Articles | Volume 12, issue 4
https://doi.org/10.5194/cp-12-883-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-12-883-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)
Dipartimento di Geoscienze, Università di Padova, Padua,
Italy
Istituto di Geoscienze e Georisorse, CNR, Padua, Italy
David J. A. Spofforth
Robertson, CGG GeoSpec, Llandudno, UK
Gerald R. Dickens
Department of Earth Sciences, Rice University, Houston, Texas, USA
MARUM, University of Bremen, Bremen, Germany
Domenico Rio
Dipartimento di Geoscienze, Università di Padova, Padua,
Italy
Heiko Pälike
Department of Geological Sciences, Stockholm University, Stockholm,
Sweden
Jan Backman
MARUM, University of Bremen, Bremen, Germany
Giovanni Muttoni
Dipartimento di Scienze della Terra “Ardito Desio”,
Università Statale di Milano, Milan, Italy
ALP, Alpine Laboratory of Paleomagnetism, Peveragno (CN), Italy
Edoardo Dallanave
Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität München, Munich,
Germany
Related authors
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Claudia Agnini, Martha G. Pamato, Gabriella Salviulo, Kim A. Barchi, and Fabrizio Nestola
Adv. Geosci., 53, 155–167, https://doi.org/10.5194/adgeo-53-155-2020, https://doi.org/10.5194/adgeo-53-155-2020, 2020
Short summary
Short summary
This work provides updated scenario on the underrepresentation of women in the Italian university system in the area of geosciences in the last two decades. Data highlight an increase in the number of female full and associate professors whereas the low number of female non-permanent researchers raises strong concerns. Over different areas of geosciences, Paleontology represents the only field in which the gap is filled whereas all the other disciplines suffer a gender imbalance.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Claudia Agnini, Martha G. Pamato, Gabriella Salviulo, Kim A. Barchi, and Fabrizio Nestola
Adv. Geosci., 53, 155–167, https://doi.org/10.5194/adgeo-53-155-2020, https://doi.org/10.5194/adgeo-53-155-2020, 2020
Short summary
Short summary
This work provides updated scenario on the underrepresentation of women in the Italian university system in the area of geosciences in the last two decades. Data highlight an increase in the number of female full and associate professors whereas the low number of female non-permanent researchers raises strong concerns. Over different areas of geosciences, Paleontology represents the only field in which the gap is filled whereas all the other disciplines suffer a gender imbalance.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Mathieu Martinez, Sergey Kotov, David De Vleeschouwer, Damien Pas, and Heiko Pälike
Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, https://doi.org/10.5194/cp-12-1765-2016, 2016
Short summary
Short summary
Identification of Milankovitch cycles within the sedimentary record depends on spectral analyses, but these can be biased because there are always slight uncertainties in the sample position within a sedimentary column. Here, we simulate uncertainties in the sample position and show that a tight control on the inter-sample distance together with a density of 6–12 samples per precession cycle are needed to accurately reconstruct the contribution of the orbital forcing on past climate changes.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change
Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene
Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum
Astronomical calibration of the geological timescale: closing the middle Eocene gap
Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean
A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum
Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
G. R. Dickens
Clim. Past, 7, 831–846, https://doi.org/10.5194/cp-7-831-2011, https://doi.org/10.5194/cp-7-831-2011, 2011
A. Sluijs, P. K. Bijl, S. Schouten, U. Röhl, G.-J. Reichart, and H. Brinkhuis
Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, https://doi.org/10.5194/cp-7-47-2011, 2011
R. E. M. Rickaby, J. Henderiks, and J. N. Young
Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, https://doi.org/10.5194/cp-6-771-2010, 2010
Cited articles
Adelseck Jr., C. G., Geehan, G. W., and Roth, P. H.: Experimental evidence for the selective dissolution and overgrowth of calcareous nannofossils during diagenesis, Geol. Soc. Am. Bull., 84, 2755–2762, 1973.
Agnini, C., Muttoni, G., Kent, D. V., and Rio, D.: Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability, Earth Planet. Sc. Lett., 241, 815–830, https://doi.org/10.1016/j.epsl.2005.11.005, 2006.
Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J., and Giusberti, L.: Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre–Alps, Mar. Micropaleontol., 63, 19–38, https://doi.org/10.1016/j.marmicro.2006.10.002, 2007a.
Agnini, C., Fornaciari, E., Raffi, I., Rio, D., Röhl, U., and Westerhold, T.: High-resolution nannofossil biochronology of middle Paleocene to early Eocene at ODP Site 1262: implications for calcareous nannoplankton evolution, Mar. Micropaleontol., 64, 215–248, https://doi.org/10.1016/j.marmicro.2007.05.003, 2007b.
Agnini, C., Macrì, P., Backman, J., Brinkhuis, H., Fornaciari, E., Giusberti, L., Luciani, V., Rio, D., Sluijs, A., and Speranza, F.: An early Eocene carbon cycle perturbation at 52.5 Ma in the Southern Alps: Chronology and biotic response, Paleoceanography, 24, PA2209, https://doi.org/10.1029/2008PA001649, 2009.
