Articles | Volume 11, issue 9
https://doi.org/10.5194/cp-11-1165-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-1165-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
A. Ganopolski
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Related authors
Christine Kaufhold, Matteo Willeit, Bo Liu, and Andrey Ganopolski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2976, https://doi.org/10.5194/egusphere-2024-2976, 2024
Short summary
Short summary
This study simulates long-term future climate scenarios to examine how long CO2 emissions will persist in the atmosphere. It shows that the effectiveness of carbon removal processes varies with the amount emitted. The removal of CO2 through silicate weathering is faster than previously thought, leading to a quicker reduction over time. The combined behaviour of different carbon cycle processes emphasizes the need to include all of them in models, as to better predict long-term atmospheric CO2.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Matteo Willeit and Andrey Ganopolski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1482, https://doi.org/10.5194/egusphere-2024-1482, 2024
Short summary
Short summary
Using a fast Earth system model we trace the stability landscape of the Atlantic Meridional Overturning Circulation (AMOC) in the combined freshwater forcing – atmospheric CO2 space. We find four different AMOC states that are stable under different conditions and a generally increasing equilibrium AMOC strength with increasing CO2 concentrations.
Matteo Willeit, Andrey Ganopolski, Neil R. Edwards, and Stefan Rahmstorf
EGUsphere, https://doi.org/10.5194/egusphere-2024-819, https://doi.org/10.5194/egusphere-2024-819, 2024
Short summary
Short summary
Using an Earth system model that can simulate Dansgaard-Oeschger-like events, we show that the conditions under which millenial-scale climate variability occurs is related to the integrated surface buoyancy flux over the northern North-Atlantic. This newly defined buoyancy measure explains why millenial-scale climate variability arising from abrupt changes in the Atlantic Meridional Overturning Circulation occurred for mid-glacial conditions but not for interglacial or full glacial conditions.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Takahito Mitsui, Matteo Willeit, and Niklas Boers
Earth Syst. Dynam., 14, 1277–1294, https://doi.org/10.5194/esd-14-1277-2023, https://doi.org/10.5194/esd-14-1277-2023, 2023
Short summary
Short summary
The glacial–interglacial cycles of the Quaternary exhibit 41 kyr periodicity before the Mid-Pleistocene Transition (MPT) around 1.2–0.8 Myr ago and ~100 kyr periodicity after that. The mechanism generating these periodicities remains elusive. Through an analysis of an Earth system model of intermediate complexity, CLIMBER-2, we show that the dominant periodicities of glacial cycles can be explained from the viewpoint of synchronization theory.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Johanna Beckmann, Mahé Perrette, Sebastian Beyer, Reinhard Calov, Matteo Willeit, and Andrey Ganopolski
The Cryosphere, 13, 2281–2301, https://doi.org/10.5194/tc-13-2281-2019, https://doi.org/10.5194/tc-13-2281-2019, 2019
Short summary
Short summary
Submarine melting (SM) has been discussed as potentially triggering the recently observed retreat at outlet glaciers in Greenland. How much it may contribute in terms of future sea level rise (SLR) has not been quantified yet. When accounting for SM in our experiments, SLR contribution of 12 outlet glaciers increases by over 3-fold until the year 2100 under RCP8.5. Scaling up from 12 to all of Greenland's outlet glaciers increases future SLR contribution of Greenland by 50 %.
Reinhard Calov, Sebastian Beyer, Ralf Greve, Johanna Beckmann, Matteo Willeit, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Andrey Ganopolski
The Cryosphere, 12, 3097–3121, https://doi.org/10.5194/tc-12-3097-2018, https://doi.org/10.5194/tc-12-3097-2018, 2018
Short summary
Short summary
We present RCP 4.5 and 8.5 projections for the Greenland glacial system with the new glacial system model IGLOO 1.0, which incorporates the ice sheet model SICOPOLIS 3.3, a model of basal hydrology and a parameterization of submarine melt of outlet glaciers. Surface temperature and mass balance anomalies from the MAR climate model serve as forcing delivering projections for the contribution of the Greenland ice sheet to sea level rise and submarine melt of Helheim and Store outlet glaciers.
