Articles | Volume 11, issue 12
https://doi.org/10.5194/cp-11-1751-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-1751-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?
UMR CNRS TOTAL 5150 Laboratoire des Fluides Complexes et leurs Réservoirs, Université de Pau et des Pays de l'Adour, I.P.R.A., Avenue de l'Université BP 1155, 64013 PAU CEDEX, France
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
B. Bomou
Institut de Physique du Globe de Paris, 4 place Jussieu, 75005 Paris, France
LSCE/UVSQ/IPSL CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
D. J. J. van Hinsbergen
Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands
N. Carry
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
D. Marquer
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
Y. Donnadieu
LSCE/UVSQ/IPSL CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
G. Le Hir
Institut de Physique du Globe de Paris, 4 place Jussieu, 75005 Paris, France
B. Vrielynck
UMR 7193 – ISTEP (CNRS-UPMC), 4 place Jussieu, 75252 Paris CEDEX 05, France
A.-V. Walter-Simonnet
UMR 6249 Chrono-environnement (CNRS-Université de Franche-Comté), 25030 Besançon CEDEX, France
Viewed
Total article views: 3,637 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Jul 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,998 | 1,470 | 169 | 3,637 | 137 | 142 |
- HTML: 1,998
- PDF: 1,470
- XML: 169
- Total: 3,637
- BibTeX: 137
- EndNote: 142
Total article views: 2,786 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Dec 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,510 | 1,132 | 144 | 2,786 | 126 | 126 |
- HTML: 1,510
- PDF: 1,132
- XML: 144
- Total: 2,786
- BibTeX: 126
- EndNote: 126
Total article views: 851 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Jul 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
488 | 338 | 25 | 851 | 11 | 16 |
- HTML: 488
- PDF: 338
- XML: 25
- Total: 851
- BibTeX: 11
- EndNote: 16
Cited
19 citations as recorded by crossref.
- Geochemical characterization of ophiolites in the Alpine-Himalayan Orogenic Belt: Magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust H. Furnes et al. 10.1016/j.earscirev.2020.103258
- The Subducting Slab as a Chromatographic Column: Regimes of Sub‐Solidus Mass Transport as a Function of Lithospheric Hydration State, With Special Reference to the Fate of Carbonate X. Zhong & M. Galvez 10.1029/2021JB023851
- Chalcophile element (Cu, Zn, Pb) and Ga distribution patterns in ancient and modern oceanic crust and their sources: Petrogenetic modelling and a global synthesis H. Furnes et al. 10.1016/j.gr.2022.05.008
- Potential links between continental rifting, CO2 degassing and climate change through time S. Brune et al. 10.1038/s41561-017-0003-6
- A sink- or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution Y. GODDÉRIS & Y. DONNADIEU 10.1017/S0016756817001054
- Magmatic Forcing of Cenozoic Climate? P. Sternai et al. 10.1029/2018JB016460
- Dynamic link between Neo-Tethyan subduction and atmospheric CO2 changes: insights from seismic tomography reconstruction H. Shen et al. 10.1016/j.scib.2023.03.007
- Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings H. Furnes & I. Safonova 10.1016/j.gsf.2018.12.007
- Successive accretions of future allochthonous terranes and multiple subduction zone jumps: Implications for Tethyan evolution Z. Yan et al. 10.1130/B37263.1
- Sediment control on subduction plate speeds W. Behr & T. Becker 10.1016/j.epsl.2018.08.057
- High-temperature overprint in (U)HPM rocks exhumed from subduction zones; A product of isothermal decompression or a consequence of slab break-off (slab rollback)? S. Faryad & S. Cuthbert 10.1016/j.earscirev.2020.103108
- Early Paleogene continental temperature patterns and gradients over eastern Eurasia O. Bondarenko & T. Utescher 10.1016/j.jseaes.2022.105401
- Tectonic evolution and geodynamics of the Neo-Tethys Ocean R. Zhu et al. 10.1007/s11430-021-9845-7
- Linking rapid eruption of the Linzizong volcanic rocks and Early Eocene Climatic Optimum (EECO): Constraints from the Pana Formation in the Linzhou and Pangduo basins, southern Tibet S. Zhang et al. 10.1016/j.lithos.2023.107159
- Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene G. Suan et al. 10.1130/G38547.1
- New perspectives on deep carbon cycling W. Sun 10.1007/s11430-024-1364-0
- A warm or a cold early Earth? New insights from a 3-D climate-carbon model B. Charnay et al. 10.1016/j.epsl.2017.06.029
- 地球深部碳循环新视角 卫. 孙 10.1360/SSTe-2024-0062
- Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma F. Poblete et al. 10.1016/j.earscirev.2021.103508
19 citations as recorded by crossref.
