Articles | Volume 12, issue 9
https://doi.org/10.5194/cp-12-1919-2016
https://doi.org/10.5194/cp-12-1919-2016
Research article
 | 
29 Sep 2016
Research article |  | 29 Sep 2016

Impact of meltwater on high-latitude early Last Interglacial climate

Emma J. Stone, Emilie Capron, Daniel J. Lunt, Antony J. Payne, Joy S. Singarayer, Paul J. Valdes, and Eric W. Wolff

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (17 Jun 2016) by Hubertus Fischer
AR by Dan Lunt on behalf of the Authors (28 Jul 2016)  Author's response   Manuscript 
ED: Publish subject to technical corrections (18 Aug 2016) by Hubertus Fischer
AR by Dan Lunt on behalf of the Authors (07 Sep 2016)  Author's response   Manuscript 
Download
Short summary
Climate models forced only with greenhouse gas concentrations and orbital parameters representative of the early Last Interglacial are unable to reproduce the observed colder-than-present temperatures in the North Atlantic and the warmer-than-present temperatures in the Southern Hemisphere. Using a climate model forced also with a freshwater amount derived from data representing melting from the remnant Northern Hemisphere ice sheets accounts for this response via the bipolar seesaw mechanism.