Agnini, C., Fornaciari, E., Giusberti, L., Grandesso, P., Lanci, L., Luciani, V., Muttoni, G., Pälike, H., Rio, D., Spofforth, D. J. A., and Stefani, C.: Integrated bio-magnetostratigraphy of the Alano section (NE Italy): a proposal for defining the middle-late Eocene boundary, Geol. Soc. Am. Bull., 123, 841–872, https://doi.org/10.1130/B30158.1, 2011.
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newslett. Stratigr., 47, 131–181, https://doi.org/10.1127/0078-0421/2014/0042, 2014.
Aitchison, J.: The Statistical Analysis of Compositional Data, Chapman and Hall, London – New York, 12, 1–416, 1986.
Alcober, J. A. and Jordan, R. W.: An interesting association between Neosphaera coccolithomorpha and Ceratolithus cristatus, Eur. J. Phycol., 32, 91–93, 1997.
Angori, E., Bernaola, G., and Monechi, S.: Calcareous nannofossil assemblages and their response to the Paleocene-Eocene Thermal Maximum event at different latitudes: ODP Site 690 and Tethyan sections, Geol. S. Am. S., 424, 69–85, https://doi.org/10.1130/2007.2424(04), 2007.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton, book 1, Ortholithae (Discoaster), Am. Mus. Nat. Hist. Micropaleontol. Press, New York, 1–263, 1984.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton, book 2, Ortholithae (Holococcoliths, Ceratoliths, Ortholiths and Other), Am. Mus. Nat. Hist. Micropaleontol. Press, New York, 1–279, 1988.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton, book 3, Ortholithae (Pentaliths and Other), Heliolithae (Fasciculiths, Sphenoliths and Other), Am. Mus. Nat. Hist. Micropaleontol. Press, New York, 1–279, 1989.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton, book 4, Heliolithae (Helicoliths, Cribriliths, Lopadoliths and Other), Am. Mus. Nat. Hist. Micropaleontol. Press, New York, 1–381, 1990.
Aubry, M.-P.: Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration, in: Late Paleocene–early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records, Columbia University Press, New York, 158–201, 1998.
Aubry, M.-P.: Late Paleocene–early Eocene sedimentary history in western Cuba: implications for the LPTM and for regional tectonic history, Micropaleontol., 45, 5–18, 1999a.
Aubry, M.-P.: Handbook of Cenozoic Calcareous Nannoplankton, book 5, Heliolithae (Zygoliths and Rhabdoliths), Am. Mus. Nat. Hist. Micropaleontol. Press, New York, 1–368, 1999b.
Aubry, M.-P. and Salem, R.: The Dababiya Core: A window into Paleocene to early Eocene depositional history in Egypt based on coccolith stratigraphy, Stratigraphy, 9, 287–346, 2012.
Baccelle, L. and Bosellini, A.: Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentary, Ann. Univ. Ferrara, 9, 59–62, 1965.
Backman, J.: Late Paleocene to middle Eocene calcareous nannofossil biochronology from the Shatsky Rise, Walvis Ridge and Italy, Palaeogeogr. Palaeocl., 57, 43–59, 1986.
Backman, J. and Shackleton N. J.: Quantitative biochronology of Pliocene and early Pleistocene calcareous nannoplankton from the Atlantic, Indian and Pacific Oceans, Mar. Micropaleontol., 8, 141–170, https://doi.org/10.1016/0377-8398(83)90009-9, 1983.
Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M., and Kinkel, H.: The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review, Paläontol. Zeitsch., 79, 93–112, 2005.
Bernoulli, D. and Jenkyns, H. C.: Alpine, Mediterranean, and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys, in: Modern and Ancient Geosynclinal Sedimentation, Society for Sedimentary Geology (SEPM) Special Publication, 19, 19–160, 1974.
Bernoulli, D., Caron, C., Homewood, P., Kalin, O., and Van Stuijvenberg, J.: Evolution of continental margins in the Alps, Schweiz, Miner. Petrol., 59, 165–170, 1979.
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G. J., Zachos, J. C., Brinkhuis, H.: Early Palaeogene temperature evolution of the southwest Pacific Ocean, Nature, 461, 776–779, https://doi.org/10.1038/nature08399, 2009.
Billard, C. and Innouye, I.: What is new in coccolithophore biology?, in: Coccolithophores – From Molecular Processes to Global Impact, Springer, Berlin, 1–29, 2004.
Bordiga, M., Henderiks, J., Tori, F., Monechi, S., Fenero, R., Legarda-Lisarri, A., and Thomas, E.: Microfossil evidence for trophic changes during the Eocene-Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge), Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, 2015.
Bornemann, A. and Mutterlose, J.: Calcareous nannofossil and δ13C records from the Early Cretaceous of the Western Atlantic Ocean: evidence for enhanced fertilization across the Berriasian–Valanginian transition, Palaios, 23, 821–832, 2008.
Boucot, A. J.: Evolution and Extinction Rate Controls, Elsevier, Amsterdam, the Netherlands, 250 pp., 1975.
Bown, P. R.: Paleogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1 to 10, J. Nannoplankt. Res., 27, 21–95, 2005.
Bown, P. and Pearson, P.: Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: New evidence from Tanzania, Mar. Micropaleontol., 71, 60–70, https://doi.org/10.1016/j.marmicro.2009.01.005, 2009.
