Articles | Volume 10, issue 1
https://doi.org/10.5194/cp-10-181-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-10-181-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea
S. M. P. Berben
Department of Geology, University of Tromsø, 9037 Tromsø, Norway
Department of Geology, University of Tromsø, 9037 Tromsø, Norway
P. Cabedo-Sanz
Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
S. T. Belt
Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
Related authors
No articles found.
Kevin Zoller, Jan Sverre Laberg, Tom Arne Rydningen, Katrine Husum, and Matthias Forwick
Clim. Past, 19, 1321–1343, https://doi.org/10.5194/cp-19-1321-2023, https://doi.org/10.5194/cp-19-1321-2023, 2023
Short summary
Short summary
Marine geologic data from NE Greenland provide new information about the behavior of the Greenland Ice Sheet from the last glacial period to present. Seafloor landforms suggest that a large, fast-flowing ice stream moved south through southern Dove Bugt. This region is believed to have been deglaciated from at least 11.4 ka cal BP. Ice in an adjacent fjord, Bessel Fjord, may have retreated to its modern position by 7.1 ka cal BP, and the ice halted or readvanced multiple times upon deglaciation.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Ingrid Leirvik Olsen, Tom Arne Rydningen, Matthias Forwick, Jan Sverre Laberg, and Katrine Husum
The Cryosphere, 14, 4475–4494, https://doi.org/10.5194/tc-14-4475-2020, https://doi.org/10.5194/tc-14-4475-2020, 2020
Short summary
Short summary
We present marine geoscientific data from Store Koldewey Trough, one of the largest glacial troughs offshore NE Greenland, to reconstruct the ice drainage pathways, ice sheet extent and ice stream dynamics of this sector during the last glacial and deglaciation. The complex landform assemblage in the trough reflects a dynamic retreat with several periods of stabilization and readvances, interrupting the deglaciation. Estimates indicate that the ice front locally retreated between 80–400 m/year.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
S. T. Belt, T. A. Brown, L. Ampel, P. Cabedo-Sanz, K. Fahl, J. J. Kocis, G. Massé, A. Navarro-Rodriguez, J. Ruan, and Y. Xu
Clim. Past, 10, 155–166, https://doi.org/10.5194/cp-10-155-2014, https://doi.org/10.5194/cp-10-155-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
C. V. Dylmer, J. Giraudeau, V. Hanquiez, and K. Husum
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-15077-2013, https://doi.org/10.5194/bgd-10-15077-2013, 2013
Revised manuscript has not been submitted
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Holocene
Glacial–interglacial seawater isotope change near the Chilean Margin as reflected by δ2H values of C37 alkenones
Upper-ocean temperature characteristics in the subantarctic southeastern Pacific based on biomarker reconstructions
Evaluation of the distributions of hydroxylated glycerol dibiphytanyl glycerol tetraethers (GDGTs) in Holocene Baltic Sea sediments for reconstruction of sea surface temperature: the effect of changing salinity
Technical Note: Past and future warming – direct comparison on multi-century timescales
Co-evolution of the terrestrial and aquatic ecosystem in the Holocene Baltic Sea
Holocene palaeoceanography of the Northeast Greenland shelf
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 2: Application and interpretation
Evaluation of oxygen isotopes and trace elements in planktonic foraminifera from the Mediterranean Sea as recorders of seawater oxygen isotopes and salinity
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 1: Theoretical concept
Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past?
Evidence from giant-clam δ18O of intense El Ninõ–Southern Oscillation-related variability but reduced frequency 3700 years ago
Empirical estimate of the signal content of Holocene temperature proxy records
Sedproxy: a forward model for sediment-archived climate proxies
Tracing winter temperatures over the last two millennia using a north-east Atlantic coastal record
The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea
Sedimentary archives of climate and sea-level changes during the Holocene in the Rhône prodelta (NW Mediterranean Sea)
Holocene hydrological changes in the Rhône River (NW Mediterranean) as recorded in the marine mud belt
Technical note: Estimating unbiased transfer-function performances in spatially structured environments
Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions)
Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition
Evidence for the non-influence of salinity variability on the Porites coral Sr/Ca palaeothermometer
Long-term variations in Iceland–Scotland overflow strength during the Holocene
Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciation
Natural variability and anthropogenic effects in a Central Mediterranean core
The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability
Tracking climate variability in the western Mediterranean during the Late Holocene: a multiproxy approach
Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach
Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean
Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Andrew M. Dolman, Torben Kunz, Jeroen Groeneveld, and Thomas Laepple
Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, https://doi.org/10.5194/cp-17-825-2021, 2021
Short summary
Short summary
Uncertainties in climate proxy records are temporally autocorrelated. By deriving expressions for the power spectra of errors in proxy records, we can estimate appropriate uncertainties for any timescale, for example, for temporally smoothed records or for time slices. Here we outline and demonstrate this approach for climate proxies recovered from marine sediment cores.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Torben Kunz, Andrew M. Dolman, and Thomas Laepple
Clim. Past, 16, 1469–1492, https://doi.org/10.5194/cp-16-1469-2020, https://doi.org/10.5194/cp-16-1469-2020, 2020
Short summary
Short summary
This paper introduces a method to estimate the uncertainty of climate reconstructions from single sediment proxy records. The method can compute uncertainties as a function of averaging timescale, thereby accounting for the fact that some components of the uncertainty are autocorrelated in time. This is achieved by treating the problem in the spectral domain. Fully analytic expressions are derived. A companion paper (Part 2) complements this with application-oriented examples of the method.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Yue Hu, Xiaoming Sun, Hai Cheng, and Hong Yan
Clim. Past, 16, 597–610, https://doi.org/10.5194/cp-16-597-2020, https://doi.org/10.5194/cp-16-597-2020, 2020
Short summary
Short summary
Tridacna, as the largest marine bivalves, can be used for high-resolution paleoclimate reconstruction in its carbonate skeleton. In this contribution, the modern δ18O shell is suggested to be a proxy for sea surface temperature in the Xisha Islands, South China Sea. Data from a fossil Tridacna (3673 ± 28 BP) indicate a warmer climate and intense ENSO-related variability but reduced ENSO frequency and more extreme El Niño winters compared to modern Tridacna.
