Articles | Volume 11, issue 12
https://doi.org/10.5194/cp-11-1751-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-1751-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?
UMR CNRS TOTAL 5150 Laboratoire des Fluides Complexes et leurs Réservoirs, Université de Pau et des Pays de l'Adour, I.P.R.A., Avenue de l'Université BP 1155, 64013 PAU CEDEX, France
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
B. Bomou
Institut de Physique du Globe de Paris, 4 place Jussieu, 75005 Paris, France
LSCE/UVSQ/IPSL CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
D. J. J. van Hinsbergen
Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands
N. Carry
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
D. Marquer
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
Y. Donnadieu
LSCE/UVSQ/IPSL CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
G. Le Hir
Institut de Physique du Globe de Paris, 4 place Jussieu, 75005 Paris, France
B. Vrielynck
UMR 7193 – ISTEP (CNRS-UPMC), 4 place Jussieu, 75252 Paris CEDEX 05, France
A.-V. Walter-Simonnet
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
Related authors
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Gaëlle Barbotin, Michael Perk, Nicolas E. Beaudoin, Brice Lacroix, and E. Troy Rasbury
EGUsphere, https://doi.org/10.5194/egusphere-2024-2366, https://doi.org/10.5194/egusphere-2024-2366, 2024
Short summary
Short summary
We present an approach to U-Pb dating of carbonates using isotopic image maps. The maps are divided into squares called virtual spots. For each virtual spot, statistical values (mean, uncertainty) are used to determine the age. The user can modify the size and location of the virtual spots and select those that give the most robust age. This approach, applied to high spatial resolution images, makes it possible for the first time to obtain satisfactory ages on images as small as 100 µm x 100 µm.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Christian Paroissin, Pierre-Alexandre Grignard, Geoffrey Motte, Olivier Chailan, and Jean-Pierre Girard
Geochronology, 3, 67–87, https://doi.org/10.5194/gchron-3-67-2021, https://doi.org/10.5194/gchron-3-67-2021, 2021
Short summary
Short summary
A new methodology for the micron-scale uranium–lead dating of carbonate minerals is proposed. It is based on the extraction of ages directly from pixel images (< 1 mm2) obtained by laser ablation coupled to a mass spectrometer. The ages are calculated with a robust linear regression through the pixel values. This methodology is compared to existing approaches.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Gaëlle Barbotin, Michael Perk, Nicolas E. Beaudoin, Brice Lacroix, and E. Troy Rasbury
EGUsphere, https://doi.org/10.5194/egusphere-2024-2366, https://doi.org/10.5194/egusphere-2024-2366, 2024
Short summary
Short summary
We present an approach to U-Pb dating of carbonates using isotopic image maps. The maps are divided into squares called virtual spots. For each virtual spot, statistical values (mean, uncertainty) are used to determine the age. The user can modify the size and location of the virtual spots and select those that give the most robust age. This approach, applied to high spatial resolution images, makes it possible for the first time to obtain satisfactory ages on images as small as 100 µm x 100 µm.
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024, https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Short summary
Geodynamic models of mantle convection provide a powerful tool to study the structure and composition of the Earth's mantle. Comparing such models with other datasets is difficult. We explore the use of
configurational entropy, which allows us to quantify mixing in models. The entropy may be used to analyse the mixed state of the mantle as a whole and may also be useful to validate numerical models against anomalies in the mantle that are obtained from seismology and geochemistry.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Christian Paroissin, Pierre-Alexandre Grignard, Geoffrey Motte, Olivier Chailan, and Jean-Pierre Girard
Geochronology, 3, 67–87, https://doi.org/10.5194/gchron-3-67-2021, https://doi.org/10.5194/gchron-3-67-2021, 2021
Short summary
Short summary
A new methodology for the micron-scale uranium–lead dating of carbonate minerals is proposed. It is based on the extraction of ages directly from pixel images (< 1 mm2) obtained by laser ablation coupled to a mass spectrometer. The ages are calculated with a robust linear regression through the pixel values. This methodology is compared to existing approaches.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Yurui Zhang, Thierry Huck, Camille Lique, Yannick Donnadieu, Jean-Baptiste Ladant, Marina Rabineau, and Daniel Aslanian
Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, https://doi.org/10.5194/cp-16-1263-2020, 2020
Short summary
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
Alexis Plunder, Cédric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 9, 759–776, https://doi.org/10.5194/se-9-759-2018, https://doi.org/10.5194/se-9-759-2018, 2018
Short summary
Short summary
The thermal state of the Earth's crust determines how it reacts to tectonic forces and to fluid flow responsible for ore formation. We hypothesize that the angle between plate motion and convergent boundaries determines the thermal regime of subduction zones (where a plate goes under another one). Computer models and a geological reconstruction of Turkey were used to validate this hypothesis.