Bown, P. R. and Young, J. R.: Techniques, in: Calcareous Nannofossil Biostratigraphy, Chapman & Hall, London, 16–28, 1998.
Bown, P. R., Lees, J. A., and Young, J. R.: Calcareous nannoplankton evolution and diversity through time, in: Coccolithophores – From Molecular Processes to Global Impact, Springer, Berlin, 481–508, 2004.
Bralower, T. J.: Evidence of surface water oligotrophy during the Paleocene–Eocene thermal maximum: nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea, Paleoceanography, 17, 1029–1042, https://doi.org/10.1029/2001PA000662, 2002.
Bralower,T. J. and Mutterlose, J.: Calcareous nannofossil biostratigraphy of ODP Site 865, Allison Guyot, Central Pacific Ocean: a tropical Paleogene reference section, Proc. Ocean. Drill. Prog. Sci. Results, 143, 31–72, https://doi.org/10.2973/odp.proc.sr.143.204.1995, 1995.
Bramlette, M. N. and Riedel, W. R.: Stratigraphic value of discoasters and some other microfossils related to Recent coccolithophores, J. Paleontol., 28, 385–403, 1954.
Bramlette, M. N. and Sullivan, F. R.: Coccolithophorids and related nannoplankton of the Early Tertiary in California, Micropaleontol., 7, 129–188, 1961.
Broecker, W. S. and Peng, T.-H.: Tracers in the Sea, Eldigio Press, LamontDoherty Geological Observatory, Palisades, New York, 1–690, 1982.
Buccianti, A., Mateu-Figueras, G., and Pawlowsky-Glahn, V.: Compositional data analysis in the geosciences: From theory to practice, Geol. Soc. London, London, Spec. Publ., 264, 1–206, https://doi.org/10.1144/GSL.SP.2006.264.01.16, 2006.
Bukry, D.: Further comments on coccolith stratigraphy, Leg 12 Deep Sea Drilling Project, Proc. DSDP, Init. Repts, 12, 1071–1083, 1972.
Bukry, D.: Low-latitude coccolith biostratigraphic zonation, Initial Rep. Deep Sea, 15, 685–703, 1973.
Bukry, D. and Bramlette, M. N.: Some new and stratigraphically useful calcareous nannofossils of the Cenozoic, Tulane Studies in Geology, 7, 13–142, 1969.
Cande, S. C. and Kent, D. V.: Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, 100, 6093–6096, https://doi.org/10.1029/94JB03098, 1995.
Cati, A., Sartorio, D., and Venturini, S.: Carbonate platforms in the subsurface of the northern Adriatic area, Mem. Soc. Geol. It., 40, 295–308, 1989.
Corfield, R. M.: Palaeocene oceans and climate: An isotopic perspective, Earth Sci. Rev., 37, 225–252, https://doi.org/10.1016/0012-8252(94)90030-2, 1994.
Costa, V., Doglioni, C., Grandesso, P., Masetti, D., Pellegrini, G. B., and Tracanella, E.: Carta Geologica d'Italia, Foglio 063, Belluno: Roma, Servizio Geologico d'Italia, scale 1 : 50 000, 74 pp., 1996.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M.-P.: Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (Chrons C24n–C25n), Paleoceanography, 18, 1097, https://doi.org/10.1029/2003PA000909, 2003.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanogaphy, 24, PA4216, https://doi.org/10.1029/2008PA001683, 2009.
Dallanave, E., Agnini, C., Muttoni, G., and Rio, D.: Magneto-biostratigraphy of the Cicogna section (Italy): implications for the late Paleocene-early Eocene time scale, Earth Planet. Sc. Lett., 285, 39–51, https://doi.org/10.1016/j.epsl.2009.05.033, 2009.
Dallanave, E., Agnini, C., Bachtadse, V., Muttoni, G., Crampton, J. S., Strong, C. P., Hines, B. R., Hollis, C. J., and Slotnick., B. S.: Early to middle Eocene magnetostratigraphy of the southwest Pacific Ocean and climate influence on sedimentation: insights from the Mead Stream section, New Zealand, Geol. Soc. Am. Bull., 127, 643–660, https://doi.org/10.1130/B31147.1, 2015.
DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K. Zhang, T., Pollard, D., and Beerling D. J.: Past extreme warming events linked to massive carbon release from thawing permafrost, Nature, 484, 87–91, https://doi.org/10.1038/nature10929, 2012.
Deflandre, G.: Classe des Coccolithophoridés, (Coccolithophoridae, Lohmann, 1902), in: Traite de Zoologie. Masson, Paris, 439–470, 1952.
Deflandre, G.: Sur les nannofossiles calcaires et leur systématique, Revue de Micropaleontologie, 2, 127–152, 1959.
Deflandre, G. and Fert, C.: Observations sur les coccolithophoridés actuels et fossiles en microscopie ordinaire et Électronique, Annales de Paléontologie, 40, 115–176, 1954.
Dickens, G. R.: Methane oxidation during the late Palaeocene thermal maximum, B. Soc. Geol. Fr., 171, 37–49, 2000.