Maria Reschke, Kira Rehfeld, and Thomas Laepple
Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-2019, https://doi.org/10.5194/cp-15-521-2019, 2019
Short summary
Short summary
We empirically estimate signal-to-noise ratios of temperature proxy records used in global compilations of the middle to late Holocene by comparing the spatial correlation structure of proxy records and climate model simulations accounting for noise and time uncertainty. We find that low signal contents of the proxy records or, alternatively, more localised climate variations recorded by proxies than suggested by current model simulations suggest caution when interpreting multi-proxy datasets.
Andrew M. Dolman and Thomas Laepple
Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, https://doi.org/10.5194/cp-14-1851-2018, 2018
Short summary
Short summary
Climate proxies from marine sediments provide an important record of past temperatures, but contain noise from many sources. These include mixing by burrowing organisms, seasonal and habitat biases, measurement error, and small sample size effects. We have created a forward model that simulates the creation of proxy records and provides it as a user-friendly R package. It allows multiple sources of uncertainty to be considered together when interpreting proxy climate records.
Irina Polovodova Asteman, Helena L. Filipsson, and Kjell Nordberg
Clim. Past, 14, 1097–1118, https://doi.org/10.5194/cp-14-1097-2018, https://doi.org/10.5194/cp-14-1097-2018, 2018
Short summary
Short summary
We present 2500 years of winter temperatures, using a sediment record from Gullmar Fjord analyzed for stable oxygen isotopes in benthic foraminifera. Reconstructed temperatures are within the annual temperature variability recorded in the fjord since the 1890s. Results show the warm Roman and Medieval periods and the cold Little Ice Age. The record also shows the recent warming, which does not stand out in the 2500-year perspective and is comparable to the Roman and Medieval climate anomalies.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Anne-Sophie Fanget, Maria-Angela Bassetti, Christophe Fontanier, Alina Tudryn, and Serge Berné
Clim. Past, 12, 2161–2179, https://doi.org/10.5194/cp-12-2161-2016, https://doi.org/10.5194/cp-12-2161-2016, 2016
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016, https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Short summary
This work represents the first attempt to decipher the linkages between rapid climate changes and continental Holocene paleohydrology in the NW Mediterranean shallow marine setting. Between 11 and 4 ka cal BP, terrigenous input increased and reached a maximum at 7 ka cal BP, probably as a result of a humid phase. From ca. 4 ka cal BP to the present, enhanced variability in the land-derived material is possibly due to large-scale atmospheric circulation and rainfall patterns in western Europe.
Mathias Trachsel and Richard J. Telford
Clim. Past, 12, 1215–1223, https://doi.org/10.5194/cp-12-1215-2016, https://doi.org/10.5194/cp-12-1215-2016, 2016
Short summary
Short summary
In spatially structured environments, conventional cross validation results in over-optimistic transfer function performance estimates. H-block cross validation, where all samples within h kilometres of the test samples are omitted is a method for obtaining unbiased transfer function performance estimates. We assess three methods for determining the optimal h using simulated data and published transfer functions. Some transfer functions perform notably worse when h-block cross validation is used.