This research was done to validate a hypothesis made on the basis of nonquantitative field data.
Derya Gürer, Douwe J. J. van Hinsbergen, Murat Özkaptan, Iverna Creton, Mathijs R. Koymans, Antonio Cascella, and Cornelis G. Langereis
Solid Earth, 9, 295–322, https://doi.org/10.5194/se-9-295-2018, https://doi.org/10.5194/se-9-295-2018, 2018
Short summary
Short summary
Central and Eastern Anatolia (present-day Turkey) accommodated Africa–Eurasia convergence in Cenozoic times. As a result, the region underwent distributed deformation and rotation. We provide a paleomagnetic dataset from sedimentary basins and assess the timing and amount of rotations. The obtained rotation patterns together with known fault zones suggest that south-central Turkey represents a coherently counterclockwise-rotating domain.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
A. Pohl, Y. Donnadieu, G. Le Hir, J.-F. Buoncristiani, and E. Vennin
Clim. Past, 10, 2053–2066, https://doi.org/10.5194/cp-10-2053-2014, https://doi.org/10.5194/cp-10-2053-2014, 2014
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
D. J. J. van Hinsbergen, M. Mensink, C. G. Langereis, M. Maffione, L. Spalluto, M. Tropeano, and L. Sabato
Solid Earth, 5, 611–629, https://doi.org/10.5194/se-5-611-2014, https://doi.org/10.5194/se-5-611-2014, 2014
G. Le Hir, Y. Teitler, F. Fluteau, Y. Donnadieu, and P. Philippot
Clim. Past, 10, 697–713, https://doi.org/10.5194/cp-10-697-2014, https://doi.org/10.5194/cp-10-697-2014, 2014
Related subject area
Subject: Carbon Cycle | Archive: Modelling only | Timescale: Cenozoic
Ocean biogeochemistry in the warm climate of the late Paleocene
M. Heinze and T. Ilyina
Clim. Past, 11, 63–79, https://doi.org/10.5194/cp-11-63-2015, https://doi.org/10.5194/cp-11-63-2015, 2015
Cited articles
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., and Wortel, R.: Zagros orogeny: a subduction-dominated process, Geol. Mag., 148, 692–725, 2011.
Alt, J. C. and Teagle, D. A. H.: The uptake of carbon during alteration of ocean crust: Geochim. Cosmochim. Ac., 63, 1527–1535, 1999.
Alvarez, W.: Protracted continental collisions argue for continental plates driven by basal traction, Earth Planet. Sc. Lett., 296, 434–442, https://doi.org/10.1016/j.epsl.2010.05.030, 2010.
Barrier, E. and Vrielynck, B.: Paleotectonic Maps of the Middle East: Middle East Basins Evolution Programme, CCGM-CGMW, Paris, 2008.
Beck, R. A., Burbank, D. W., Sercombe, W. J., Olson, T. L., and Khan, A. M.: Organic carbon exhumation and global warming during the early Himalayan collision, Geology, 23, 387–390, https://doi.org/10.1130/0091-7613(1995)023<0387:OCEAGW>2.3.CO;2, 1995.
Becker, J. A., Bickle, M. J., Galy, A., and Holland, T. J. B.: Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs, Earth Planet. Sc. Lett., 265, 616–629, 2008.
Beerling, D. J. and Royer, D. L.: Convergent cenozoic CO2 history, Nat. Geosci., 4, 418–420, 2011.
Bellon, H., Maury, R. C., Sutanto, Soeria-Atmadja, R., Cotten, J., and Polvé, M.: 65 m.y.-long magmatic activity in Sumatra (Indonesia), from Paleocene to present, B. Soc. Geol. Fr., 175, 61–72, 2004.
Berner, R. A.: The Phanerozoic Carbon Cycle: CO2 and O2, Oxford University Press, New-York, 150 pp., 2004.
Berner, R. A.: Inclusion of weathering of volcanic rocks in the GEOCARBSULF model, Am. J. Sci., 306, 295–302, 2006.
