Articles | Volume 11, issue 3
https://doi.org/10.5194/cp-11-425-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-425-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 3: Practical considerations, relaxed assumptions, and using tree-ring data to address the amplitude of solar forcing
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
R. Sundberg
Division of Mathematical Statistics, Department of Mathematics, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
H. Grudd
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
A. Hind
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Division of Mathematical Statistics, Department of Mathematics, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related authors
Katarina Lashgari, Gudrun Brattström, Anders Moberg, and Rolf Sundberg
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 225–248, https://doi.org/10.5194/ascmo-8-225-2022, https://doi.org/10.5194/ascmo-8-225-2022, 2022
Short summary
Short summary
This work theoretically motivates an extension of the statistical model used in so-called detection and attribution studies to structural equation modelling. The application of one of the models suggested is exemplified in a small numerical study, whose aim was to check the assumptions typically placed on ensembles of climate model simulations when constructing mean sequences. he result of this study indicated that some ensembles for some regions may not satisfy the assumptions in question.
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022, https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary
Short summary
The performance of a new statistical framework containing various structural equation modelling (SEM) models is evaluated in a pseudo-proxy experiment in comparison with the performance of statistical models used in many detection and attribution studies. Each statistical model was fitted to seven continental-scale regional temperature data sets. The results indicated the SEM specification is the most appropriate for describing the underlying latent structure of the simulated data analysed.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
Katarina Lashgari, Gudrun Brattström, Anders Moberg, and Rolf Sundberg
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 225–248, https://doi.org/10.5194/ascmo-8-225-2022, https://doi.org/10.5194/ascmo-8-225-2022, 2022
Short summary
Short summary
This work theoretically motivates an extension of the statistical model used in so-called detection and attribution studies to structural equation modelling. The application of one of the models suggested is exemplified in a small numerical study, whose aim was to check the assumptions typically placed on ensembles of climate model simulations when constructing mean sequences. he result of this study indicated that some ensembles for some regions may not satisfy the assumptions in question.
Katarina Lashgari, Anders Moberg, and Gudrun Brattström
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, https://doi.org/10.5194/ascmo-8-249-2022, https://doi.org/10.5194/ascmo-8-249-2022, 2022
Short summary
Short summary
The performance of a new statistical framework containing various structural equation modelling (SEM) models is evaluated in a pseudo-proxy experiment in comparison with the performance of statistical models used in many detection and attribution studies. Each statistical model was fitted to seven continental-scale regional temperature data sets. The results indicated the SEM specification is the most appropriate for describing the underlying latent structure of the simulated data analysed.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
Using a process-based dendroclimatic proxy system model in a data assimilation framework: a test case in the Southern Hemisphere over the past centuries
Investigating stable oxygen and carbon isotopic variability in speleothem records over the last millennium using multiple isotope-enabled climate models
Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium
Long-term Surface Temperature (LoST) database as a complement for GCM preindustrial simulations
Inconsistencies between observed, reconstructed, and simulated precipitation indices for England since the year 1650 CE
Testing the consistency between changes in simulated climate and Alpine glacier length over the past millennium
Temperature variability in the Iberian Range since 1602 inferred from tree-ring records
North American regional climate reconstruction from ground surface temperature histories
Comparison of simulated and reconstructed variations in East African hydroclimate over the last millennium
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, Eduardo Zorita, and Fernando Jaume-Santero
Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, https://doi.org/10.5194/cp-15-1099-2019, 2019
Short summary
Short summary
A database of North American long-term ground surface temperatures, from approximately 1300 CE to 1700 CE, was assembled from geothermal data. These temperatures are useful for studying the future stability of permafrost, as well as for evaluating simulations of preindustrial climate that may help to improve estimates of climate models’ equilibrium climate sensitivity. The database will be made available to the climate science community.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Hugues Goosse, Pierre-Yves Barriat, Quentin Dalaiden, François Klein, Ben Marzeion, Fabien Maussion, Paolo Pelucchi, and Anouk Vlug
Clim. Past, 14, 1119–1133, https://doi.org/10.5194/cp-14-1119-2018, https://doi.org/10.5194/cp-14-1119-2018, 2018
Short summary
Short summary
Glaciers provide iconic illustrations of past climate change, but records of glacier length fluctuations have not been used systematically to test the ability of models to reproduce past changes. One reason is that glacier length depends on several complex factors and so cannot be simply linked to the climate simulated by models. This is done here, and it is shown that the observed glacier length fluctuations are generally well within the range of the simulations.