B. Jalali, M.-A. Sicre, M.-A. Bassetti, and N. Kallel
Clim. Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, https://doi.org/10.5194/cp-12-91-2016, 2016
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
M. Moreau, T. Corrège, E. P. Dassié, and F. Le Cornec
Clim. Past, 11, 523–532, https://doi.org/10.5194/cp-11-523-2015, https://doi.org/10.5194/cp-11-523-2015, 2015
Short summary
Short summary
The influence of salinity on the Porites Sr/Ca palaeothermometer is still poorly documented. We test the salinity effect on Porites Sr/Ca-based SST reconstructions using a large spatial compilation of published Porites data from the Pacific, Indian Ocean, and the Red Sea. We find no evidence of a salinity bias in the Sr/Ca SST proxy at monthly and interannual timescales using two different salinity products. This result is in agreement with laboratory experiments on coral species.
D. J. R. Thornalley, M. Blaschek, F. J. Davies, S. Praetorius, D. W. Oppo, J. F. McManus, I. R. Hall, H. Kleiven, H. Renssen, and I. N. McCave
Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013, https://doi.org/10.5194/cp-9-2073-2013, 2013
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
S. Alessio, G. Vivaldo, C. Taricco, and M. Ghil
Clim. Past, 8, 831–839, https://doi.org/10.5194/cp-8-831-2012, https://doi.org/10.5194/cp-8-831-2012, 2012
B. Christiansen and F. C. Ljungqvist
Clim. Past, 8, 765–786, https://doi.org/10.5194/cp-8-765-2012, https://doi.org/10.5194/cp-8-765-2012, 2012
V. Nieto-Moreno, F. Martínez-Ruiz, S. Giralt, F. Jiménez-Espejo, D. Gallego-Torres, M. Rodrigo-Gámiz, J. García-Orellana, M. Ortega-Huertas, and G. J. de Lange
Clim. Past, 7, 1395–1414, https://doi.org/10.5194/cp-7-1395-2011, https://doi.org/10.5194/cp-7-1395-2011, 2011
C. Martín-Puertas, F. Jiménez-Espejo, F. Martínez-Ruiz, V. Nieto-Moreno, M. Rodrigo, M. P. Mata, and B. L. Valero-Garcés
Clim. Past, 6, 807–816, https://doi.org/10.5194/cp-6-807-2010, https://doi.org/10.5194/cp-6-807-2010, 2010
C. Andersson, F. S. R. Pausata, E. Jansen, B. Risebrobakken, and R. J. Telford
Clim. Past, 6, 179–193, https://doi.org/10.5194/cp-6-179-2010, https://doi.org/10.5194/cp-6-179-2010, 2010
I. Dormoy, O. Peyron, N. Combourieu Nebout, S. Goring, U. Kotthoff, M. Magny, and J. Pross
Clim. Past, 5, 615–632, https://doi.org/10.5194/cp-5-615-2009, https://doi.org/10.5194/cp-5-615-2009, 2009
Cited articles
Aagaard-Sørensen, S., Husum, K., Hald, M., and Knies, J.: Paleoceanographic development in the SW Barents Sea during the Late Weichselian-Early Holocene transition, Quaternary Sci. Rev., 29, 1–15, 2010.
Andersen, C., Koç, N., Jennings, A. E., and Andrews, J. T.: Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability, Paleoceanography, 19, PA2003, https://doi.org/10.1029/2002PA000873, 2004.
Andersson, C., Risebrobakken, B., Jansen, E., and Dahl, S.O.: Late Holocene surface ocean conditions of the Norwegian Sea (Vöring Plateau), Paleoceanography, 18, 1044, https://doi.org/10.1029/2001PA000654, 2003.
Andersson, C., Pausata, F. S. R., Jansen, E., Risebrobakken, B., and Telford, R. J.: Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean, Clim. Past, 6, 179–193, https://doi.org/10.5194/cp-6-179-2010, 2010.
Archer, D.: A data-driven model of the global calcite lysocline, Global Biogeochem. Cy., 10, 511–526, 1996.
Archer, D. and Maier-Reimer, E.: Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260–263, 1994.
Aure, J. and Strand, Ø.: Hydrographic normals and long-term variations at fixed surface layer stations along the Norwegian coast from 1936 to 2000, Fisken og Havet, 13, 1–24, 2001.
Barker, S. and Elderfield, H.: Foraminiferal calcification response to glacial interglacial changes in atmospheric CO2, Science, 297, 883–836, 2002.
Barker, S., Kiefer, T., and Elderfield, H.: Temporal changes in North Atlantic circulation constrained by planktonic foraminiferal shell weights, Paleoceanography, 19, PA3008, https://doi.org/10.1029/2004PA001004, 2004.
Bauch, H. A. and Weinelt, M. S.: Surface water changes in the Norwegian Sea during last deglacial and Holocene times, Quaternary Sci. Rev., 16, 1115–1124, 1997.
Bé, A. W. H. and Tolderlund, D. S.: Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, in: The micropaleontology of oceans, edited by: Funnel, B. M. and Riedel, W. R., Cambridge University Press, London, 1–100, 1971.
Becker, B., Kromer, B., and Trimborn, P.: A stable isotope tree-ring timescale of the Late Glacial/Holocene boundary, Nature, 353, 647–649, 1991.