Besse, J. and Courtillot, V.: Apparent and true polar wander and the geometry of the geomag- netic field over the last 200 Myr, J. Geophys. Res., 107, 2300, https://doi.org/10.1029/2000JB000050, 2002.
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation plate-tectonic reconstructions using GPlates, in: Geoinformatics: Cyberinfrastructure for the Solid Earth, edited by: Keller, G. R. and Baru, C., Cambridge University Press, Cambridge, 95–114, 2011
Brookfield, M. E.: The Himalayan passive margin from Precambrian to Cretaceous times, Sediment. Geol., 84, 1–35, 1993.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216, https://doi.org/10.1029/2008PA001683, 2009.
Dercourt, J., Ricou, L. E., and Vrielynck, B.: Atlas Tethys Palaeoenvironmental Maps, Gauthier Villars, CGMW, Paris, 307 pp., 14 maps, 1993.
Dessert, C., Dupré, B., Gaillardet, J., François, L. M., and Allègre, C. J.: Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257–273, 2003.
Donnadieu, Y., Goddéris, Y., Ramstein, G., Nedelec, A., and Meert, J. G.: A "snowball Earth" climate triggered by continental break-up through changes in runoff, Nature, 418, 303–306, 2004.
Donnadieu, Y., Goddéris, Y., Pierrehumbert, R., Fluteau, F., and Dromart, G.: Pangea break up and Mesozoic climatic evolution simulated by the GEOCLIM model, Geochem. Geophy. Geosy., 7, Q11019, https://doi.org/10.1029/2006GC001278, 2006.
Dupont-Nivet, G., Lippert, P., van Hinsbergen, D. J. J., Meijers, M. J. M., and Kapp, P.: Paleolatitude and age of the Indo-Asia collision: paleomagnetic constraints, Geophys. J. Int., 182, 1189–1198, 2010.
Edmond, J. M. and Huh, Y.: Non-steady state carbonate recycling and implications for the evolution of atmospheric pCO2, Earth Planet. Sc. Lett., 216, 125–139, https://doi.org/10.1016/S0012-821X(03)00510-7, 2003.
Eldholm, O. and Thomas, E.: Environmental impact of volcanic margin formation, Earth Planet. Sc. Lett., 117, 319–329, https://doi.org/10.1016/0012-821X(93)90087-P, 1993.
Engebretson, D. C., Kelley, K. P., Cashman, H. J., and Richards, M. A.: 180 million years of subduction, GSA Today, 2, 93–95, 1992.
England, P. C. and Katz, R. F.: Melting above the anhydrous solidus controls the location of volcanic arcs, Nature, 467, 700–703, https://doi.org/10.1038/nature09417, 2010.
Evans, M. J., Derry, L. A., and France-Lanord, C.: Degassing of metamorphic carbon dioxide from the Nepal Himalaya, Geochem. Geophy. Geosy., 9, Q04021, https://doi.org/10.1029/2007GC001796, 2008.
Eyuboglu, Y., Santosh, M., Dudas, F. O., Chung, S. L., and Akaryalı, E.: Migrating magmatism in a continental arc: geodynamics of the Eastern Mediterrenean revisited, J. Geodyn., 52, 2–15, 2011.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late Cretaceous oceans – a 55 m.y. record of Earth's temperature and carbon cycle, Geology, 40, 107–110, https://doi.org/10.1130/G32701.1, 2012.
Froelich, F. and Misra, S.: Was the Late Paleocene–Early Eocene hot because Earth was flat? An ocean lithium isotope view of mountain building, continental weathering, carbon dioxide, and Earth's cenozoic climate, Oceanography, 27, 36–49, https://doi.org/10.5670/oceanog.2014.06, 2014
Gaina, C., van Hinsbergen, D. J. J., and Spakman, W.: Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography, Tectonics, 34, 875–906, https://doi.org/10.1002/2014TC003780, 2015.
Garzanti, E. and Hu, X.: Latest Cretaceous Himalayan tectonics: obduction, collision or Deccan-related uplift?, Gondwana Res., 28, 165–178, 2014.
Gnos, E., Immenhauser, A., and Peters, T.: Late Cretaceous/Early Tertiary convergence between the Indian and Arabian plates recorded in ophiolitesand related sediments, Tectonophysics, 271, 1–20, 1997.