Matteo Willeit and Andrey Ganopolski
Clim. Past, 14, 697–707, https://doi.org/10.5194/cp-14-697-2018, https://doi.org/10.5194/cp-14-697-2018, 2018
Short summary
Short summary
The surface energy and mass balance of ice sheets strongly depends on surface albedo. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the parameterization of snow grain size and the effect of dust deposition on snow albedo.
Matteo Willeit and Andrey Ganopolski
Geosci. Model Dev., 9, 3817–3857, https://doi.org/10.5194/gmd-9-3817-2016, https://doi.org/10.5194/gmd-9-3817-2016, 2016
Short summary
Short summary
PALADYN is presented; it is a new comprehensive and computationally efficient land surface–vegetation–carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies.
D. Dalmonech, A. M. Foley, A. Anav, P. Friedlingstein, A. D. Friend, M. Kidston, M. Willeit, and S. Zaehle
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-2083-2014, https://doi.org/10.5194/bgd-11-2083-2014, 2014
Revised manuscript has not been submitted
M. Willeit, A. Ganopolski, and G. Feulner
Biogeosciences, 11, 17–32, https://doi.org/10.5194/bg-11-17-2014, https://doi.org/10.5194/bg-11-17-2014, 2014
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
Christine Kaufhold, Matteo Willeit, Bo Liu, and Andrey Ganopolski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2976, https://doi.org/10.5194/egusphere-2024-2976, 2024
Short summary
Short summary
This study simulates long-term future climate scenarios to examine how long CO2 emissions will persist in the atmosphere. It shows that the effectiveness of carbon removal processes varies with the amount emitted. The removal of CO2 through silicate weathering is faster than previously thought, leading to a quicker reduction over time. The combined behaviour of different carbon cycle processes emphasizes the need to include all of them in models, as to better predict long-term atmospheric CO2.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Matteo Willeit and Andrey Ganopolski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1482, https://doi.org/10.5194/egusphere-2024-1482, 2024
Short summary
Short summary
Using a fast Earth system model we trace the stability landscape of the Atlantic Meridional Overturning Circulation (AMOC) in the combined freshwater forcing – atmospheric CO2 space. We find four different AMOC states that are stable under different conditions and a generally increasing equilibrium AMOC strength with increasing CO2 concentrations.
Matteo Willeit, Andrey Ganopolski, Neil R. Edwards, and Stefan Rahmstorf
EGUsphere, https://doi.org/10.5194/egusphere-2024-819, https://doi.org/10.5194/egusphere-2024-819, 2024
Short summary
Short summary
Using an Earth system model that can simulate Dansgaard-Oeschger-like events, we show that the conditions under which millenial-scale climate variability occurs is related to the integrated surface buoyancy flux over the northern North-Atlantic. This newly defined buoyancy measure explains why millenial-scale climate variability arising from abrupt changes in the Atlantic Meridional Overturning Circulation occurred for mid-glacial conditions but not for interglacial or full glacial conditions.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Andrey Ganopolski
Clim. Past, 20, 151–185, https://doi.org/10.5194/cp-20-151-2024, https://doi.org/10.5194/cp-20-151-2024, 2024
Short summary
Short summary
Despite significant progress in modelling Quaternary climate dynamics, a comprehensive theory of glacial cycles is still lacking. Here, using the results of model simulations and data analysis, I present a framework of the generalized Milankovitch theory (GMT), which further advances the concept proposed by Milutin Milankovitch over a century ago. The theory explains a number of facts which were not known during Milankovitch time's, such as the 100 kyr periodicity of the late Quaternary.