Ernesto Tejedor, Miguel Ángel Saz, José María Cuadrat, Jan Esper, and Martín de Luis
Clim. Past, 13, 93–105, https://doi.org/10.5194/cp-13-93-2017, https://doi.org/10.5194/cp-13-93-2017, 2017
Short summary
Short summary
Through this study, and inferred from 316 series of tree-ring width, we developed a maximum temperature reconstruction that is significant for much of the Iberian Peninsula (IP). This reconstruction will not only help to understand the past climate of the IP but also serve to improve future climate change scenarios particularly affecting the Mediterranean area.
Fernando Jaume-Santero, Carolyne Pickler, Hugo Beltrami, and Jean-Claude Mareschal
Clim. Past, 12, 2181–2194, https://doi.org/10.5194/cp-12-2181-2016, https://doi.org/10.5194/cp-12-2181-2016, 2016
Short summary
Short summary
Within the framework of the PAGES NAm2k project, we estimated regional trends in the ground surface temperature change for the past 500 years in North America. The mean North American ground surface temperature history suggests a warming of 1.8 °C between preindustrial times and 2000. A regional analysis of mean temperature changes over the last 5 centuries shows that all regions experienced warming, but this warming displays large spatial variability and is more marked in high-latitude regions.
François Klein, Hugues Goosse, Nicholas E. Graham, and Dirk Verschuren
Clim. Past, 12, 1499–1518, https://doi.org/10.5194/cp-12-1499-2016, https://doi.org/10.5194/cp-12-1499-2016, 2016
Short summary
Short summary
This paper analyses global climate model simulations of long-term East African hydroclimate changes relative to proxy-based reconstructions over the last millennium. No common signal is found between model results and reconstructions as well as among the model time series, which suggests that simulated hydroclimate is mostly driven by internal variability rather than by common external forcing.
Cited articles
Allen, M. R. and Tett, S. F. B.: Checking for model consistency in optimal fingerprinting, Clim. Dynam., 15, 419–434, 1999.
Ammann, C. M., Genton, M. G., and Li, B.: Technical Note: Correcting for signal attenuation from noisy proxy data in climate reconstructions, Clim. Past, 6, 273–279, https://doi.org/10.5194/cp-6-273-2010, 2010.
Anchukaitis, K. J., D'Arrigo, R. D., Andreu-Hayles, L., Frank, D., Verstege, A., Curtis, A., Buckley, B. M., Jacoby, G. C., and Cook, E. R.: Tree-ring-reconstructed summer temperatures from northwestern North America during the last nine centuries, J. Climate, 26, 3001–3012, 2013.
Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J.: Solar irradiance during the last 1200 years based on cosmogenic nuclides, Tellus B, 52, 985–992, 2000.
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C.: Time series analysis: Forecasting and control, John Wiley & Sons, Hoboken, N. J., 4th Edn., 2007.
Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlén, W., Zetterberg, P., and Eronen, M.: Fennoscandian summers from AD 500: temperature changes on short and long timescales, Clim. Dynam., 7, 111–119, 1992.
Briffa, K. R., Osborn, T. J., and Schweingruber, F. H.: Large-scale temperature inferences from tree rings: a review, Global Planet. Change, 40, 11–26, 2004.
Briffa, K. R., Shishov, V. V., Melvin, T. M., Vaganov, E. A., Grudd, H., Hantemirov, R. M., Eronen, M., and Naurzbaev, M. M.: Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia, Philos. Trans. R. Soc. London, Ser. B, 353, 2269–2282, 2008.
