerals, Geochim. Cosmochim. Ac., 128, 178–194, 2014.
Wombacher, F., Eisenhauer, A., Böhm, F., Gussone, N., Regenberg, M., Dullo, W. C., and Rüggeberg, A.: Magnesium stable isotope fractionation in marine biogenic calcite and aragonite, Geochim. Cosmochim. Ac., 75, 5797–5818, 2011.
You, C.F., Spivack, A. J., Smith, J. H., and Gieskes, J. M.: Mobilization of boron in convergent margins: Implications for the boron geochemical cycle, Geology, 21, 207–210, 1993.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater, equilibrium, kinetics, isotopes IN Elsevier oceanography series, Amsterdam, PAYS-BAS, Elsevier, XIII, 346 pp., 2001.
Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., and Bickert, T.: Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4 Ma, Palaeogeogr. Palaeocl., 369, 430–451, 2013.
Short summary
Understanding the boron isotopic composition of seawater (δ11Bsw) is key to calculating absolute estimates of CO2 using the boron isotope pH proxy. Here we use the boron isotope gradient, along with an estimate of pH gradient, between the surface and deep ocean to show that the δ11Bsw varies by ~ 2 ‰ over the past 23 million years. This new record has implications for both δ11Bsw and CO2 records and understanding changes in the ocean isotope composition of a number of ions through time.
Understanding the boron isotopic composition of seawater (δ11Bsw) is key to calculating...