Dickens, G. R.: Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor, Earth Planet. Sc. Lett., 213, 169–183, 2003.
Dickens, G. R. and Backman, J.: Core alignment and composite depth scale for the lower Paleogene through uppermost Cretaceous interval at Deep Sea Drilling Project Site 577, Newslett. Stratigr., 46, 47–68, https://doi.org/10.1127/0078-0421/2013/0027, 2013.
Dickens, G. R., Castillo, M. M., and Walker, J. C. G.: A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25, 259–262, 1997.
Doglioni, C. and Bosellini, A.: Eoalpine and mesoalpine tectonics in the Southern Alps, Geol. Rundsch., 77, 734–754, 1987.
Dupuis, C., Aubry, M.-P., Steurbaut, E., Berggren, W. A., Ouda, K., Magioncalda, R., Cramer, B. S., Kent, D. V., Speijer, R. P., and Heilmann-Clausen, C.: The Dababiya Quarry section: lithostratigraphy, geochemistry and paleontology, Micropaleontology, 49, 41–59, 2003.
Erba, E., Bottini, C., Weissert, H. J., and Keller, C. E.: Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a, Science, 329, 428–432, https://doi.org/10.1126/science.1188886, 2010.
Frank, T. D., Arthur, M. A., and Dean W. E.: Diagenesis of Lower Cretaceous pelagic carbonates, North Atlantic: paleoceanographic signals obscured, J. Foramin. Res., 29, 340–351, 1999.
Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J. C., Monechi, S., Morelli, G., and Lourens, L.: Orbital chronology of early Eocene hyperthermals from the Contessa Road section, central Italy, Earth Planet. Sc. Lett., 290, 192–200, https://doi.org/10.1016/j.epsl.2009.12.021, 2010.
Geisen, M., Young, J. R., Probert, I., Sáez, A. G., Baumann, K.-H., Bollmann, J., Cros, L., De Vargas, C., Medlin, L. K., and Sprengel, C.: Species level variation in coccolithophores, in: Coccolithophores – From Molecular Processes to Global Impact, Springer, Berlin, 327–366, 2004.
Gibbs, S. J., Shackleton, N. J., and Young, J. R.: Orbitally forced climate signals in mid-Pliocene nannofossil assemblages, Mar. Micropaleontol., 51, 39–56, 2004.
Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., and Wilson, P. A.: Nannoplankton extinction and origination across the Paleocene-Eocene thermal maximum, Science, 314, 1770–1773, https://doi.org/10.1126/science.1133902, 2006a.
Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C., and Bybell, L. M.: Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene–Eocene thermal maximum: implications for global productivity gradients, Geology, 34, 233–236, https://doi.org/10.1130/G22381.1, 2006b.
Gibbs, S. J., Bown, P. R., Murphy, B. H., Sluijs, A., Edgar, K. M., Pälike, H., Bolton, C. T., and Zachos, J. C.: Scaled biotic disruption during early Eocene global warming events, Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, 2012.
Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., and Oddone, M.: Mode and tempo of the Paleocene-Eocene Thermal Maximum in an expanded section in the Venetian Pre-Alps, Geol. Soc. Am. Bull., 119, 391–412, https://doi.org/10.1130/B25994.1, 2007.
Giusberti, L., Boscolo Galazzo, F., and Thomas, E.: Variability in climate and productivity during the Paleocene-Eocene Thermal Maximum in the western Tethys (Forada section), Clim. Past, 12, 21–240, https://doi.org/10.5194/cp-12-213-2016, 2016.
Grandesso, P.: Biostratigrafia delle formazioni terziarie del Vallone Bellunese, B. Soc. Geol. Ital., 94, 1323–1348, 1976.
Hallock, P.: Fluctuations in the trophic resource continuum: A factor in global diversity cycles?, Paleoceanography, 2, 457–471, 1987.
Hammer, Ø, Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 4, 9 pp., 2001.
Haq, B. U. and Lohmann, G. P.: Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean, Mar. Micropaleontol., 1, 119–194, 1976.
Harris, A. D., Miller, K. G., Browning, J. V., Sugarman, P. J., Olsson, R. K., Cramer, B. S., and Wright, J. D.: Integrated stratigraphic studies of Paleocene – lowermost Eocene sequences, New Jersey Coastal Plain: Evidence for glacioeustatic control, Paleoceanography, 25, PA3211, https://doi.org/10.1029/2009PA001800, 2010.
Hay, W. W.: Carbonate fluxes and calcareous nannoplankton, in: Coccolithophores – From Molecular Processes to Global Impact, Springer, Berlin, 508–528, 2004.
Hay, W. W. and Mohler, H. P.: Calcareous nannoplankton from Early Tertiary rocks at Point Labau, France and Paleocene-Early Eocene correlations, J. Paleont., 41, 1505–1541, 1967.
Hay, W. W., Mohler, H. P., Roth, P. H., Schmidt, R. R., and Boudreaux, J. E.: Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Antillean area, and transoceanic correlation, Transactions of the Gulf Coast Association of Geological Societies, 17, 428–480, 1967.