Beer, C. J., Schiebel, R., and Wilson, P. A.: Testing planktic foraminiferal shell weight as a surface water [CO$_3^2-$] proxy using plankton net samples, Geology, 38, 103–106, 2010.
Belt, S. T. and Müller, J.: The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions, Quaternary Sci. Rev., 79, 9–25, https://doi.org/10.1016/j.quascirev.2012.12.001, 2013.
Belt, S. T., Masseé, G., Rowland, S. J., Poulin, M., Michel, C., and LeBlanc, B.: A novel chemical fossil of palaeo sea ice: IP25, Org. Geochem., 38, 16–27, 2007.
Belt, S. T., Brown, T. A., Navarro Rodriguez, A., Cabedo Sanz, P., Tonkin, A., and Ingle, R.: A reproducible method for the extraction, identification and quantification of the Arctic sea ice proxy IP25 from marine sediments, Anal. Method., 4, 705–713, 2012.
Bergami, C., Capotondi, L., Langone, L., Giglio, F., and Ravaioli, M.: Distribution of living planktonic foraminifera in the Ross Sea and the Pacific sector of the Southern Ocean (Antarctica), Mar. Micropaleontol., 73, 37–48, 2009.
Berger, A.: Long-term variations of daily insolation and quaternary climatic changes, J. Atmos. Sci., 35, 2363–2367, 1978.
Berger, W. H.: Planktonic foraminifera: Selective solution and the lysocline, Mar. Geol., 8, 111–138, 1970.
Birks, H. J. B.: Quantitative palaeoenvironmental reconstructions, in: Statistical modelling of quaternary science data, edited by: Maddy, D. and Brew, J. S., Quaternary Research Association, Cambridge, UK, 116–254, 1995.
Birks, C. J. A. and Koç, N.: A high-resolution diatom record of late-quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea, Boreas, 31, 323–344, 2002.
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T. L., Wohlfarth, B., Hammer, C. U., and Spurk, M.: Synchronized terrestrial atmospheric deglacial records around the North Atlantic, Science, 274, 1155–1160, 1996.
Blindheim, J.: The seas of Norden, in: Norden: Man and environment, edited by: Varjo, U. and Tietze, W., Gebrüder Borntraeger, Berlin, 20–32, 1987.
Boltovskoy, E., Boltovskoy, D., Correa, N., and Brandini, F.: Planktic foraminifera from the southwestern Atlantic (30°–60°S): Species-specific patterns in the upper 50 m, Mar. Micropaleontol., 28, 53–72, 1996.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science, 278, 1257–1266, 1997.
Broecker, W. S.: The great ocean conveyor. Oceanography, 4, 79–89, 1991.
Broecker, W. S. and Clark, E.: An evaluation of Lohmann's foraminifera weight dissolution index, Paleoceanography, 16, 531–534, 2001.
Brown, T. A. and Belt, S. T.: Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: Direct evidence for a sea ice diatom diet in Arctic heterotrophs, Polar Biol., 35, 131–137, 2012.
Brown, T. A., Belt, S. T., Philippe, B., Mundy, C. J., Massé, G., Poulin, M., and Gosselin, M.: Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: Further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice, Polar Biol., 34, 1857–1868, 2011.
Burhol, A. L. S.: Recent distribution of planktonic foraminifera on the Svalbard-Barents margin, Master Thesis, University of Tromsø, Norway, 1994.
Cabedo-Sanz, P., Belt, S. T., Knies, J., and Husum, K: Identification of contrasting seasonal sea ice conditions during the Younger Dryas, Quaternary Sci. Rev., 79, 74–86, 2013.
Calvo, E., Grimalt, J., and Jansen, E.: High resolution U$_K^37$ sea surface temperature reconstruction in the Norwegian Sea during the Holocene, Quaternary Sci. Rev., 21, 1385–1394, 2002.
Carstens, J., Hebbeln, D., and Wefer, G.: Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait), Mar. Micropaleontol., 29, 257–269, 1997.
Cifelli, R.: Globigerina incompta, a new species of pelagic foraminifera from the North Atlantic, Contributions Cushman Foundation Foraminiferal Research, 12, 83–86, 1961.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972, 2008.
Conan, S. M. H., Ivanova, E. M., and Brummer, G. J. A.: Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin, Mar. Geol., 182, 325–349, 2002.
Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.: A resolution for the coiling direction paradox in Neogloboquadrina pachyderma, Paleoceanography, 21, PA2011, https://doi.org/10-1029/2005PA001189, 2006.
Dieckmann, G. S. and Hellmer, H. H.: The importance of sea ice: An overview, in: Sea ice: An introduction to its physics, chemistry, biology and geology, edited by: Thomas, D. N. and Dieckmann, G. S., Blackwell Science Ltd, Oxford, UK, https://doi.org/10.1002/9780470757161.ch1, 2008.