Goddéris, Y. and Joachimski, M. M.: Global change in the Late Devonian: modelling the Frasnian–Famennian short-term carbon isotope excursions, Palaeogeogr. Palaeocl., 202, 309–329, 2004.
Goddéris, Y., Donnadieu, Y., Tombozafy, M., and Dessert, C.: Shield effect on continental weathering: implication for climatic evolution of the Earth at the geological time-scale, Geoderma, 145, 439–448, 2008.
Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., and Nardin, E.: The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate, Earth-Sci. Rev., 128, 122–138, 2014.
Gorman, P. J., Kerrick, D. M., and Connolly, J. A. D.: Modeling open system metamorphic decarbonation of subducting slabs, Geochem. Geophy. Geosy., 7, Q04007, https://doi.org/10.1029/2005GC001125, 2006.
Guillot, S., Maheo, G., de Sigoyer, J., Hattori, K. H., and Pecher, A.: Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks, Tectonophysics, 451, 225–241, 2008.
Hall, R.: Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean, Tectonophysics, 570–571, 1–41, https://doi.org/10.1016/j.tecto.2012.04.021, 2012.
Hancock, H. J. L., Dickens, G. R., Thomas, E., and Blake, K. L.: Reappraisal of early Paleogene CCD curves: foraminiferal assemblages and stable carbon isotopes across the carbonate facies of Perth Abyssal Plain, Int. J. Earth Sci., 96, 925–946, https://doi.org/10.1007/s00531-006-0144-0, 2007.
Hébert, R., Bezard, R., Guilmette, C., Dostal, J., Wang., C. S., and Liu, Z. F.: The Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa syntaxes, Southern Tibet: a syntesis of petrology, geochemistry and ages with incidences on geodynamic reconstructions of the Neo-Tethys, in: Plate Tectonics of Asia: Geological and Geophysical Constraints, edited by: Zhao, X. X., Xiao, W. J., Wang., C. S., and Hébert, R., Gondwana Res., 22, 377–397, 2012.
Heine, C., Müller, R. D., Gaina, C., Clift, P., Kuhnt, W., Wang, P., and Hayes, D.: Reconstructing the lost eastern Tethys Ocean Basin: Convergence history of the SE Asian margin and marine gateways, Geophysical Monograph, 149, 37–54, https://doi.org/10.1029/149GM03, 2004.
Hilting, A. K., Kump, L. R., and Bralower, T. J.: Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump, Paleoceanography, 23, PA3222, https://doi.org/10.1029/2007PA001458, 2008.
Hilton, D. R., Fischer, T. P., and Marty, B.: Noble gases and volatile recycling at subduction zones, in: Noble Gases in Cosmochemistry and Geochemistry, edited by: Porcelli, D., Ballentine, C. J., and Wieler, R., Mineralogical Society of America, Washington, D.C., 319–370, 2002.
Hodell, D. A., Kamenov, G. D., Hathorne, E. C., Zachos, J. C., Röhl, U., and Westerhold, T.: Variations in the strontium isotope composition of seawater during the Paleocene and early Eocene from ODP Leg 208 (Walvis Ridge), Geochem. Geophy. Geosy., 8, Q09001, https://doi.org/10.1029/2007GC001607, 2007.
Hu, X., Wang, J., BouDagher-Fadel, M., Garzanti, E., and An, W.: New insights into the timing of the India–Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet, Gondwana Res., https://doi.org/10.1016/j.gr.2015.02.007, in press, 2015.
Huang, W., van Hinsbergen, D. J. J., Maffione, M., Orme, D., Dupont-Nivet, G., Guilmette, C., Ding, L., Guo, Z., and Kapp, P.: Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: evidence from paleomagnetism, sediment provenance, and stratigraphy, Earth Planet. Sc. Lett., 415, 142–153, 2015a.
Huang, W., van Hinsbergen, D. J. J., Lippert, P. C., Guo, Z., Dupont-Nivet, G., and Kapp, P.: Paleomagnetic tests of tectonic reconstructions of the India–Asia collision zone, Geophys. Res. Lett., 42, 2642–2649, https://doi.org/10.1002/2015GL063749, 2015b.
Jacob, R.: Low Frequency Variability in a Simulated Atmosphere Ocean System, PhD thesis, University of Wisconsin, Madison, USA, 1997.
Ji, W.-Q., Wu, F.-Y., Chung, S.-L., Li, J.-X, and Liu, C.-Z.: Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet, Chem. Geol., 262, 229–245, https://doi.org/10.1016/j.chemgeo.2009.01.020, 2009.