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M., Creech, J. B., Hines, B.R., Crouch, E. M., Morgans, H. E. G., Crampton, J. S., Gibbs, S., Pearson, P. N., and Zachos, J. C.: Early Paleogene temperature history of the southwest Pacific Ocean: Reconciling proxies and models, Earth Planet. Sc. Lett., 349–350, 53–66, 2012.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto Jr., T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B.: The geological record of ocean acidification, Science, 335, 1058–1063, https://doi.org/10.1126/science.1208277, 2012.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., Von Dassow, P., Rehm, E., Armbrust, E. V., and Boessenkool, K. P.: Phytoplankton calcification in a high-CO2 world, Science, 320, 336–340, https://doi.org/10.1126/science.1154122, 2008.
Jiang, S. and Wise Jr., S. W: Distinguishing the influence of diagenesis on the paleoecological reconstruction of nannoplankton across the Paleocene/Eocene Thermal Maximum: An example from the Kerguelen Plateau, southern Indian Ocean, Mar. Micropaleontol., 72, 49–59, https://doi.org/10.1016/j.marmicro.2009.03.003, 2009.
Keeling, C. D. and Whorf, T. P.: Atmospheric carbon dioxide record from Mauna Loa, in: Oak Ridge Laboratory Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA, available at: http://cdiac.esd.ornl.gov/trends/co2/sio-keel-flask/sio-keel-flask.html (last access: 4 April 2015), 2004.
Kirtland-Turner, S., Sexton, P. F., Charles, C. D., and Norris, R. D.: Persistence of carbon release events through the peak of early Eocene global warmth, Nat. Geosci., 7, 748–751, https://doi.org/10.1038/ngeo2240, 2014.
Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., and Robbins, L. L.: Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research, Contrib. No. 2857, NOAA/Pacific Marine Environm. Lab., 88 pp., 2006.
Komar, N., Zeebe, R. E., and Dickens, G. R.: Understanding long-term carbon cycle trends: The late Paleocene through the early Eocene, Paleoceanography, 28, 650–662, https://doi.org/10.1002/palo.20060, 2013.
Krishnan, S., Pagani, M., and Agnini, C.: Leaf waxes as recorders of paleoclimatic changes during the Paleocene-Eocene Thermal Maximum: Regional expressions from the Belluno Basin, Org. Geochem., 80, 8–17, https://doi.org/10.1016/j.orggeochem.2014.12.005, 2015.
Kroopnick, P. M.: The distribution of 13C of ΣCO2 in the world oceans, Deep-Sea Res., 32, 57–84, 1985.
Kucera, M. and Malmgren, B. A.: Logratio transformation of compositional data – a resolution of the constant sum constraint, Mar. Micropaleontol., 34, 117–120, 1998.
Kump, L. R., Bralower, T. J., and Ridgwell, A.: Ocean acidification in deep time, Oceanography, 22, 94–107, 2009.
Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., and Paytan, A.: Early Cenozoic decoupling of the global carbon and sulfur cycles, Paleoceanography, 18, 1090, https://doi.org/10.1029/2003PA000908, 2003.
Langer, G., M., Geisen, Baumann, K.-H., Kläs, J., Riebesell, U., Thoms, S., and Young, J. R.: Species-specific response of calcifying algae to changing seawater carbonate chemistry, Geochem. Geophy. Geosy., 7, Q09006, https://doi.org/10.1029/2005GC001227, 2006.
Leon-Rodriguez, L. and Dickens, G. R.: Constraints on ocean acidification associated with rapid and massive carbon injections: The early Paleogene record at Ocean Drilling Program Site 1215, Equatorial Pacific Ocean, Palaeogeogr. Palaeocl., 298, 409–420, https://doi.org/org/10.1016/j.palaeo.2010.10.029, 2010.
Locker, S.: Neue, statigraphisch wichtige Coccolithophoriden (Flagellata aus dem norddeutschen Altetiar, Monatsber. Deutsch. Akad. Wiss. Berlin, 9, 758–769, 1967.
Lohbeck, K. T., Riebesell, U., and Reusch, T. B. H.: Adaptive evolution of a key phytoplankton species to ocean acidification, Nat. Geosci., 5, 346–351, https://doi.org/10.1038/ngeo1441, 2012.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 1083–1087, https://doi.org/10.1038/nature03814, 2005.
Lunt, D. J., Ridgwell, A., Sluijs, A., Zachos, J. C., Hunter, S., and Haywood, A.: A model for orbital pacing of methane hydrate destabilization during the Palaeogene, Nat. Geosci., 4, 775–778, https://doi.org/10.1038/ngeo1266, 2011.
MacArthur, R. and Wilson, E. O.: The Theory of Island Biogeography, Princeton University Press, ISBN 0-691-08836-5M, 1967.
Milliman, J. D.: Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cy., 7, 927–957, https://doi.org/10.1029/93GB02524, 1993.
Marino, M., Maiorano, P., and Lirer, F.: Changes in calcareous nannofossil assemblages during the Mid-Pleistocene Revolution, Mar. Micropaleontol., 69, 70–90, https://doi.org/10.1016/j.marmicro.2007.11.010, 2008.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Proceedings of the 2nd Planktonic Conference, 2, Tecnoscienza, Roma, 739–785, 1971.
