Articles | Volume 9, issue 2
https://doi.org/10.5194/cp-9-719-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-719-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia
A. Zander
University of Cologne, Institute of Geography, Cologne, Germany
A. Hilgers
University of Cologne, Institute of Geography, Cologne, Germany
Related authors
Svenja Riedesel, Guillaume Guérin, Kristina J. Thomsen, Mariana Sontag-González, Matthias Blessing, Greg A. Botha, Max Hellers, Gunther Möller, Andreas Peffeköver, Christian Sommer, Anja Zander, and Manuel Will
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-19, https://doi.org/10.5194/gchron-2024-19, 2024
Preprint under review for GChron
Short summary
Short summary
We apply luminescence dating of feldspars to establish a geochronological framework for the sequence of accretionary hillslope deposition at Jojosi, which contain important archaeological artefacts. We test and evaluate four different dose models and their applicability to single grain and multi-grain data sets containing up to 67 % saturated grains. Our results constrain erosional and depositional processes from 100–700 ka, and human occupation of the area in the early MIS 5 and late MIS 6.
Thomas Kolb, Konrad Tudyka, Annette Kadereit, Johanna Lomax, Grzegorz Poręba, Anja Zander, Lars Zipf, and Markus Fuchs
Geochronology, 4, 1–31, https://doi.org/10.5194/gchron-4-1-2022, https://doi.org/10.5194/gchron-4-1-2022, 2022
Short summary
Short summary
The µDose system is an innovative analytical instrument developed for the cost- and time-efficient determination of environmental radionuclide concentrations required for the calculation of sedimentation ages in palaeo-environmental and geo-archaeological research. The results of our study suggest that accuracy and precision of µDose measurements are comparable to those of well-established methods and that the new approach shows the potential to become a standard tool in environmental dosimetry.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Svenja Riedesel, Guillaume Guérin, Kristina J. Thomsen, Mariana Sontag-González, Matthias Blessing, Greg A. Botha, Max Hellers, Gunther Möller, Andreas Peffeköver, Christian Sommer, Anja Zander, and Manuel Will
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-19, https://doi.org/10.5194/gchron-2024-19, 2024
Preprint under review for GChron
Short summary
Short summary
We apply luminescence dating of feldspars to establish a geochronological framework for the sequence of accretionary hillslope deposition at Jojosi, which contain important archaeological artefacts. We test and evaluate four different dose models and their applicability to single grain and multi-grain data sets containing up to 67 % saturated grains. Our results constrain erosional and depositional processes from 100–700 ka, and human occupation of the area in the early MIS 5 and late MIS 6.
Thomas Kolb, Konrad Tudyka, Annette Kadereit, Johanna Lomax, Grzegorz Poręba, Anja Zander, Lars Zipf, and Markus Fuchs
Geochronology, 4, 1–31, https://doi.org/10.5194/gchron-4-1-2022, https://doi.org/10.5194/gchron-4-1-2022, 2022
Short summary
Short summary
The µDose system is an innovative analytical instrument developed for the cost- and time-efficient determination of environmental radionuclide concentrations required for the calculation of sedimentation ages in palaeo-environmental and geo-archaeological research. The results of our study suggest that accuracy and precision of µDose measurements are comparable to those of well-established methods and that the new approach shows the potential to become a standard tool in environmental dosimetry.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Pleistocene
Can machine-learning algorithms improve upon classical palaeoenvironmental reconstruction models?