Duplessy, J. C., Ivanova, E., Murdmaa, I., Paterne, M., and Labeyrie, L.: Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean, Boreas, 30, 2–16, 2001.
Duplessy, J. C., Cortijo, E., Ivanova, E., Khusid, T., Labeyrie, L., Levitan, M., Murdmaa, I., and Paterne, M.: Paleoceanography of the Barents Sea during the Holocene, Paleoceanography, 20, A4004, https://doi.org/10.1029/2004PA001116, 2005.
Dylmer, C. V., Giraudeau, J., Eynaud, F., Husum, K., and De Vernal, A.: Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr: A coccolith investigation of volume transport and surface water changes, Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, 2013.
Ebbesen, H., Hald, M., and Eplet, T. H.: Late glacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic, Quaternary Sci. Rev., 26, 1999–2011, 2007.
Edmond, J. M. and Gieskes, T. M.: On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions, Geochim. Cosmochim. Acta, 35, 1261–1291, 1970.
Ehrmann, W. U. and Thiede, J.: History of Mesozoic and Cenozoic sediment fluxes to the North Atlantic Ocean, Contributions to Sedimentology E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 15, 1-109, ISBN 3-510-57015-4, 1985.
Eynaud, F.: Planktonic foraminifera in the Arctic: Potentials and issues regarding modern and quaternary populations, IOP Conf. Series: Earth and Environmental Science, 14, 2011.
Fairbanks, R. G.: A 17 000-year glacia-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature, 342, 637–642, 1989.
Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R., and Veron, D. E.: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent, Geophys. Res. Lett., 36, L07503, https://doi.org/10.1029/2009GL037274, 2009.
Giraudeau, J., Jennings, A. E., and Andrews, J. T.: Timing and mechanisms of surface and intermediate water circulation changes in the Nordic seas over the last 10,000 cal years: A view from the north Iceland shelf, Quaternary Sci. Rev., 23, 212-7-2139, 2004.
Goosse, H. and Holland, M.: Mechanisms of decadal and interdecadal Arctic variability in the Community Climate System Model CCSM2, J. Climate, 18, 3552–3570, 2005.
Groot, D. E., Aagaard-Sørensen, S., and Husum, K.: Reconstruction of Atlantic Water variability during the Holocene in the western Barents Sea, Clim. Past Discuss., 9, 4293–4322, https://doi.org/10.5194/cpd-9-4293-2013, 2013.
Gyllencreutz, R., Mangerud, J., Svendsen, J. I., and Lohne, Ø.: Reconstructing growth and decay of the Eurasian ice sheet during the Late Weichselian, 33rd International Geological Congress (33IGC), 6–14 August 2008, HPQ01805L, available at: http://www.cprm.gov.br/33IGC/1345819.html, 2008.
Hald, M. and Hagen, S.: Early preboreal cooling in the Nordic Sea region triggered by meltwater, Geology, 26, 615–618, 1998.
Hald, M., Kolstad, V., Polyak, L., Forman, S. L., Herlihy, F. A., Ivanov, G., and Nesheretov, A.: Late-glacial and Holocene paleoceanography and sedimentary environments in the St. Anna trough, Eurasian Arctic Ocean margin, Paleoceanography, Paleoclimatology, Palaecology, 146, 229–249, 1999.
Hald, M., Ebbesen, H., Forwick, M., Godtliebsen, F., Khomenko, L., Korsun, S., Ringstad Olsen, L., and Vorren, T. O.: Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin, Quaternary Sci. Rev., 23, 2075–2088, 2004.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitegaard-Kristensen, D., Risebrobakken, B., Salomonsen, G. R., Sejrup, H. P., Sarnthein, M., and Telford, R.: Variations in temperature and extent of Atlantic water in the northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26, 3423–3440, 2007.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic foraminifera, Springer, New York, 363 pp., 1989.
Henrich, R., Baumann, K. H., Huber, R., and Meggers, H.: Carbonate preservation records of the past 3Myr in the Norwegian-Greenland Sea and the northern North Atlantic: Implications for the history of NADW production, Mar. Geol., 184, 17–39, 2002.
Hopkins, T. S.: The GIN Sea: A synthesis of its physical oceanography and literature review, 1972–1985, Earth Sci. Rev., 30, 175–318, 1991.
Huber, R., Meggers, H., Baumann, K. H., and Henrich, R.: Recent and Pleistocene carbonate dissolution in sediments of the Norwegian-Greenland Sea, Mar. Geol., 165, 123–136, 2000.
Husum, K. and Hald, M.: Early Holocene cooling events in Malangenfjord and the adjoining shelf, north-east Norwegian Sea, Polar Res., 21, 267–274, 2002.
Husum, K. and Hald, M.: A continuous marine record 8000–1600 cal. yr BP from the Malangenfjord, north Norway: Foraminiferal and isotopic evidence, Holocene, 14, 877–887, 2004.