Matter, A., Douglas, R. G., and Perch-Nielsen, K.: Fossil preservation, geochemistry and diagenesis of pelagic carbonates from Shatsky Rise, northwest Pacific, Init. Rep. DSDP, 32, 891–922, 1975.
Mixon, R. B. and Powars D. S.: Folds and faults in the inner Coastal Plain of Virginia and Maryland: their effect on the distribution and thickness of Tertiary rock units and local geomorphic history, in: Cretaceous and Tertiary Stratigraphy, paleontology, and structure, southwestern Maryland and northeastern Virginia, edited by: Frederiksen, N. O. and Kraft, K., American Association of Stratigraphic Palynologists Field Trip Volume and Guidebook (1984), 112–122, 1994.
Monechi, S., Angori, E., and von Salis, K.: Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain), B. Soc. Geol. Fr., 171, 477–489, 2000.
Mutterlose, J., Linnert, C., and Norris, R.: Calcareous nannofossils from the Paleocene–Eocene Thermal Maximum of the equatorial Atlantic (ODP Site 1260B): Evidence for tropical warming, Mar. Micropaleontol., 65, 13–31, https://doi.org/10.1016/j.marmicro.2007.05.004, 2007.
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35, 699–702, https://doi.org/10.1130/G23648A.1, 2007.
Norris, R. D., Wilson, P. A., Blum, P., and the Expedition 342 Scientists: Expedition 342 summary, Proc. IODP, 342, 1–149, https://doi.org/10.2204/iodp.proc.342.2014, 2014.
Ogg, J. G. and Bardot, L.: Aptian through Eocene magnetostratigraphic correlation of the Blake Nose Transect (Leg 171B), Florida continental margin, Proc. ODP, Sci. Results, 171B, 1–58, https://doi.org/10.2973/odp.proc.sr.171B.104.2001, 2001.
Ogg, J. and Smith, A.,: The geomagnetic polarity time scale, in: The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., and Schmitz, M. D., Amsterdam, the Netherlands, Elsevier, 63–86, 2004.
Ogg, J. and Smith, A.,: The geomagnetic polarity time scale, in: The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Amsterdam, the Netherlands, Elsevier, 85–113, 2012.
Okada, H. and Bukry, D.: Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975), Mar. Micropaleontol., 5, 321–325, https://doi.org/10.1016/0377-8398(80)90016-X, 1980.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G. D., Anderson, L., Backman, J., Baldauf, J. G., Beltran, C., Bohaty, S. M., Bown, P. R., Busch, W. H., Channell, J. E. T., Chun, C. O. J., Delaney, M. L., Dewang, P., Dunkley Jones, T., Edgar, K. M., Evans, H. F., Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O., Holbourn, A. E. L., Hovan, S. A., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S.-I., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore, T. C., Murphy, B., Murphy, D. P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R. S., Rohling, E. J., Romero, O. E., Sawada, K., Scher, H. D., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R. H., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609–614, https://doi.org/10.1038/nature11360, 2012.
Payros, A., Ortiz, S., Millán, I., Arostegi, J., Orue-Etxebarria, X., and Apellaniz, E.: Early Eocene climatic optimum: Environmental impact on the north Iberian continental margin, Geol. Soc. Am. Bull., 127, 1632–1644, https://doi.org/10.1130/B31278.1, 2015.
Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S.: Stable warm tropical climate through the Eocene Epoch, Geology, 35, 211–214, 2007.
Perch-Nielsen, K.: Elektronenmikroskopische untersuchungen an Coccolithen und verwandten Formen aus dem Eozan von Danemark, Biologiske Skrifter, Kongelige Danske Videnskabernes Selskab, 18, 1–76, 1971.
Perch-Nielsen, K.: Neue Coccolithen aus dem Maastrichtien von Danemark, Madagaskar und Agypten, B. Geol. Soc. Denmark, 22, 306–333, 1973.
Perch-Nielsen, K.: Cenozoic calcareous nannofossils, in: Plankton stratigraphy, Cambridge Univ. Press, New York, 427–554, 1985.
Pianka, E. R.: On r and K selection, Am. Nat., 104, 592–597, https://doi.org/10.1086/282697, 1970.
Premoli Silva, I. and Sliter, W. V.: Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution, Geol. S. Am. S., 332, 301–328, https://doi.org/10.1130/0-8137-2332-9.301, 1999.
Raffi, I. and De Bernardi, B.: Response of calcareous nannofossils to the Paleocene-Eocene Thermal Maximum: Observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge – SW Atlantic), Mar. Micropaleontol., 69, 119–138, https://doi.org/10.1016/j.marmicro.2008.07.002, 2008.
Raffi, I., Backman, J., and Pälike, H.: Changes in calcareous nannofossil assemblage across the Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean, Palaeogeogr. Palaeocl., 226, 93–126, https://doi.org/10.1016/j.palaeo.2005.05.006, 2005.
Raffi, I., Backman, J., Zachos, J. C., and Sluijs, A.: The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic, Mar. Micropaleontol., 70, 201–212, https://doi.org/10.1016/j.marmicro.2008.12.005, 2009.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M. M.: Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364–367, https://doi.org/10.1038/35030078, 2000.