The Indo-Pacific Pollen Database – a Neotoma constituent database
Distinguishing the combined vegetation and soil component of δ13C variation in speleothem records from subsequent degassing and prior calcite precipitation effects
Multi-proxy speleothem-based reconstruction of mid-MIS 3 climate in South Africa
Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia)
Hydroclimatic variability of opposing Late Pleistocene climates in the Levant revealed by deep Dead Sea sediments
Different facets of dry–wet patterns in south-western China over the past 27 000 years
The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity
The speleothem oxygen record as a proxy for thermal or moisture changes: a case study of multiproxy records from MIS 5–MIS 6 speleothems from the Demänová Cave system
A new multivariable benchmark for Last Glacial Maximum climate simulations
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Late-glacial to late-Holocene shifts in global precipitation δ18O
Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)
New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)
Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11
A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis
Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic
Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn
Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El'gygytgyn, Russia Far East
High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia
Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)
A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3
Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps
A 250 ka oxygen isotope record from diatoms at Lake El'gygytgyn, far east Russian Arctic
The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool
Terrestrial mollusc records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during marine Oxygen Isotope Stages 24-22
Peng Sun, Philip B. Holden, and H. John B. Birks
Clim. Past, 20, 2373–2398, https://doi.org/10.5194/cp-20-2373-2024, https://doi.org/10.5194/cp-20-2373-2024, 2024
Short summary
Short summary
We develop the Multi Ensemble Machine Learning Model (MEMLM) for reconstructing palaeoenvironments from microfossil assemblages. The machine-learning approaches, which include random tree and natural language processing techniques, substantially outperform classical approaches under cross-validation, but they can fail when applied to reconstruct past environments. Statistical significance testing is found sufficient to identify these unreliable reconstructions.
Annika V. Herbert, Simon G. Haberle, Suzette G. A. Flantua, Ondrej Mottl, Jessica L. Blois, John W. Williams, Adrian George, and Geoff S. Hope
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-44, https://doi.org/10.5194/cp-2024-44, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The Indo-Pacific Pollen database is a large collection of pollen samples from across the Indo-Pacific region, with most samples coming from Australia. This is a valuable collection that can be used to analyse vegetation dynamics going back thousands of years. It is now being fully shared via Neotoma for the first time, opening up many exciting new avenues of research. This paper presents key aspects of this database, including geographical distribution, age control and sedimentation rates.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Jacek Pawlak
Clim. Past, 17, 1051–1064, https://doi.org/10.5194/cp-17-1051-2021, https://doi.org/10.5194/cp-17-1051-2021, 2021
Short summary
Short summary
Presently, central Europe is under the influence of two types of climate, transitional and continental. The 60 ka long multiproxy speleothem dataset from Slovakia records the climate of the Last Interglacial cycle and its transition to the Last Glacial. The interpretation of stable isotopic composition and trace element content proxies helps to distinguish which factor had the strongest influence on the δ18O record shape: the local temperature, the humidity or the source effect.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
J. A. Snyder, M. V. Cherepanova, and A. Bryan
Clim. Past, 9, 1309–1319, https://doi.org/10.5194/cp-9-1309-2013, https://doi.org/10.5194/cp-9-1309-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
K. J. Murdock, K. Wilkie, and L. L. Brown
Clim. Past, 9, 467–479, https://doi.org/10.5194/cp-9-467-2013, https://doi.org/10.5194/cp-9-467-2013, 2013
P. S. Minyuk, T. V. Subbotnikova, L. L. Brown, and K. J. Murdock
Clim. Past, 9, 433–446, https://doi.org/10.5194/cp-9-433-2013, https://doi.org/10.5194/cp-9-433-2013, 2013
T. Kluge, H. P. Affek, T. Marx, W. Aeschbach-Hertig, D. F. C. Riechelmann, D. Scholz, S. Riechelmann, A. Immenhauser, D. K. Richter, J. Fohlmeister, A. Wackerbarth, A. Mangini, and C. Spötl
Clim. Past, 9, 377–391, https://doi.org/10.5194/cp-9-377-2013, https://doi.org/10.5194/cp-9-377-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
S. Samartin, O. Heiri, A. F. Lotter, and W. Tinner
Clim. Past, 8, 1913–1927, https://doi.org/10.5194/cp-8-1913-2012, https://doi.org/10.5194/cp-8-1913-2012, 2012
B. Chapligin, H. Meyer, G. E. A. Swann, C. Meyer-Jacob, and H.-W. Hubberten
Clim. Past, 8, 1621–1636, https://doi.org/10.5194/cp-8-1621-2012, https://doi.org/10.5194/cp-8-1621-2012, 2012
A. Alexandre, J. Crespin, F. Sylvestre, C. Sonzogni, and D. W. Hilbert
Clim. Past, 8, 307–324, https://doi.org/10.5194/cp-8-307-2012, https://doi.org/10.5194/cp-8-307-2012, 2012
B. Wu and N. Q. Wu
Clim. Past, 7, 349–359, https://doi.org/10.5194/cp-7-349-2011, https://doi.org/10.5194/cp-7-349-2011, 2011
Cited articles
Adamiec, G. and Aitken, M. J.: Dose-rate conversion factors: update, Ancient TL, 16, 37–49, 1998.
Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for feldspar IRSL using SAR, Radiat. Meas., 37, 487–492, 2003.
Ballarini, M., Wallinga, J., Wintle, A. G., and Bos, A. J. J.: A modified SAR protocol for optical dating of individual grains from young quartz samples, Radiat. Meas., 42, 360–369, 2007.
Buylaert, J.-P., Murray, A. S., Thomsen, K. J., and Jain, M.: Testing the potential of an elevated temperature IRSL signal from K-feldspar, Radiat. Meas., 44, 560–565, 2009.
Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and Sohbati, R.: A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments, Boreas, 41, 435–451, 2012.
Chapot, M. S., Roberts, H. M., Duller, G. A. T., and Lai, Z. P.: A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess, Radiat. Meas., 47, 1045–1052, https://doi.org/10.1016/j.radmeas.2012.09.001, 2012.
Forman, S. L., Pierson, J., Gomez, J., Brigham-Grette, J., Nowaczyk, N. R., and Melles, M.: Luminescence geochronology for sediments from Lake El'gygytgyn, northeast Siberia, Russia: constraining the timing of paleoenvironmental events for the past 200 ka, J. Paleolimnol., 37, 77–88, 2007.
Frechen, M. and Schirmer, W,: Luminescence Chronology of the Schwalbenberg II Loess in the Middle Rhine Valley, Eiszeitalter und Gegenwart, 60, 78–89, https://doi.org/10.3285/eg.60.1.05, 2011.
Frechen, M., Schweitzer, U., and Zander, A.: Improvements in sample preparation for the fine grain technique, Ancient TL, 14, 15–17, 1996.
Gurov, E. P., Koeberl, C., and Yamnichenko, A.: El'gygytgyn impact crater, Russia: structure, tectonics, and morphology, Meteorit. Planet. Sci., 42, 307–319, https://doi.org/10.1111/j.1945-5100.2007.tb00235.x, 2007.
Guibert, P., Lahaye, C., and Bechtel, F.: The importance of U-series disequilibrium of sediments in luminescence dating: A case study at the Roc de Marsal Cave (Dordogne, France), Radiat. Meas., 44–3, 223–231, 2009.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Can. J. Earth Sci., 38, 1093–1106, 2001.
Jacobs, Z., Roberts, R. G., Lachlan, T. J., Karkanas, P., Marean, C. W., and Roberts, D.: Development of the SAR TT-OSL procedure for dating Middle Pleistocene dune and shallow marine deposits along the southern Cape coast of South Africa, Quat. Geochronol., 6, 491–513, 2011.
Juschus, O., Preusser, F., Melles, M., and Radtke, U.: Applying SAR-IRSL methodology for dating fine-grained sediments from Lake El'gygytgyn, north-eastern Siberia, Quat. Geochronol., 2, 187–194, 2007.
Juschus, O., Melles, M., Gebhardt, A. C., and Niessen, F.: Late Quaternary mass movement events in Lake El'gygytgyn, north-eastern Siberia, Sedimentology, 56, 2155–2174, https://doi.org/10.1111/j.1365-3091.2009.01074.x, 2009.
Kemski, J., Klingel, A., and Siehl, A.: Die terrestrische Strahlung durch natürliche radioaktive Elemente, Umweltradioaktivität, 69–96, edited by: Siehl, A., Ernst & Sohn, 1996.
Krbetschek, M. R., Rieser, U., Zöller, L., and Heinicke, J.: Radioactive disequilibria in palaeo-dosimetric dating of sediments, Radiat. Meas., 23, 485–489, 1994.
Lai, Z. P.: Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol, J. Asian Earth Sci., 37, 176–185, 2010.
Lamothe, M. and Auclair, M.: A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals, Earth Planet. Sc. Lett., 171, 319–323, 1999.