Johnston, K. B. F., Turchyn, A. V., and Edmonds, M.: Decarbonation efficiency in subduction zones: implications for warm Cretaceous climates, Earth Planet. Sc. Lett., 303, 143–152, https://doi.org/10.1016/j.epsl.2010.12.049, 2011.
Kazmin, V. G.: Collision and rifting in the Tethys Ocean: geodynamic implications, Tectonophysics, 123, 371–384, 1991.
Kent, D. V. and Muttoni, G.: Equatorial convergence of India and early Cenozoic climate trends, P. Natl. Acad. Sci. USA, 105, 16065–16070, https://doi.org/10.1073/pnas.0805382105, 2008.
Kent, D. V. and Muttoni, G.: Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt, Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, 2013.
Kerrick, D. M. and Caldeira, K.: Paleoatmospheric consequences of CO2 released during early Cenozoic regional metamorphism in the Tethyan orogeny, Chem. Geol., 108, 201–230, https://doi.org/10.1016/0009-2541(93)90325-D, 1993.
Kerrick, D. M. and Caldeira, K.: Metamorphic CO2 degassing from orogenic belts, Chem. Geol., 145, 213–232, https://doi.org/10.1016/S0009-2541(97)00144-7, 1998.
Komar, N., Zeebe, R. E., and Dickens, G. R.: Understanding long-term carbon cycle trends: the late Paleocene through the early Eocene, Paleoceanography, 28, 650–662, https://doi.org/10.1002/palo.20060, 2013.
Kroeger, K. F. and Funnel, R. H.: Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks: a potential climate feedback mechanism?, Geophys. Res. Lett., 39, L04701, https://doi.org/10.1029/2011GL050345, 2012.
Kroenke, L., Berger, W., Janecek, T., Backman, J., Bassinot, F., Corfield, R., Delaney, M., Hagen, R., Jansen, E., Krissek, L., Lange, C., Leckie, M., Lind, I., Mahoney, J., Marsters, J., Mayer, L., Mosher, D., Musgrave, R., Prentice, M., Resig, J., Schmidt, H., Stax, R., Storey, M., Takayama, T., Tarduno, J. A., Wilkins. R. H., and Wu, G.: Proceedings of the Ocean Drilling Program, Initial Reports, vol. 130, Ocean Drilling Program, College Station, Texas, https://doi.org/10.2973/odp.proc.ir.130.1991, 1991.
Kurtz, A., Kump, L. R., Arthur, M. A., Zachos, J. C., and Paytan, A.: Early Cenozoic decoupling of the global carbon and sulfur cycles, Paleoceanography, 18, 1090, https://doi.org/10.1029/2003PA000908, 2003.
Lee, C.-T. A., Shen, B., Slotnick, B. S., Liao, K., Dickens, G. R., Yokoyama, Y., Lenardic, A., Dasgupta, R., Jellinek, M., Lackey, J. S., Schneider, T., and Tice, M. M.: Continental arc–island arc fluctuations, growth of crustal carbonates, and long-term climate change, Geosphere, 9, 21–36, https://doi.org/10.1130/GES00822.1, 2013.
Leech, M. L., Singh, S., Jain, A. K., Klemperer, S. L., and Manickavasagam, R. M.: The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya, Earth Planet. Sc. Lett., 234, 83–97, 2005.
Lefebvre, V., Donnadieu, Y., Goddéris, Y., Fluteau, F., and Hubert-Theìou, L.: Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic?, Earth Planet. Sc. Lett., 371–372, 203–211, 2013.
Leon-Rodriguez, L. and Dickens, G. R.: Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean, Palaeogeogr. Palaeocl., 298, 409–420, 2010.
Liu, G. and Einsele, G.: Sedimentary history of the Tethyan basin in the Tibetan Himalayas, Geol. Rundsch., 83, 32–61, 1994.
Marquer, D., Mercolli, I., and Peters, T.: Early Cretaceous intra-oceanic rifting in the proto-Indian Ocean recorded in the Masirah Ophiolite, Sultanate of Oman, Tectonophysics, 292, 1–16, 1998.
Massonne, H.-J.: Phase relations and dehydration behaviour of calcareous sediments at very-low to low grade metamorphic conditions, Period. Mineralogia, 79, 21-43, 2010.