Riebesell, U., Bellerby, R. G. J., Engel, A., Fabry, V. J., Hutchins, D. A., Reusch, K. G., Schulz, T. B. H., and Morel, F. M. M.: Comment on “Phytoplankton calcification in a high-CO2 world”, Science, 322, 1466b, https://doi.org/10.1126/science.1161096, 2008.
Romein, A. J. T.: Lineages in early Paleogene calcareous nannoplankton, Utrecht, Micropaleont. Bull., 22, 1–231, 1979.
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump: responses to environmental changes, in: Coccolithophores – From Molecular Processes to Global Impact, Springer, Berlin, 99–125, 2004.
Roth, P. H.: Jurassic and Lower Cretaceous calcareous nannofossils in the western North Atlantic (Site 534): biostratigraphy, preservation, and some observations on biogeography and paleoceanography, DSDP Init. Repts., 76, 587–621, 1983.
Roth, P. H. and Thierstein, H. R.: Calcareous nannoplankton: Leg XIV of the Deep Sea Drilling Project, DSDP Init. Repts., 14, 421–486, 1972.
Schrag, D. P., DePaolo, D. J., and Richter, F. M.: Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate, Geochim. Cosmochim. Ac., 59, 2265–2278, 1995.
Scholle, P. A. and Arthur, M. A.: Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool, Am. Assoc. Petr. Geol. B., 64, 67–87, 1980.
Self-Trail, J. M., Powars, D. S., Watkins, D. K., and Wandless, G.: Calcareous nannofossil assemblage changes across the Paleocene-Eocene thermal maximum: Evidence from a shelf setting, Mar. Micropaleontol., 92–93, 61–80, https://doi.org/10.1016/j.marmicro.2012.05.003, 2012.
Shackleton, N. J.: Paleogene stable isotope events, Palaeogeogr. Palaeocl., 57, 91–102, 1986.
Shamrai, I. A.: Nekotorye formy verkhnemelovykh i paleogenovykh kokkolitov i diskoasterov na yuge russkol platformy [Certain forms of Upper Cretaceous and Paleogene coccoliths and discoasters from the southern Russian Platform], Izv. Vyssh. Ucheb. Zaved. Geol. i Razv, 6, 27–40, 1963.
Shamrock, J. L.: Eocene calcareous nannofossil biostratigraphy, paleoecology and biochronology of ODP Leg 122 Hole 762c, Eastern Indian Ocean (Exmouth Plateau), PhD thesis, University of Nebraska, 2010.
Slotnick, B. S., Dickens, G. R., Nicolo, M. J., Hollis, C. J., Crampton, J. S., Zachos, J. C., and Sluijs, A.: Large-amplitude variations in carbon cycling and terrestrial weathering during the latest Paleocene and earliest Eocene: The record at Mead Stream, New Zealand, J. Geol., 120, 1–19, https://doi.org/10.1086/666743, 2012.
Slotnick, B. S., Lauretano, V., Backman, J., Dickens, G. R., Sluijs, A., and Lourens, L.: Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean, Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, 2015a.
Slotnick, B. S., Dickens, G. R., Hollis, C. J., Crampton, J. S., Strong, C. P., and Phillips, A.: The onset of the Early Eocene Climatic Optimum at Branch Stream, Clarence River valley, New Zealand, New Zeal. J. Geol. Geop., 58, 262–280, https://doi.org/10.1080/00288306.2015.1063514, 2015b.
Spofforth, D. J. A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L., Muttoni, G., and Bohaty, S. M.: Organic carbon burial following the Middle Eocene Climatic Optimum (MECO) in the central – western Tethys, Paleoceanography, 25, PA3210, https://doi.org/10.1029/2009PA001738, 2010.
Stefani, C. and Grandesso, P.: Studio preliminare di due sezioni del Flysch bellunese, Rend. Soc. Geol. It., 14, 157–162, 1991.
Stoll, H. M. and Bains, S.: Coccolith Sr ∕ Ca records of productivity during the Paleocene–Eocene thermal maximum from the Weddell Sea, Paleoceanography, 18, 1049, https://doi.org/10.1029/2002PA000875, 2003.
Stradner, H.: Die fossilen Discoasteriden Osterreichs, I. Erdöl-Zeitschrift, 74, 178–188, 1958.
Stradner, H.: Vorkommen von Nannofossilien im Mesozoikum und Alttertiär, Erdöl-Zeitschrift für Bohr-und Fördertechnik, 77, 77–88, 1961.
Stradner, H.: New contributions to Mesozoic stratigraphy by means of nannofossils, Proc. Sixth World Petroleum Congress, Section 1 Paper 4, 167–183, 1963.
Sullivan, F. R.: Lower Tertiary nannoplankton from the California Coast Ranges, II, Eocene, University of California Publications in Geological Sciences, 53, 1–74, 1965.
Tagliabue, A. and Bopp, L.: Towards understanding global variability in ocean carbon-13, Global Biogeochem. Cy., 22, GB1035, https://doi.org/10.1029/2007GB003037, 2008.