Takahito Mitsui, Matteo Willeit, and Niklas Boers
Earth Syst. Dynam., 14, 1277–1294, https://doi.org/10.5194/esd-14-1277-2023, https://doi.org/10.5194/esd-14-1277-2023, 2023
Short summary
Short summary
The glacial–interglacial cycles of the Quaternary exhibit 41 kyr periodicity before the Mid-Pleistocene Transition (MPT) around 1.2–0.8 Myr ago and ~100 kyr periodicity after that. The mechanism generating these periodicities remains elusive. Through an analysis of an Earth system model of intermediate complexity, CLIMBER-2, we show that the dominant periodicities of glacial cycles can be explained from the viewpoint of synchronization theory.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Christine Kaufhold and Andrey Ganopolski
Saf. Nucl. Waste Disposal, 2, 89–90, https://doi.org/10.5194/sand-2-89-2023, https://doi.org/10.5194/sand-2-89-2023, 2023
Short summary
Short summary
A repository in Germany must be secure for a period of at least 1 million years. We argue that the deep-future climate should be considered in the site selection process. A suite of possible future climates will be provided, using different emission scenarios. In low-emission scenarios, glacial cycles will quickly resume, changing subterranean stress and permafrost. In high-emission scenarios, the sea level will rise. Both regimes should be of interest to those working on nuclear waste disposal.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
Johanna Beckmann, Mahé Perrette, Sebastian Beyer, Reinhard Calov, Matteo Willeit, and Andrey Ganopolski
The Cryosphere, 13, 2281–2301, https://doi.org/10.5194/tc-13-2281-2019, https://doi.org/10.5194/tc-13-2281-2019, 2019
Short summary
Short summary
Submarine melting (SM) has been discussed as potentially triggering the recently observed retreat at outlet glaciers in Greenland. How much it may contribute in terms of future sea level rise (SLR) has not been quantified yet. When accounting for SM in our experiments, SLR contribution of 12 outlet glaciers increases by over 3-fold until the year 2100 under RCP8.5. Scaling up from 12 to all of Greenland's outlet glaciers increases future SLR contribution of Greenland by 50 %.
Reinhard Calov, Sebastian Beyer, Ralf Greve, Johanna Beckmann, Matteo Willeit, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Andrey Ganopolski
The Cryosphere, 12, 3097–3121, https://doi.org/10.5194/tc-12-3097-2018, https://doi.org/10.5194/tc-12-3097-2018, 2018
Short summary
Short summary
We present RCP 4.5 and 8.5 projections for the Greenland glacial system with the new glacial system model IGLOO 1.0, which incorporates the ice sheet model SICOPOLIS 3.3, a model of basal hydrology and a parameterization of submarine melt of outlet glaciers. Surface temperature and mass balance anomalies from the MAR climate model serve as forcing delivering projections for the contribution of the Greenland ice sheet to sea level rise and submarine melt of Helheim and Store outlet glaciers.
Matteo Willeit and Andrey Ganopolski
Clim. Past, 14, 697–707, https://doi.org/10.5194/cp-14-697-2018, https://doi.org/10.5194/cp-14-697-2018, 2018
Short summary
Short summary
The surface energy and mass balance of ice sheets strongly depends on surface albedo. Here, using an Earth system model of intermediate complexity, we explore the role played by surface albedo for the simulation of glacial cycles. We show that the evolution of the Northern Hemisphere ice sheets over the last glacial cycle is very sensitive to the parameterization of snow grain size and the effect of dust deposition on snow albedo.
Johanna Beckmann, Mahé Perrette, and Andrey Ganopolski
The Cryosphere, 12, 301–323, https://doi.org/10.5194/tc-12-301-2018, https://doi.org/10.5194/tc-12-301-2018, 2018
Short summary
Short summary
Greenland's glaciers that are in contact with the ocean undergo a special ice–ocean melting. To project numerically Greenland's centennial contribution to sea level rise, it is crucial to incorporate this special melting. We demonstrate that a numerically cheap model shows the qualitative same behavior as numerical expensive 2–3-dimensional models and calculates the same melting as empirical data show. Our analytical solution gives some insight in the yet poorly understood melting behavior.