Briffa, K. R., Melvin, T. M., Osborn, T. J., Hantemirov, R. M., Kirdyanov, A. V., Mazepa, V. S., Shiyatov, S. G., and Esper, J.: Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia, Quaternary. Sci. Rev., 72, 83–107, 2013.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850, J. Geophys. Res. Atmos., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006.
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J.: Summer temperature variations in the European Alps, A.D. 755–2004, J. Climate, 19, 5606–5623, 2006.
Büntgen, U., Kyncl, T., Ginzler, C., Jacks, D. S., Esper, J., Tegel, W., and Heussner, K.-U.: Filling the eastern European gap in millennium-long temperature reconstructions, P. Natl. Acad. Sci. USA, 110, 1773–1778, 2013.
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. M., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S., Kim, J., Krüger, K., Lee, Y.-Y., Manzini, E., McDaniel, B. A., Polvani, L., Reichler, T., Shaw, T. A., Sigmond, M., Son, S.-W., Toohey, M., Wilcox, L., Yoden, S., Christiansen, B., Lott, F., Shindell, D., Yukimoto, S., and Watanabe, S.: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models, J. Geophys. Res.-Atmos., 118, 2494–2505, https://doi.org/10.1002/jgrd.50125, 2013.
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., and Funkhouser, G.: The "segment length curse" in long tree-ring chronology development for palaeoclimatic studies, Holocene, 5, 229–237, 1995.
Cook, E. R., Buckley, M. M., D'Arrigo, R. D., and Peterson, M. J.: Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies, Clim. Dynam., 16, 79–91, 2000.
Cook, E. R., Palmer, J. G., and D'Arrigo, R. D.: Evidence for a "Medieval Warm Period" in a 1100 year tree-ring reconstruction of past austral summer temperatures in New Zealand, Geophys. Res. Lett., 29, 12-1–12-4, 2002.
Cook, E. R., Buckley, B. M., Palmer, J. G., Fenwick, P., Peterson, M. J., Boswijk, G., and Fowler, A.: Millennia-long tree-ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past, present and future, J. Quaternary Sci., 21, 689–699, 2006.
Cook, E. R., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M., Nakatsuka, T., and Sano, M.: Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E., Clim. Dynam., 41, 2957–2972, 2013.
D'Arrigo, R., Jacoby, G., Buckley, B., Sakulich, J., Frank, D., Wilson, R., Curtis, A., and Anchukaitis, K.: Tree growth and inferred temperature variability at the North American Arctic treeline, Global Planet. Change, 65, 71–82, 2009.
D'Arrigo, R. D., Wilson, R., and Jacoby, G.: On the long-term context for late twentieth century warming, J. Geophys. Res., 111, D03103, https://doi.org/10.1029/2005JD006352, 2006.
D'Arrigo, R. D., Wilson, R., and Anchukaitis, K. J.: Volcanic cooling signal in tree ring temperature records, J. Geophys. Res.-Atmos., 118, 9000–9010, https://doi.org/10.1002/jgrd.50692, 2013.
Dorado Liñán, I., Büntgen, U., González-Rouco, F., Zorita, E., Montávez, J. P., Gómez-Navarro, J. J., Brunet, M., Heinrich, I., Helle, G., and Gutiérrez, E.: Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations, Clim. Past, 8, 919–933, https://doi.org/10.5194/cp-8-919-2012, 2012.
Esper, J., Frank, D. C., Timonen, M., Zorita, E., Wilson, R. J. S., Luterbacher, J., Holzkamper, S., Fischer, N., Wagner, S., Nievergelt, D., Verstege, A., and Büntgen, U.: Orbital forcing of tree-ring data, Nature Climate Change, 2, 862–866, 2012.
Esper, J., Schneider, L., Krusic, P. J., Luterbacher, J., Büntgen, U., Timonen, M., Sirocko, F., and Zorita, E.: European summer temperature response to annually dated volcanic eruptions over the past nine centuries, B. Volcanol., 75, 1–14, 2013.
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013.
Franke, J., Frank, D., Raible, C. C., Esper, J., and Brönnimann, S.: Spectral biases in tree-ring climate proxies, Nature Climate Change, 3, 360–364, 2013.