- Geochemical characterization of ophiolites in the Alpine-Himalayan Orogenic Belt: Magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust H. Furnes et al. 10.1016/j.earscirev.2020.103258
- The Subducting Slab as a Chromatographic Column: Regimes of Sub‐Solidus Mass Transport as a Function of Lithospheric Hydration State, With Special Reference to the Fate of Carbonate X. Zhong & M. Galvez 10.1029/2021JB023851
- Chalcophile element (Cu, Zn, Pb) and Ga distribution patterns in ancient and modern oceanic crust and their sources: Petrogenetic modelling and a global synthesis H. Furnes et al. 10.1016/j.gr.2022.05.008
- Potential links between continental rifting, CO2 degassing and climate change through time S. Brune et al. 10.1038/s41561-017-0003-6
- A sink- or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution Y. GODDÉRIS & Y. DONNADIEU 10.1017/S0016756817001054
- Magmatic Forcing of Cenozoic Climate? P. Sternai et al. 10.1029/2018JB016460
- Dynamic link between Neo-Tethyan subduction and atmospheric CO2 changes: insights from seismic tomography reconstruction H. Shen et al. 10.1016/j.scib.2023.03.007
- Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings H. Furnes & I. Safonova 10.1016/j.gsf.2018.12.007
- Successive accretions of future allochthonous terranes and multiple subduction zone jumps: Implications for Tethyan evolution Z. Yan et al. 10.1130/B37263.1
- Sediment control on subduction plate speeds W. Behr & T. Becker 10.1016/j.epsl.2018.08.057
- High-temperature overprint in (U)HPM rocks exhumed from subduction zones; A product of isothermal decompression or a consequence of slab break-off (slab rollback)? S. Faryad & S. Cuthbert 10.1016/j.earscirev.2020.103108
- Early Paleogene continental temperature patterns and gradients over eastern Eurasia O. Bondarenko & T. Utescher 10.1016/j.jseaes.2022.105401
- Tectonic evolution and geodynamics of the Neo-Tethys Ocean R. Zhu et al. 10.1007/s11430-021-9845-7
- Linking rapid eruption of the Linzizong volcanic rocks and Early Eocene Climatic Optimum (EECO): Constraints from the Pana Formation in the Linzhou and Pangduo basins, southern Tibet S. Zhang et al. 10.1016/j.lithos.2023.107159
- Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene G. Suan et al. 10.1130/G38547.1
- New perspectives on deep carbon cycling W. Sun 10.1007/s11430-024-1364-0
- A warm or a cold early Earth? New insights from a 3-D climate-carbon model B. Charnay et al. 10.1016/j.epsl.2017.06.029
- 地球深部碳循环新视角 卫. 孙 10.1360/SSTe-2024-0062
- Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma F. Poblete et al. 10.1016/j.earscirev.2021.103508
Saved (final revised paper)
Saved (preprint)
Latest update: 23 Nov 2024
Short summary
The impact of Neo-Tethys closure on early Cenozoic warming has been tested. First, the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin has been calculated. Second, corresponding pCO2 have been tested using the GEOCLIM model. Despite high CO2 production, maximum pCO2 values (750ppm) do not reach values inferred from proxies. Other cited sources of excess CO2 such as the NAIP are also below fluxes required by GEOCLIM to fit with proxy data.
The impact of Neo-Tethys closure on early Cenozoic warming has been tested. First, the volume of...