Thibault, N. and Gardin, S.: The calcareous nannofossil response to the end-Cretaceous warm event in the tropical Pacific, Palaeogeogr. Palaeocl., 291, 239–252, https://doi.org/10.1016/j.palaeo.2010.02.036, 2010.
Tipple, B. J., Pagani, M., Krishnan, S., Dirghangi, S. S., Galeotti, S., Agnini, C., Giusberti, L., and Rio, D.: Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles variations during the Paleocene-Eocene Thermal Maximum (PETM), Earth Planet. Sc. Lett., 311, 82–92, https://doi.org/10.1016/j.epsl.2011.08.045, 2011.
Toffanin, F., Agnini, C., Fornaciari, E., Rio, D., Giusberti, L., Luciani, V., Spofforth, D. J. A., and Pälike, H.: Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: clues from the central-western Tethys (Alano section, NE Italy), Mar. Micropaleontol., 81, 22–31, https://doi.org/10.1016/j.marmicro.2011.07.002, 2011.
Toffanin, F., Agnini, C., Rio, D., Acton, G., and Westerhold, T.: Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific), Micropaleontol., 59, 69–82, 2013.
Tremolada, F. and Bralower, T. J.: Nannofossil assemblage fluctuations during the Paleocene–Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): palaeoceanographic implications, Mar. Micropaleontol., 52, 107–116, https://doi.org/10.1016/j.marmicro.2004.04.002, 2004.
Vandenberghe, N., Hilgen, F. J., and Speijer, R. P.: The Paleogene Period, in: The Geologic Time Scale 2012, Amsterdam, the Netherlands (Elsevier BV), 855–922, 2012.
Varol, O.: Eocene calcareous nannofossils from Sile (northwest Turkey), Revista Española de Micropaleontología, 21, 273–320, 1989.
Watkins, D. K. and Self-Trail, J. M.: Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian, Paleoceanography, 20, Pa3006, https://doi.org/10.1029/2004pa001121, 1992.
Wei, W. and Wise Jr., S. W.: Biogeographic gradients of middle Eocene–Oligocene calcareous nannoplankton in the South Atlantic Ocean, Palaeogeogr. Palaeocl., 79, 29–61, 1990.
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H. F.: Astronomical calibration of the Paleocene time, Palaeogeogr. Palaeocl., 257, 377–403, https://doi.org/10.1016/j.palaeo.2007.09.016, 2008.
Westerhold, T., Röhl, U., Donner, B., McCarren, H. K., and Zachos, J. C.: A complete high – resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209), Paleoceanography, 26, PA2216, https://doi.org/10.1029/2010PA002092, 2011.
Winter, A., Jordan, R. W., and Roth, P. H.: Biogeography of living coccolithophores, in: Coccolithophores, edited by: Winter, A. and Siesser, W. G., Cambridge Univ. Press, Cambridge, 161–177, 1994.
Winterer, E. L. and Bosellini, A.: Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy, Am. Assoc. Petr. Geol. B., 65, 394–421, 1981.
Young, J. R., Geisen, M., and Probert, I.: A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation, Micropaleontology, 51, 267–288, 2005.,
Zachos, J. C., Kroon, D., Blum, P., Bowles J., Gaillot, P., Hasegawa, T., Hathorne, E. D., Hodell, D. A., Kelly, D. C., Jung, J.-H., Keller, S. M., Lee Y. S., Leuschner, D. C., Liu, Z., Lohmann, K. C., Lourens, L. J., Monechi, S., Nicolo, M., Raffi, I., Riesselman, C., Röhl, U., Schellenberg, S. A., Schmidt, D., Sluijs, A., Thomas, D., Thomas, E., and Vallius, H.: Early Cenozoic Extreme Climates: The Walvis Ridge Transect, Proc. Ocean Drill. Program, Initial Rep., 208 pp., https://doi.org/10.2973/odp.proc.ir.208.2004, 2004.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D.: Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum, Science 308, 1611–1615, https://doi.org/10.1126/science.1109004, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T.: Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals, Earth Planet. Sc. Lett., 299, 242–249, https://doi.org/10.1016/j.epsl.2010.09.004, 2010.
Zattin, M., Cuman, A., Fantoni, R., Martin, S., Scotti, P., and Stefani, C.: From middle Jurassic heating to Neogene cooling: The thermochronological evolution of the southern Alps, Tectonophysics, 414, 191–202, https://doi.org/10.1016/j.tecto.2005.10.020, 2006.
Zeebe, R. E. and Westbroek, P.: A simple model for the CaCO3 saturation state of the ocean: The “Strangelove”, the “Neritan”, and the “Cretan” ocean, Geochem. Geophy. Geosy., 4, 1104, https://doi.org/10.1029/2003GC000538, 2003, 2003.
Zeebe, R. E., Zachos, J. C., and Dickens, G. R.: Carbon dioxide forcing alone insufficient to explain Paleocene-Eocene Thermal Maximum warming, Nat. Geosci., 2, 576–580, https://doi.org/10.1038/NGEO578, 2009.
Ziveri, P., Young, J., and van Hinte, J. E.: Coccolithophore export production and accumulation rates, in: On determination of sediment accumulation rates, GeoResearch Forum, Trans Tech Publications LTD, Switzerland, 5, 41–56, 1999.
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in...
Special issue