Fritts, H. C.: Tree Rings and Climate, Academic Press, London, 1976.
Goosse, H., Crespin, E., Dubinkina, S., Loutre, M.-F., Mann, M. E., Renssen, H., Sallaz-Damaz, Y., and Shindell, D.: The role of forcing and internal dynamics in explaining the "Medieval Climate Anomaly", Clim. Dynam., 39, 2847–2866, 2012.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., and White, W.: Solar influences on climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Gunnarson, B. E., Linderholm, H. W., and Moberg, A.: Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures, Clim. Dynam., 36, 97–108, 2011.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Hasselmann, K.: Stochastic climate models. Part I. Theory, Tellus, 28, 473–485, 1976.
Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J.: Climate sensitivity constrained by temperature reconstructions over the past seven centuries, Nature, 440, 1029–1032, 2006.
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N., Smerdon, J., and Zorita, E.: Detection of human influence on a new, validated 1500-year temperature reconstruction, J. Climate, 20, 650–666, 2007.
Hegerl, G. C., Luterbacher, J., González-Rouco, F., Tett, S. F. B., Crowley, T., and Xoplaki, E.: Influence of human and natural forcing on European seasonal temperatures, Nat. Geosci., 4, 99–103, 2011.
Hind, A. and Moberg, A.: Past millennial solar forcing magnitude. A statistical hemispheric-scale climate model versus proxy data comparison, Clim. Dynam., 41, 2527–2537, 2013.
Hind, A., Moberg, A., and Sundberg, R.: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing, Clim. Past, 8, 1355–1365, https://doi.org/10.5194/cp-8-1355-2012, 2012.
Hughes, M. K.: Dendrochronology in climatology – the state of the art, Dendrochronologia, 20, 95–116, 2002.
Hughes, M. K., Swetnam, T. W., and Diaz, H. F.: Dendroclimatology, in: Progress and Prospects, Springer, Dordrecht, Heidelberg, London, New York, 2011.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M., Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects, Holocene, 19, 3–49, 2009.
Jones, P. D., Melvin, T. M., Harpham, C., Grudd, H., and Helama, S.: Cool north European summers and possible links to explosive volcanic eruptions, J. Geophys. Res.-Atmos., 118, 6259–6265, 2013.
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010.
Krivova, N. A., Balmaceda, L., and Solanki, S. K.: Reconstruction of solar total irradiance since 1700 from the surface magnetic flux, Astron. Astrophys., 467, 335–346, 2007.
Kutzbach, L., Thees, B., and Wilmking, M.: Identification of linear relationships from noisy data using errors-in-variables models – relevance for reconstruction of past climate from tree-ring and other proxy information, Climatic Change, 105, 155–177, 2011.
Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J., Rosenbloom, N., and Teng, H.: Last millennium climate and its variability in CCSM4, J. Climate, 26, 1085–1111, 2012.
Lockwood, M.: Shining a light on solar impacts, Nature Climate Change, 1, 98–99, 2011.
Luckman, B. and Wilson, R.: Summer temperatures in the Canadian Rockies during the last millennium: a revised record, Clim. Dynam., 24, 131–144, 2005.
Masson, D. and Knutti, R.: Spatial-scale dependence of climate model performance in the CMIP3 ensemble, J. Climate, 24, 2680–2692, 2011.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., and Timmermann, A.: Information from Paleoclimate Archives, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Matlab: Statistics Toolbox User's Guide R2008a, The MathWorks, Inc., Natick, MA, USA, 2008.
Melvin, T. M. and Briffa, K. R.: A "signal-free" approach to dendroclimatic standardisation, Dendrochronologia, 26, 71–86, 2008.
Melvin, T. M. and Briffa, K. R.: CRUST: Software for the implementation of regional chronology standardisation: Part 1. Signal-free RCS, Dendrochronologia, 32, 7–20, 2014.
Melvin, T. M., Grudd, H., and Briffa, K. R.: Potential bias in "updating" tree-ring chronologies using regional curve standardisation: re-processing 1500 years of Torneträsk density and ring-width data, Holocene, 23, 364–373, 2013.