Husum, K. and Hald, M.: Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions, Mar. Micropaleontol., 96–97, 38–47, 2012.
Imbrie, J. and Kipp, N. G.: A new micropaleontological method for quantitative paleoclimatology: Applications to a late Pleistocene Caribbean core, in: Late Cenozoic Glacial Ages, edited by: Turkian, K. K., Yale University Press, New Haven, 71–191, 1971.
Jennings, A., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J. T.: A mid-Holocene shift in Arctic sea-ice variability on the East Greenland shelf, Holocene, 12, 49–58, 2002.
Jernas, P., Klitgaard Kristensen, D., Husum, K., Wilson, L., and Koç, N.: Palaeoenvironmental changes of the last two millennia on the western and northern Svalbard shelf, Boreas, 42, 236–255, 2013.
Jiang, H., Seidenkrantz, M. S., Knudsen, K. L., and Eiriksson, J.: Late-Holocene summer sea-surface temperatures based on a diatom record from the north Icelandic shelf, Holocene, 12, 137–147, 2002.
Johannessen, T., Jansen, E., Flatøy, A., and Ravelo, A. C.: The relationship between surface water masses, oceanographic fronts and plaeoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian Seas, NATO, ASI Series, 61–86, 1994.
Johnsen, S., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles, Tellus, 5, 624–629, 1995.
Jonkers, L., Brummer, G-J. A., Peeters, F. J. C., van Aken, H. M., and De Jong, M. F.: Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western sub polar North Atlantic, Paleoceanography, 25, PA2204, https://doi.org/10.1029/2009PA001849, 2010.
Juggins, S.: C2 1.7.2, available at: http://www.staff.ncl.ac.uk/staff/stephen.juggins/ (last access: 6 March 2013), 2010.
Kaufman, D., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., Brubakker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K., Geirsdottir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M. W., Loshkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P., Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western Arctic (0–180° N), Quaternary Sci. Rev., 23, 529–560, 2004.
Kinnard, C., Zdanowicz, C. M., Fisher, A. F., Isaksson, E., de Vernal, A., and Thompson, L. G.: Reconstructed changes in Arctic sea ice over the past 1,450 years, Nature, 479, 509–512, https://doi.org/10.1038/nature10581, 2011.
Knies, J.: Climate-induced changes in sedimentary regimes for organic matter supply on the continental shelf off northern Norway, Geochim. Cosmochim. Acta, 69, 4631–4647, 2005.
Knudsen, K. L.: Foraminiferer i Kvartær stratigrafi: Laboratorie og fremstillingsteknik samt udvalgte eksempler, Geologisk Tidsskrift, 3, 1–25, 1998.
Koç, N. and Jansen, E.: Response of the high-latitude Northern hemisphere to orbital climate forcing: evidence from the Nordic Seas, Geology, 22, 523–526, 1994.
Koç, N., Jansen, E., and Haflidason, H.: Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms, Quaternary Sci. Rev., 12, 115–140, 1993.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M. T., Mix, A. C., Barrows, T. T., and Cortijo, E.: Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998, 2005.
Kvingedal, B.: Sea-ice extent and variability in the Nordic Seas, 1967-2002, in: The Nordic seas: An integrated perspective, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., American Geophysical Union, Geophysical Monograph, 158, 39–49, 2005.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, 2004.
Le, J. and Shackleton, N. J.: Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary, Paleoceanography, 7, 21–42, 1992.
Le, J. N. and Thunell, R. C.: Modelling planktic foraminiferal assemblage changes and application to sea surface temperature estimation in the western equatorial Pacific Ocean, Mar. Micropaleontol., 28, 211–229, 1996.
Loeng, H.: Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 10, 5–18, 1991.
Lohmann, G. P.: A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution, Paleoceanography, 10, 445–457, 1995.
Lubinski, D. J., Korsun, S., Polyak, L., Forman, S. L., Lehman, S. J., Herlihy, F. A., and Miller, G. H.: The last deglaciation of the Franz Victoria Trough, northern Barents Sea, Boreas, 25, 89–100, 1996.
Mangerud, J. and Gulliksen, S.: Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada, Quaternary Res., 5, 263–273, 1975.
Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A. K., and Høisæter, T.: Marine 14C reservoir ages for 19th century whales and molluscs from the Nordic Atlantic, Quaternary Sci. Rev., 25, 3228–3245, 2006.
Midttun, L.: Formation of dense bottom water in the Barents Sea, Deep-Sea Res., 32, 1233–1241, 1985.
Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J., and Jansen, E.: Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland, Quaternary Sci. Rev., 23, 2113–2126, 2004.
Müller, J., Massé, G., Stein, R., and Belt, S. T.: Variability of sea-ice conditions in the Fram Strait over the past 30 000 years, Nature Geosci., 2, 772–776, 2009.
Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and Lohman, G.: Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach, Earth Planet. Sci. Lett., 306, 137–148, 2011.