Andrey Ganopolski and Victor Brovkin
Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, https://doi.org/10.5194/cp-13-1695-2017, 2017
Short summary
Short summary
Ice cores reveal that atmospheric CO2 concentration varied synchronously with the global ice volume. Explaining the mechanism of glacial–interglacial variations of atmospheric CO2 concentrations and the link between CO2 and ice sheets evolution still remains a challenge. Here using the Earth system model of intermediate complexity we performed for the first time simulations of co-evolution of climate, ice sheets and carbon cycle using the astronomical forcing as the only external forcing.
Eva Bauer and Andrey Ganopolski
Clim. Past, 13, 819–832, https://doi.org/10.5194/cp-13-819-2017, https://doi.org/10.5194/cp-13-819-2017, 2017
Short summary
Short summary
Transient glacial cycle simulations with an EMIC and the PDD method require smaller melt factors for inception than for termination and larger factors for American than European ice sheets. The PDD online method with standard values simulates a sea level drop of 250 m at the LGM. The PDD online run reproducing the LGM ice volume has deficient ablation for reversing from glacial to interglacial climate, so termination is delayed. The SEB method with dust impact on snow albedo is seen as superior.
Mario Krapp, Alexander Robinson, and Andrey Ganopolski
The Cryosphere, 11, 1519–1535, https://doi.org/10.5194/tc-11-1519-2017, https://doi.org/10.5194/tc-11-1519-2017, 2017
Short summary
Short summary
We present the snowpack model SEMIC. It calculates snow height, surface temperature, surface albedo, and the surface mass balance of snow- and ice-covered surfaces while using meteorological data as input. In this paper we describe how SEMIC works and how well it compares with snowpack data of a more sophisticated regional climate model applied to the Greenland ice sheet. Because of its simplicity and efficiency, SEMIC can be used as a coupling interface between atmospheric and ice sheet models.
Matteo Willeit and Andrey Ganopolski
Geosci. Model Dev., 9, 3817–3857, https://doi.org/10.5194/gmd-9-3817-2016, https://doi.org/10.5194/gmd-9-3817-2016, 2016
Short summary
Short summary
PALADYN is presented; it is a new comprehensive and computationally efficient land surface–vegetation–carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies.
R. Calov, A. Robinson, M. Perrette, and A. Ganopolski
The Cryosphere, 9, 179–196, https://doi.org/10.5194/tc-9-179-2015, https://doi.org/10.5194/tc-9-179-2015, 2015
Short summary
Short summary
Ice discharge into the ocean from outlet glaciers is an important
component of mass loss of the Greenland ice sheet. Here, we present a
simple parameterization of ice discharge for coarse resolution ice
sheet models, suitable for large ensembles or long-term palaeo
simulations. This parameterization reproduces in a good approximation
the present-day ice discharge compared with estimates, and the
simulation of the present-day ice sheet elevation is considerably
improved.
E. Bauer and A. Ganopolski
Clim. Past, 10, 1333–1348, https://doi.org/10.5194/cp-10-1333-2014, https://doi.org/10.5194/cp-10-1333-2014, 2014
D. Dalmonech, A. M. Foley, A. Anav, P. Friedlingstein, A. D. Friend, M. Kidston, M. Willeit, and S. Zaehle
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-2083-2014, https://doi.org/10.5194/bgd-11-2083-2014, 2014
Revised manuscript has not been submitted
M. Willeit, A. Ganopolski, and G. Feulner
Biogeosciences, 11, 17–32, https://doi.org/10.5194/bg-11-17-2014, https://doi.org/10.5194/bg-11-17-2014, 2014
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Pleistocene
Simultaneous seasonal dry/wet signals in eastern and central Asia since the Last Glacial Maximum
Seasonal aridity in the Indo-Pacific Warm Pool during the Late Glacial driven by El Niño-like conditions
crestr: an R package to perform probabilistic climate reconstructions from palaeoecological datasets
A new perspective on permafrost boundaries in France during the Last Glacial Maximum
The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations
Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) between 160 and 70 ka
Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere–ocean general circulation model
Simin Peng, Yu Li, Zhansen Zhang, Mingjun Gao, Xiaowen Chen, Junjie Duan, and Yaxin Xue
Clim. Past, 20, 2415–2429, https://doi.org/10.5194/cp-20-2415-2024, https://doi.org/10.5194/cp-20-2415-2024, 2024
Short summary
Short summary
The simultaneity of rain and heat is an important hypothesis containing the summer and winter precipitation regimes. In this paper, eastern and part of central Asia (EA and CA) with a summer precipitation regime are selected to study the dry/wet status on multiple timescales since the Last Glacial Maximum. We found that although climate difference in EA and CA universally exists, climate linkages in EA and part of CA with a summer precipitation regime can be uncovered.