Moberg, A. and Brattström, G.: Prediction intervals for climate reconstructions with autocorrelated noise – An analysis of ordinary least squares and measurement error methods, Palaeogeogr. Palaeocl., 308, 313–329, 2011.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set, J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
Osborn, T. J., Briffa, K. R., and Jones, P. D.: Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries, Dendrochronologia, 15, 89–99, 1997.
PAGES2k Network: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, 2013.
Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J. E., Neukom, R., Stevenson, S., Ackerley, D., Brown, J. R., Fischer, M. J., and van Ommen, T. D.: Paleoclimate data–model comparison and the role of climate forcings over the past 1500 years, J. Climate, 26, 6915–6936, 2013.
Schmidt, G. A.: Enhancing the relevance of palaeoclimate model/data comparisons for assessments of future climate change, J. Quaternary Sci., 25, 79–87, 2010.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schurer, A., Hegerl, G., Mann, M., Tett, S., and Phipps, S.: Separating forced from chaotic climate variability over the past millennium, J. Climate, 26, 6954–6973, 2013.
Schurer, A., Tett, S. F. B, and Hegerl, G. C.: Small influence of solar variability over the past millennium, Nat. Geosci., 7, 104–108, 2014.
Servonnat, J., Yiou, P., Khodri, M., Swingedouw, D., and Denvil, S.: Influence of solar variability, CO2 and orbital forcing between 1000 and 1850 AD in the IPSLCM4 model, Clim. Past, 6, 445–460, https://doi.org/10.5194/cp-6-445-2010, 2010.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.: Improvement to NOAA's historical merged land-ocean surface temperature analysis (1880–2006), J. Climate, 21, 2283–2296, 2008.
St. George, S. and Ault, T.: The imprint of climate within Northern Hemisphere trees, Quaternary. Sci. Rev., 89, 1–4, 2014.
Sueyoshi, T., Ohgaito, R., Yamamoto, A., Chikamoto, M. O., Hajima, T., Okajima, H., Yoshimori, M., Abe, M., O'ishi, R., Saito, F., Watanabe, S., Kawamiya, M., and Abe-Ouchi, A.: Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM, Geosci. Model Dev., 6, 819–836, https://doi.org/10.5194/gmd-6-819-2013, 2013.
Sundberg, R., Moberg, A., and Hind, A.: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 1: Theory, Clim. Past, 8, 1339–1353, https://doi.org/10.5194/cp-8-1339-2012, 2012.
Trouet, V. and van Oldenborgh, G. J.: KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology, Tree Ring Research, 69, 3–13, https://doi.org/10.3959/1536-1098-69.1.3, 2013.
Vyushin, D. I., Kushner, P. J., and Zwiers, F.: Modeling and understanding persistence of climate variability, J. Geophys. Res., 117, D21106, https://doi.org/10.1029/2012JD018240, 2012.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J., Küttel, M., Müller, S., Prentice, I., Solomina, O., Stocker, T., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, 2008.
Widmann, M., Goosse, H., van der Schrier, G., Schnur, R., and Barkmeijer, J.: Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium, Clim. Past, 6, 627–644, https://doi.org/10.5194/cp-6-627-2010, 2010.
Wilson, R., Wiles, G., D'Arrigo, R., and Zweck, C.: Cycles and shifts: 1300 years of multi-decadal temperature variability in the Gulf of Alaska, Clim. Dynam., 28, 425–440, 2007.
Wilson, R. J. S.: Eurasian Regional Composite Chronologies, Research report prepared for Rosanne D'Arrigo and Gordon Jacoby of the Lamont Doherty Earth Observatory (LDEO) Tree-Ring Laboratory, Columbia University, New York, 31 pp., 2004.
Short summary
Experiments with climate models can help to understand causes of past climate changes. We develop a statistical framework for comparing data from simulation experiments with temperature reconstructions for the last millennium. A combination of several external factors is found to explain a significant part of the observed variations, but our selection of data cannot tell which of two alternative choices of past solar forcing gives the best fit between simulations and reconstructions.
Experiments with climate models can help to understand causes of past climate changes. We...