Lamothe, M., Auclair, M., Hamzaoui, C., and Huot, S.: Towards a prediction of longterm anomalous fading of feldspar IRSL, Radiat. Meas., 37, 493–498, 2003.
Li, B. and Li, S. H.: Luminescence dating of K-feldspar from sediments: a protocol without anomalous fading correction, Quat. Geochronol., 6, 468–479, 2011.
Lowick, S. and Preusser, F.: A method for retrospectively calculating water content for desiccated core samples, Ancient TL, 27, 9–14, 2009.
Lowick, S. and Preusser, F.: Investigating age underestimation in the high dose region of optically stimulated luminescence using fine grain quartz, Quat. Geochronol., 6, 33–41, 2011.
Lowick, S., Preusser, F., Pini, R., and Ravazzi, C.: Underestimation of fine grain quartz OSL dating towards the Eemian: Comparison with palynostratigraphy from Azzano Decimo, northeastern Italy, Quat. Geochronol., 5, 583–590, 2010.
Lukas, S., Preusser, F., Anselmetti, D. S., and Tinner, W.: Testing the potential of luminescence dating of high-alpine lake sediments, Quat. Geochronol., 8, 23–32, 2012.
Mauz, B., Packman, S., and Lang, A.: The alpha effectiveness in silt-sized quartz: New data obtained by single and multiple aliquot protocols, Ancient TL, 24, 47–52, 2006.
Melles, M., Brigham-Grette, J., Glushkova, O. Y., Minyuk, P. S., Nowaczyk, N. R., and Hubberten, H.-W.: Sedimentary geochemistry of core PG1351 from Lake El'gygytgyn – a sensitive record of climate variability in the East Siberian Arctic during the past three glacialinterglacial cycles, J. Paleolimnol., 37, 89–104, 2007.
Melles, M., Brigham-Grette, J., Minyuk, P., Koeberl, C., Andreev, A., Cook, T., Fedorov, G., Gebhardt, C., Haltia-Hovi, E., Kukkonen, M., Nowaczyk, N., Schwamborn, G., Wennrich, V., and the El'gygytgyn Scientific Party: The Lake El'gygytgyn scientific drilling project – conquering Arctic challenges through continental drilling, Scientific Drilling, 11, 29–40, https://doi.org/10.2204/iodp.sd.11.03.2011, 2011.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.: 2.8 Million Years of Arctic Climate Change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, https://doi.org/10.1126/science.1222135, 2012.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32, 57–73, 2000.
Murray, A. S., Buylaert, J. P., Henriksen, M., Svendsen, J. I., and Mangerud, J.: Testing the reliability of quartz OSL ages beyond the Eemian, Radiat. Meas., 43, 776–780, 2008.
Niessen, F., Gebhardt, A. C., Kopsch, C., and Wagner, B.: Seismic investigation of the El'gygytgyn impact crater lake (Central Chukotka, NE Siberia): preliminary results, J. Paleolimnol., 37, 17–35, https://doi.org/10.1007/s10933-006-9022-9, 2007.
Nolan, M. and Brigham-Grette, J.: Basic hydrology, limnology, and meteorology of modern Lake El'gygytgyn, Siberia, J. Paleolimnol., 37, 17–35, https://doi.org/10.1007/s10933-006-9020-y, 2007.
Nolan, M., Liston, G., Prokein, P., Brigham-Grette, J., Sharpton, V., and Huntzinger, R.: Analysis of lake ice dynamics and morphology on Lake El'gygytgyn, Siberia, using SAR and Landsat, J. Geophys. Res., 108, 8162, https://doi.org/10.1029/2001JD000934, 2002.
Nowaczyk, N. R., Minyuk, P., Melles, M., Brigham-Grette, J., Glushkova, O. Y., Nolan, M., Lozhkin, A. V., Stetsenko, T. V., Andersen, P. M., and Forman, S. L.: Magnetostratigraphic results from impact crater lake El'gygytgyn, Northeastern Siberia: a possibly 300 kyr long terrestrial paleoclimate record from the Arctic, Geophys. J. Int., 150, 109–126, https://doi.org/10.1046/j.1365-246X.2002.01625.x, 2002.