Petter L. Hällberg, Frederik Schenk, Kweku A. Yamoah, Xueyuen Kuang, and Rienk H. Smittenberg
Clim. Past, 18, 1655–1674, https://doi.org/10.5194/cp-18-1655-2022, https://doi.org/10.5194/cp-18-1655-2022, 2022
Short summary
Short summary
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal under Late Glacial conditions. During Northern Hemisphere winters, it was highly arid in this region that is today humid year-round. The seasonal aridity was driven by orbital forcing and stronger East Asian winter monsoon. A breakdown of deep convection caused a reorganized Walker Circulation and a mean state resembling El Niño conditions.
Manuel Chevalier
Clim. Past, 18, 821–844, https://doi.org/10.5194/cp-18-821-2022, https://doi.org/10.5194/cp-18-821-2022, 2022
Short summary
Short summary
This paper introduces a new R package to perform quantitative climate reconstructions from palaeoecological datasets. The package includes calibration data for several commonly used terrestrial (e.g. pollen) and marine (e.g. foraminifers) climate proxies to enable its use in various environments globally. In addition, the built-in graphical diagnostic tools simplify the evaluation and interpretations of the results. No coding skills are required to use crestr.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019, https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary
Short summary
Climate changes occur today as they occurred in the past. This study deals with climate changes reconstructed at Lake Ohrid (Albania and FYROM) between 160 000 and 70 000 years ago. Climate reconstruction, based on a high-resolution pollen study, provides quantitative estimates of past temperature and precipitation. Our data show an alternation of cold/dry and warm/wet periods. The last interglacial appears to be characterized by temperatures higher than nowadays.
Madlene Pfeiffer and Gerrit Lohmann
Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, https://doi.org/10.5194/cp-12-1313-2016, 2016
Short summary
Short summary
The Last Interglacial was warmer, with a reduced Greenland Ice Sheet (GIS), compared to the late Holocene. We analyse – through climate model simulations – the impact of a reduced GIS on the global surface air temperature and find a relatively strong warming especially in the Northern Hemisphere. These results are then compared to temperature reconstructions, indicating good agreement with respect to the pattern. However, the simulated temperatures underestimate the proxy-based temperatures.
Cited articles
Athy, L. F.: Density, porosity, and compaction of sedimentary rocks, AAPG Bull., 14, 1–24, 1930.
Bauder, A., Mickelson, D. M., and Marshall, S. J.: Numerical modeling investigations of the subglacial conditions of the southern Laurentide ice sheet, Ann. Glaciol., 40, 219–224, 2005.
Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Model., 101, 251–261, 1997.
Brovkin, V., Bendtsen, J. R., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model, Global Biogeochem. Cy., 16, 86-1–86-20, 2002.
Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic Map of Permafrost and Ground-Ice Conditions, available at: http://nsidc.org/data/ggd318.html (last access: 10 January 2015), 2014.
Burn, C. and Smith, C.: Observations of the "thermal offset" in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada, Arctic, 41, 99–104, 1988.
Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.: Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system, Clim. Dynam., 24, 545–561, 2005.
Carslaw, H. S. and Jaeger, J. C.: Heat in Solids, vol. 19591, Clarendon Press, Oxford, 1959.
Clark, P. U. and Pollard, D.: Origin of the Middle Pleistocene Transition by ice sheet erosion of regolith, Paleoceanography, 13, 1–9, 1998.
Crichton, K. A., Roche, D. M., Krinner, G., and Chappellaz, J.: A simplified permafrost-carbon model for long-term climate studies with the CLIMBER-2 coupled earth system model, Geosci. Model Dev., 7, 3111–3134, https://doi.org/10.5194/gmd-7-3111-2014, 2014.
Davies, J. H.: Global map of Solid Earth surface heat flow, Geochem. Geophy. Geosy., 14, 4608–4622, 2013.
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A., Schär, C., and Elder, K.: An improved snow scheme for the ECMWF land surface model: description and offline validation, J. Hydrometeorol., 11, 899–916, 2010.
Farouki, O. T.: Thermal properties of soils, Special Report 81–1, Cold Regions Research and Engineering Laboratory (CRREL), Hanover, NH, 1981.
Galushkin, Y.: Numerical simulation of permafrost evolution as a part of sedimentary basin modeling: permafrost in the Pliocene–Holocene climate history of the Urengoy field in the West Siberian basin, Can. J. Earth Sci., 34, 935–948, 1997.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M., Eliseev, A., and Kubatzki, C.: CLIMBER-2: a climate system model of intermediate complexity, Part II: model sensitivity, Climate Dynamic, 17, 735–751, 2001.
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010.
Greve, R.: Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios, J. Climate, 10, 901–918, 1997.
Hardy and Associates Ltd.: Study of well logs in the Arctic Islands to outline permafrost thickness and/or gas hydrate occurrence, Open file 84-8, EMR Canada, Earth Physics Branch, 1984.
Hillel, D.: Applications of Soil Physics, Elsevier, Academic Press, New York, New York, 1980.
Hooke, R. L.: Principles of Glacier Mechanics, Cambridge University Press, Cambridge, UK, 2005.
Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles, Quaternary Sci. Rev., 21, 203–231, 2002.
International Permafrost Association: IPA-IPY Thermal State of Permafrost (TSP) Snapshot Borehole Inventory, National Snow and Ice Data Center, Boulder, Colorado USA, https://doi.org/10.7265/N57D2S25, 2010.
Kitover, D. C., van Balen, R. T., Roche, D. M., Vandenberghe, J., and Renssen, H.: New estimates of permafrost evolution during the last 21 k years in Eurasia using numerical modelling, Permafrost Periglac., 24, 286–303, 2013.
Kitover, D. C., van Balen, R., Roche, D. M., Vandenberghe, J., and Renssen, H.: Advancement toward coupling of the VAMPER permafrost model within the Earth system model iLOVECLIM (version 1.0): description and validation, Geosci. Model Dev., 8, 144–1460, https://doi.org/10.5194/gmd-8-1445-2015, 2015.
Kominz, M. A., Patterson, K., and Odette, D.: Lithology dependence of porosity in slope and deep marine sediments, J. Sediment. Res., 81, 730–742, 2011.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, 2004.
Laske, G. and Masters, G. A.: Global digital map of sediment thickness, EOS T. Am. Geophys. Un., 78, F483, igppweb.ucsd.edu/ gabi/sediment.html, 1997.
Lunardini, V.: Freezing of soil with an unfrozen water content and variable thermal properties, CRREL Report 88–2, 1988.
Lunardini, V.: Permafrost formation time, CRREL Report 95-8, 1995.
Marshall, S. J. and Clark, P. U.: Basal temperature evolution of North American ice sheets and implications for the 100-kyr cycle, Geophys. Res. Lett., 29, 2214, https://doi.org/10.1029/2002GL015192, 2002.