McCourt, W., M. Crow, E. Cobbing, and Amin, T.: Mesozoic and Cenozoic plutonic evolution of SE Asia: evidence from Sumatra, Indonesia, Special Publications, Geol. Soc. London, 106, 321–335, 1996.
McQuarrie, N. and van Hinsbergen, D. J. J.: Retro-deforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction, Geology, 41, 315–318, https://doi.org/10.1130/G33591.1, 2013.
Menzies, M. A., Klemperer, S. L., Ebinger, C. J., and Baker, J.: Characteristics of volcanic rifted margins, in: Volcanic Rifted Margins, 362, edited by: Menzies, M. A., Klemperer, S. L., Ebinger, C. J., and Baker, J., Geological Society of America Special Paper, 1–14, https://doi.org/10.1130/0-8137-2362-0.1, 2002.
Misra, S. and Froelich, P. N.: Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering, Science, 335, 818–823, https://doi.org/10.1126/science.1214697, 2012.
Mouthereau, F.: Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia–Eurasia convergence, Geol. Mag., 148, 726–738, https://doi.org/10.1017/s0016756811000306, 2011.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M., and Berra, F.: The drift history of Iran from the Ordovician to the Triassic, in: South Caspian to Central Iran Basins, edited by: Brunet, M.-F., Wilmsen, M., and Granath, J. W., Special Publictions, Geological Society of London, 7–29, 2009.
Najman, Y., Oliver, G., Parrish, R., Vezzoli, G., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., and Liebke, U.: Timing of India–Asia collision: geological, biostratigraphic, and palaeomagnetic constraints, J. Geophys. Res.-Sol. Ea., 115, B12416, https://doi.org/10.1029/2010JB007673, 2010.
Okay, A. I. and Şhintürk, Ö.: Geology of the Eastern Pontides, in: Regional and Petroleum Geology of the Black Sea and Surrounding Region, edited by: Robinson, A. G., AAPG Memoir, 68, 291–311, 1997.
Orme, D. A., Carrapa, B., and Kapp, P. K.: Sedimentology, provenance and geochronology of the western Xigaze Forearc, Southern Tibet, Basin Res., 27, 387–411, https://doi.org/10.1111/bre.12080, 2014.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K. M., Evans, H., Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore, T. C., Murphy, B. H., Murphy, D.P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609–614, 2012.
Park, J. and Royer, D. L.: Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity, Am. J. Sci., 311, 1–26, https://doi.org/10.2475/01.2011.01, 2011.
Peacock, S. M.: Thermal structure and metamorphic evolution of subducting slabs, in: Inside the Subduction Factory, edited by: Eiler, J. M., Geophysical Monograph Ser. American Geophysical Union, Washington, D.C., 7–22, 2003.
Raymo, M. E. and Ruddiman, W. F.: Tectonic forcing of late Cenozoic climate, Nature, 359, 117–122, https://doi.org/10.1038/359117a0, 1992.
Reagan, M. K., McClelland, W. C., Girard, G., Goff, K. R., Peate, D. W., Ohara, Y., and Stern, R. J.: The geology of the southern Mariana fore-arc crust: implications for the scale of Eocene volcanism in the western Pacific, Earth Planet. Sc. Lett., 380, 41–51, https://doi.org/10.1016/j.epsl.2013.08.013, 2013.
Ricou, L. M.: Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia, Geodin. Acta, 7, 169–218, 1994.
Rohrmann, A., Kapp, P., Carrapa, B., Reiners, P. W., Guynn, J., Ding., L., and Heizler, M.: Thermochronologic evidence for plateau formation in central Tibet by 45 Ma, Geology, 40, 187–190, https://doi.org/10.1130/G32530.1, 2012.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Relative motions of Africa, Iberia and Europe during Alpine orogeny, Tectonophysics, 359, 117–129, https://doi.org/10.1016/S0040-1951(02)00442- 0, 2002.
Sanchez, V. I., Murphy, M. A., Robinson, A. C., Lapen, T. L., and Heizler, M. T.: Tectonic evolution of the India–Asia suture zone since Middle Eocene time, Lopukangri area, south-central Tibet, J. Asian Earth Sci., 62, 205–220, 2013.
Sciunnach, D. and Garzanti, E.: Subsidence history of the Tethys Himalaya, Earth-Sci. Rev., 25, 179–198, 2012.
Searle, M. and Cox, J.: Tectonic setting, origin, and obduction of the Oman ophiolite, Geol. Soc. Am. Bull., 111, 104–122, 1999.