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., and Jansen E.: Holocene cooling culminates in sea ice oscillations in Fram Strait, Quaternary Sci. Rev., 47, 1–14, 2012.
Navarro-Rodriguez, A., Belt, S. T., Knies, J., Brown, T. A.: Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions, Quaternary Sci. Rev., 79, 26–36, 2013.
Orvik, K. A. and Skagseth, Ø.: The impact of the wind stress curl in the North Atlantic on the Atlantic inflow to the Norwegian Sea toward the Arctic, Geophys. Res. Lett., 30, 1884, https://doi.org/10.1029/2003GL017932, 2003.
Pflaumann, U., Sarnthein, M., Chapman, M., d'Abreu, L., Funnell, B., Huels, M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S., Vautravers, M., Vogelsang, E., and Weinelt, M.: Glacial North Atlantic sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanography, 18, 1065, https://doi.org/10.1029/2002PA000774, 2003.
Polyak, L., Alley, R. B., Andrews, J. T., Brigham-Grette, J., Cronin, T. M., Darby, D. A., Dyke, A. S., Fitzpatrick, J. J., Funder, S., Holland, M., Jennings, A. E., Miller, G. H., O'Regan, M., Savelle, J., Serreze, M., John, K. S., White, J. W. C., and Wolff, E.: History of sea ice in the Arctic, Quaternary Sci. Rev., 29, 1757–1778, 2010.
Pufhl, H. A. and Shackleton, N. J.: Two proximal, high-resolution records of foraminiferal fragmentation and their implications for changes in dissolution, Deep-Sea Res. Pt. I, 51, 809–832, 2004.
Rasmussen, T. L., Thomsen, E., Slubowska, M. A., Jessen, S., Solheim, A., and Koç, N.: Paleoceanographic evolution of the SW Svalbard margin (76 ° N) since 20,000 14C yr BP, Quaternary Res., 67, 100–114, 2007.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.; Southon, J. R., Staff, R. A., Turney, C. S. M., and Van Der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves, 0–50 000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Reynolds, L. and Thunnel, R. C.: Seasonal succession of planktonic foraminifera in the subpolar North Pacific, J. Foramin. Res., 15, 282–301, 1985.
Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevrøy, K.: A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas, Paleoceanography, 18, 1017, https://doi.org/10.1029/2002PA000764, 2003.
Risebrobakken, B., Morros, M., Ivanova, E. V., Chistyakova, N., and Rosenberg, R.: Climate and oceanographic variability in the SW Barents Sea during the Holocene, Holocene, 20, 609–621, 2010.
Risebrobakken, B., Dokken, T., Smedsrud, L. H., Andersson, C., Jansen, E., Moros, M., and Ivanova, E. V.: Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing, Paleoceanography, 26, PA4206, https://doi.org/10.1029/2011PA002117, 2011.
Rousse, S., Kissel, C., Laj, C., Eiriksson, J., and Knudsen, K. L.: Holocene centennial to millenial-scale climatic variability: Evidence from high resolution magnetic analyses of the last 10 cal. kyr of North Iceland (core MD99-2275), Earth Planet. Sci. Lett., 242, 390–405, 2006.
Rudels, B., Anderson, L. G., and Jones, E. P.: Formation and evolution of the surface mixed layer and the halocline of the Arctic Ocean, J. Geophys. Res., 101, 8807–8821, 1996.
Rudels, B., Björk, G., Nilsson, J., Winsor, P., Lake, I., and Nohr, C.: The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: Results from the Arctic Ocean-O2 Oden expedition, J. Marine Syst., 55, 1–30, 2005.
Rüther, D. C., Bjarnadóttir, L. J., Junttila, J., Husum, K., Rasmussen, T. L., Lucchi, R. G., and Andreassen, K.: Pattern and timing of the northwestern Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition, Boreas, https://doi.org/10.1111/j.1502-3885.2011.00244.x, ISSN 0300-9483, 2012.
Sætre, R.: Short term variability and small-scale features, in: The Norwegian coastal current, edited by: Sætre, R, Tapir academic press, Trondheim, 89-99, 2007.
Saito, T., Thompson, P. R., and Breger, D.: Systematic index of recent and pleistocene planktonic foraminifera, University of Tokyo press, Tokyo, 1981.
Sakshaug, E.: Biomass and productivity distributions and their variability in the Barents Sea, ICES J. Marine Sci., 54, 341–350, 1997.
Sakshaug, E., Bjørge, A., Gulliksen, B., Loeng, H., and Mehlum, F.: Økosystem Barentshavet, Norges Allmenvitenskapelige Forskningsråd, Norges Fiskeriforskningsråd, Miljøverndepartementet, 304, 1992.