Melanson, A., Bell, T., and Tarasov, L.: Numerical modelling of subglacial erosion and sediment transport and its application to the North American ice sheets over the Last Glacial cycle, Quaternary Sci. Rev., 68, 154–174, 2013.
Melnikov, E.: Catalog of boreholes from Russia and Mongolia, In: International Permafrost Association, Data and Information Working Group, comp. Circumpolar Active-Layer Permafrost System (CAPS), version 1.0. CD-ROM available from National Snow and Ice Data Center, nsidc@kryos.colorado.edu. Boulder, Colorado, NSIDC, 1998.
Mottaghy, D. and Rath, V.: Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions, Geophys. J. Int., 164, 236–245, 2006.
Niu, G. and Yang, Z.: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale, J. Hydrometeorol., 7, 937–952, 2006.
Osterkamp, T. E. and Gosink, J. P.: Variations in permafrost thickness in response to changes in paleoclimate, J. Geophys. Res., 96, 4423, https://doi.org/10.1029/90JB02492, 1991.
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate, Clim. Dynam., 16, 1–17, 2000.
Pollack, H. N., Hurter, S. J., and Johnson, J. R.: Heat flow from the Earth's interior: Analysis of the global data set, Rev. Geophys., 31, 267–280, 1993.
Romanovsky, V. E. and Osterkamp, T. E.: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska, Permafrost Periglac., 6, 313–335, 1995.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis, Permafrost Periglac., 21, 106–116, 2010.
Saito, K., Sueyoshi, T., Marchenko, S., Romanovsky, V., Otto-Bliesner, B., Walsh, J., Bigelow, N., Hendricks, A., and Yoshikawa, K.: LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?, Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013, 2013.
Smith, M. W. and Riseborough, D. W.: Climate and the limits of permafrost: a zonal analysis, Permafrost Periglac., 13, 1–15, 2002.
Smith, S. and Burgess, M.: A digital database of permafrost thickness in Canada, available at: http://nsidc.org/data/ggd620.html (last access: 10 January 2015), 2004.
Stewart, J.: Modelling surface conductance of pine forest, Agr. Forest Meteorol., 43, 19–35, 1988.
Tarasov, L. and Peltier, W. R.: Coevolution of continental ice cover and permafrost extent over the last glacial-interglacial cycle in North America, J. Geophys. Res., 112, F02S08, https://doi.org/10.1029/2006JF000661, 2007.
Vandenberghe, J., Renssen, H., Roche, D., Goosse, H., Velichko, A., Gorbunov, A., and Levavasseur, G.: Eurasian permafrost instability constrained by reduced sea-ice cover, Quaternary Sci. Rev., 34, 16–23, 2012.
Vandenberghe, J., French, H. M., Gorbunov, A., Marchenko, S., Velichko, A., Jin, H., Cui, Z., Zhang, T., and Wan, X.: The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP, Boreas, 43, 652–666, 2014.
Verseghy, D.: CLASS–A Canadian land surface scheme for GCMs. I. Soil model, Int. J. Climatol., 11, 111–133, 1991.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J., McManus, J., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, 2002.
Watanabe, K. and Mizoguchi, M.: Amount of unfrozen water in frozen porous media saturated with solution, Cold Reg. Sci. Technol., 34, 103–110, 2002.
Williams, P. and Smith, M.: The Frozen Earth: Fundamentals of Geocryology, Cambridge University Press, Cambridge, 1989.
Short summary
In this paper we explore the permafrost–ice-sheet interaction using the fully coupled climate–ice-sheet model CLIMBER-2 with the addition of a newly developed permafrost module. We find that permafrost has a moderate but significant effect on ice sheet dynamics during the last glacial cycle. In particular at the Last Glacial Maximum the inclusion of permafrost leads to a 15m sea level equivalent increase in Northern Hemisphere ice volume when permafrost is included.
In this paper we explore the permafrost–ice-sheet interaction using the fully coupled...