Sengör A. M. C., Altiner, D., Cin, A., Ustaömer T., and Hsü, K. J.: Origin and assembly of the Tethyside orogenic collapse at the expense of Gondwana Land, in: Gondwana and Tethys, edited by: Audley-Charles, M. G. and Hallam, A., Special Publications, Geological Society of London, 37, 119–181, 1988.
Shackleton, N. J. and Kennett, J. P.: Paleo-temperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281, Initial Rep. Deep Sea, 29, 743–755, 1975.
Skelton, A.: Flux rates for water and carbon during greenschist facies metamorphism, Geology, 39, 43–46, https://doi.org/10.1130/G31328.1, 2011.
Slotnick, B. S., Lauretano, V., Backman, J., Dickens, G. R., Sluijs, A., and Lourens, L.: Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean, Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, 2015.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33, https://doi.org/10.1016/S0012-821X(01)00588-X, 2002.
Sykes, T. J. S.: A correction for sediment load upon the ocean floor: uniform versus varying sediment density estimations – implications for isostatic correction, Mar. Geol., 133, 35–49, https://doi.org/10.1016/0025-3227(96)00016-3, 1996.
Tera, F., Brown, L., Morris, J., Sacks, I. S., Klein, J., and Middleton, R.: Sediment incorporation in island-arc magmas: inferences from 10Be, Geochim. Cosmochim. Ac., 50, 535–550, 1986.
Turner, S. P.: On the time-scales of magmatism at island-arc volcanoes, Philos. T. Roy. Soc. A, 360, 2853–2871, https://doi.org/10.1098/rsta.2002.1060, 2002.
van Hinsbergen, D. J. J., Hafkenscheid, E., Spakman, W., Meulenkamp, J. E., and Wortel, M. J. R.: Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece, Geology, 33, 325–328, 2005.
van Hinsbergen, D. J. J., Steinberger, B, Doubrovine, P. V., and Gassmöller, R.: Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision, J. Geophys. Res., 116, B06101, https://doi.org/10.1029/2010JB008051, 2011a.
van Hinsbergen, D. J. J., Kapp, P., Dupont-Nivet, G., Lippert, P. C., DeCelles, P., and Torsvik, T.: Restoration of Cenozoic deformation in Asia and the size of Greater India, Tectonics, 30, TC5003, https://doi.org/10.1029/2010JB008051, 2011b.
van Hinsbergen, D. J. J., Lippert, P. C., Dupont-Nivet, G., McQuarrie, N., Doubrovine, P. V., Spakman, W., and Torsvik, T. H.: Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia, P. Natl. Acad. Sci. USA, 109, 7659–7664, https://doi.org/10.1073/pnas.1117262109, 2012.
Van Der Meer, D. G., Zeebe, R. E., van Hinsbergen, D. J. J., Sluijs, A., Spakman, W., and Torsvik, T. H.: Plate tectonic controls on atmospheric CO2 levels since the Triassic, P. Natl. Acad. Sci. USA, 111, 4380–4385, https://doi.org/10.1073/pnas.1315657111, 2014.
Vigier, N. and Goddéris, Y.: A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate, Clim. Past, 11, 635–645, https://doi.org/10.5194/cp-11-635- 2015, 2015
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776–9782, 1981.
Watts, A. B. and Thorne, J. A.: Tectonics, global changes in sea-level and their relationship to stratigraphic sequences at the U.S. Atlantic continental margin, Mar. Petrol. Geol., 1, 319–339, 1984.
Whittaker, J. M., Müller, R. D., Sdrolias, M., and Heine, C.: Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous, Earth Planet. Sc. Lett., 255, 445–457, https://doi.org/10.1016/j.epsl.2006.12.031, 2007.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics: year of planet Earth, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zheng, Y.-F.: Metamorphic chemical geodynamics in continental subduction zones, Chem. Geol., 328, 5–48, 2012.
Short summary
The impact of Neo-Tethys closure on early Cenozoic warming has been tested. First, the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin has been calculated. Second, corresponding pCO2 have been tested using the GEOCLIM model. Despite high CO2 production, maximum pCO2 values (750ppm) do not reach values inferred from proxies. Other cited sources of excess CO2 such as the NAIP are also below fluxes required by GEOCLIM to fit with proxy data.
The impact of Neo-Tethys closure on early Cenozoic warming has been tested. First, the volume of...