Nowaczyk, N. R., Wennrich, V., Melles, M., Brigham, J., and El'gygytgyn Scientific Party: Detailed age model for upper 125 m of core D1 from Lake El'gygytgyn, NE Russia, as derived from orbital forcing, Clim. Past Discuss., in preparation, 2013.
Porat, N., Duller, G. A. T., Roberts, H. M., and Wintle, A. G.: A simplified SAR protocol for TT-OSL, Radiat. Meas., 44, 538–542, 2009.
Preusser, F. and Degering, D,: Luminescence dating of the Niedeweningen mammoth site, Switzerland, Quaternary Int., 164–165, 106–112, https://doi.org/10.1016/j.quaint.2006.12.002, 2007.
Rees-Jones, J.: Optical dating of young sediments using fine-grain quartz, Ancient TL, 13, 9–14, 1995.
Schwamborn, G., Foerster, A., Diekmann, B., Schirrmeister, L., and Fedorov, G.: Mid- to Late-Quaternary Cryogenic Weathering Conditions at El'gygytgyn Crater, Northeastern Russia: Inference from Mineralogical and Microtextural Properties of the Sediment Record, Ninth International Conference On Permafrost, Fairbanks, 1601–1606, 2008.
Schwamborn, G., Fedorov, G., Ostanin, N., Schirrmeister, L., Andreev, A., and the El'gygytgyn Scientific Party: Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive, Clim. Past, 8, 1897–1911, https://doi.org/10.5194/cp-8-1897-2012, 2012.
Stevens, T., Buylaert, J.-P., and Murray, A. S.: Towards development of a broadly-applicable SAR TT-OSL dating protocol for quartz, Radiat. Meas., 44, 639–645, 2009.
Thiel, C., Buylaert, J.-P., Murray, A. S., Terhorst, B., Hofer, I., Tsukamoto, S., and Frechen, M.: Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol, Quaternary Int., 234, 23–31, 2011.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts, Radiat. Meas., 43, 1474–1486, 2008.
Timar, A., Vandenberghe, D., Panaiotu, E. C., Panaiotu, C. G., Necula, C., Cosma, C., and Van den Haute, P.: Optical dating of Romanian loess using fine-grained quartz, Quat. Geochronol., 5, 143–148, 2010.
Treshnikov, A. F.: Atlas of the Arctic, Main Department of Geodesy and Cartography under the Council of Ministers of the USSR, Moscow, 1985.
Tsukamoto, S., Duller, G. A. T., and Wintle, A. G.: Characteristics of thermally transferred optically stimulated luminescence (TT-OSL) in quartz and its potential for dating sediments, Radiat. Meas., 43, 1204–1218, 2008.
Wallinga, J., Murray, A. S., and Wintle, A. G.: The single aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar, Radiat. Meas., 32, 529–533, 2000.
Wang, X. L., Wintle, A. G., and Lu, Y. C.: Thermally transferred luminescence in fine-grained quartz from Chinese loess: Basic observations, Radiat. Meas., 41, 649–658, 2006.
Wang, X. L., Wintle, A. G., and Lu, Y. C.: Testing a single-aliquot protocol for recuperated OSL dating, Radiat. Meas., 42, 380–391, 2007.
Wennrich, V., Minyuk, P., Borkhodoev, V., Francke, A., Ritter, B., Raschke, U., Nowaczyk, N., Schwamborn, G., Brigham-Grette, J., Melles, M., and El'gygytgyn Science Party: Pliocene to Pleistocene climate and environmental history of Lake El'gygytgyn / NE Russia based on high-resolution inorganic geochemistry data, Clim. Past Discuss., in preparation, 2013.
Wintle, A. G.: Anomalous fading of thermoluminescence in mineral samples, Nature, 245, 143–144, 1973.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols, Radiat. Meas., 41, 369–391, https://doi.org/10.1016/j.radmeas.2005.11.001, 2006.
Zander, A., Degering, D., Preusser, F., Kasper, H. U., and Brückner, H.: Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, U.A.E.: Radioactive disequilibria in the uranium decay series, Quat. Geochronol., 2, 123–128, https://doi.org/10.1016/j.quageo.2006.04.003, 2007.