Sarnthein, M., Jansen, E., Weinelt, M., Arnold, M., Duplessy, J., Erlenkeuser, H., Flatøy, A., Johannessen, G., Johannessen, T., Jung, S., Koç, N., Labeyrie, L., Maslin, M., Pflaumann, U., and Schulz, H.: Variations in Atlantic surface ocean paleoceanography, 50–80° N: A time-slice record of the last 30,000 years, Paleoceanography, 10, 1063–1094, https://doi.org/10.1029/95PA01453, 1995.
Sarnthein, M., Van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U., and Schulz, M.: Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75° N, Boreas, 32, 447–461, 2003.
Schiermeier, Q.: Record shrinkage confounds models and portends atmospheric and ecological change, Nature, 489, 185–186, 2012.
Scott, D. B., Schell, T., Rochon, A., and Blasco, S.: Modern benthic foraminifera in the surface sediments of the Beaufort shelf, slope and Mackenzie Trough, Beaufort Sea, Canada: Taxonomy and summary of surficial distributions, J. Foramin. Res., 38, 228–250, 2008.
Semenov, V. A., Park, W., and Latif, M.: Barents Sea inflow shutdown: A new mechanism for rapid climate changes, Geophys. Res. Lett., 36, L14709, https://doi.org/10.1029/2009GL038911, 2009.
Slubowska, M. A., Koç, N., Rasmussen, T. L., and Klitgaard-Kristensen, D.: Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80N, Paleoceonography, 20, PA4014, https://doi.org/10.1029/2005PA001141, 2005.
Slubowska-Woldengen, M., Rasmussen, T. L., Koç, N., Klitgaard-Kristensen, D., Nilsen, F., and Solheim, A.: Advection of Atlantic Water to the western and northern Svalbard shelf since 17 500 cal yr BP, Quaternary Sci. Rev., 26, 463–478, 2007.
Smith, S. L., Smith, W. O., Codispoti, L. A., and Wilson, D. L.: Biological observations in the marginal ice zone of the East Greenland Sea, J. Marine Res., 43, 693–717, 1985.
Smith, W. O. and Sakshaug, E.: Polar phytoplankton, in: Polar oceanography, edited by: Smith, W. O., Part B: Chemistry, Biology and Geology, Academic Press, New York, 447–525, 1990.
Solignac, S., Giraudeau, J., and De Vernal, A.: Holocene sea surface conditions in the western North Atlantic: Spatial and temporal heterogeneities, Paleoceanography, 21, PA2004, https://doi.org/10.1029/2005PA001175, 2006.
Spielhagen, R. F., Werner, K., Aagaard Sørensen, S., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T. M., and Hald, M.: Enhanced modern heat transfer to the Arctic by warm Atlantic water, Science, 331, 450, https://doi.org/10.1126/science.1197397, 2011.
Stein, R. and Fahl, K.: Biomarker proxy shows potential for studying the entire Quaternary Arctic sea ice history, Org. Geochem., 55, 98–102, 2013.
Steinsund, P. I. and Hald, M.: Recent carbonate dissolution in the Barents Sea: Paleoceanographic applications, Mar. Geol., 117, 303–316, 1994.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012.
Stuiver, M. and Reimer, P. J.: Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35, 215–230, 1993
Swift, J. H.: The Arctic waters, in: The Nordic Seas, edited by: Hurdle, B. G., Springer New York, 129–153, 1986.
Telford, R. J. and Birks, H. J. B.: The secret assumption of transfer functions: Problems with spatial autocorrelation in evaluating model performance, Quaternary Sci. Rev., 24, 2173–2179, 2005.
Ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages, Hydrobiologia, 269/270, 485–502, 1993.
Thunell, R. C. and Honjo, S.: Calcite dissolution and the modification of planktonic foraminiferal assemblages, Mar. Micropaleontol., 6, 169–182, 1981.
Vare, L. L., Massé, G., and Belt, S.: A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries, Holocene, 20, 637–643, 2010.
Vinje, T. E.: Sea ice conditions in the European sector of the marginal seas of the Arctic, 1966–75, Aarb. Nor. Polarinst., 1975, 163–174, 1977.
Volkmann, R.: Planktic foraminifers in the outer Laptev Sea and the Fram Strait: Modern distribution and ecology, J. Foramin. Res., 30, 157–176, 2000.
Voronina, E., Polyak, L., de Vernal, A., and Peyron, O.: Holocene variations of sea-surface conditions in the southeastern Barents Sea, reconstructed from dinoflagellate cyst assemblages, J. Quaternary Sci., 16, 717–726, 2001.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., and Kandiano, E.: Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene, Paleoceanography, 28, 283–295, https://doi.org/10.1002/palo.20028, 2013.
Zamelczyk, K., Rasmussen, T. L., Husum, K., Haflidason, H., de Vernal, A., Krogh Ravna, E., Hald, M., and Hillaire-Marcel, C.: Paleoceanographic changes and calcium carbonate dissolution in the central Fram Strait during the last 20 ka yr, Quaternary Res., 78, 405–416, 2012.