Articles | Volume 9, issue 1
https://doi.org/10.5194/cp-9-433-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-433-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia
P. S. Minyuk
North-East Interdisciplinary Scientific Research Institute, Far East Branch of the Russian Academy of Sciences, Magadan, Russia
T. V. Subbotnikova
North-East Interdisciplinary Scientific Research Institute, Far East Branch of the Russian Academy of Sciences, Magadan, Russia
L. L. Brown
Department of Geosciences, University of Massachusetts, Amherst, USA
K. J. Murdock
Department of Geosciences, University of Massachusetts, Amherst, USA
Related authors
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
V. Wennrich, A. Francke, A. Dehnert, O. Juschus, T. Leipe, C. Vogt, J. Brigham-Grette, P. S. Minyuk, M. Melles, and El'gygytgyn Science Party
Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, https://doi.org/10.5194/cp-9-135-2013, 2013
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
K. J. Murdock, K. Wilkie, and L. L. Brown
Clim. Past, 9, 467–479, https://doi.org/10.5194/cp-9-467-2013, https://doi.org/10.5194/cp-9-467-2013, 2013
V. Wennrich, A. Francke, A. Dehnert, O. Juschus, T. Leipe, C. Vogt, J. Brigham-Grette, P. S. Minyuk, M. Melles, and El'gygytgyn Science Party
Clim. Past, 9, 135–148, https://doi.org/10.5194/cp-9-135-2013, https://doi.org/10.5194/cp-9-135-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Pleistocene
Distinguishing the combined vegetation and soil component of δ13C variation in speleothem records from subsequent degassing and prior calcite precipitation effects
Multi-proxy speleothem-based reconstruction of mid-MIS 3 climate in South Africa
Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia)
Hydroclimatic variability of opposing Late Pleistocene climates in the Levant revealed by deep Dead Sea sediments
Different facets of dry–wet patterns in south-western China over the past 27 000 years
The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity
The speleothem oxygen record as a proxy for thermal or moisture changes: a case study of multiproxy records from MIS 5–MIS 6 speleothems from the Demänová Cave system
A new multivariable benchmark for Last Glacial Maximum climate simulations
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Late-glacial to late-Holocene shifts in global precipitation δ18O
Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)
New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)
Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11
A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis
Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic
Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn
Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia
Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El'gygytgyn, Russia Far East
Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)
A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3
Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps
A 250 ka oxygen isotope record from diatoms at Lake El'gygytgyn, far east Russian Arctic
The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool
Terrestrial mollusc records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during marine Oxygen Isotope Stages 24-22
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Jenny Maccali, Anna Nele Meckler, Stein-Erik Lauritzen, Torill Brekken, Helen Aase Rokkan, Alvaro Fernandez, Yves Krüger, Jane Adigun, Stéphane Affolter, and Markus Leuenberger
Clim. Past, 19, 1847–1862, https://doi.org/10.5194/cp-19-1847-2023, https://doi.org/10.5194/cp-19-1847-2023, 2023
Short summary
Short summary
The southern coast of South Africa hosts some key archeological sites for the study of early human evolution. Here we present a short but high-resolution record of past changes in the hydroclimate and temperature on the southern coast of South Africa based on the study of a speleothem collected from Bloukrantz Cave. Overall, the paleoclimate indicators suggest stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable, with marked short drier episodes.
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Jacek Pawlak
Clim. Past, 17, 1051–1064, https://doi.org/10.5194/cp-17-1051-2021, https://doi.org/10.5194/cp-17-1051-2021, 2021
Short summary
Short summary
Presently, central Europe is under the influence of two types of climate, transitional and continental. The 60 ka long multiproxy speleothem dataset from Slovakia records the climate of the Last Interglacial cycle and its transition to the Last Glacial. The interpretation of stable isotopic composition and trace element content proxies helps to distinguish which factor had the strongest influence on the δ18O record shape: the local temperature, the humidity or the source effect.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
S. Affolter, D. Fleitmann, and M. Leuenberger
Clim. Past, 10, 1291–1304, https://doi.org/10.5194/cp-10-1291-2014, https://doi.org/10.5194/cp-10-1291-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
J. A. Snyder, M. V. Cherepanova, and A. Bryan
Clim. Past, 9, 1309–1319, https://doi.org/10.5194/cp-9-1309-2013, https://doi.org/10.5194/cp-9-1309-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
A. Zander and A. Hilgers
Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, https://doi.org/10.5194/cp-9-719-2013, 2013
K. J. Murdock, K. Wilkie, and L. L. Brown
Clim. Past, 9, 467–479, https://doi.org/10.5194/cp-9-467-2013, https://doi.org/10.5194/cp-9-467-2013, 2013
T. Kluge, H. P. Affek, T. Marx, W. Aeschbach-Hertig, D. F. C. Riechelmann, D. Scholz, S. Riechelmann, A. Immenhauser, D. K. Richter, J. Fohlmeister, A. Wackerbarth, A. Mangini, and C. Spötl
Clim. Past, 9, 377–391, https://doi.org/10.5194/cp-9-377-2013, https://doi.org/10.5194/cp-9-377-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
S. Samartin, O. Heiri, A. F. Lotter, and W. Tinner
Clim. Past, 8, 1913–1927, https://doi.org/10.5194/cp-8-1913-2012, https://doi.org/10.5194/cp-8-1913-2012, 2012
B. Chapligin, H. Meyer, G. E. A. Swann, C. Meyer-Jacob, and H.-W. Hubberten
Clim. Past, 8, 1621–1636, https://doi.org/10.5194/cp-8-1621-2012, https://doi.org/10.5194/cp-8-1621-2012, 2012
A. Alexandre, J. Crespin, F. Sylvestre, C. Sonzogni, and D. W. Hilbert
Clim. Past, 8, 307–324, https://doi.org/10.5194/cp-8-307-2012, https://doi.org/10.5194/cp-8-307-2012, 2012
B. Wu and N. Q. Wu
Clim. Past, 7, 349–359, https://doi.org/10.5194/cp-7-349-2011, https://doi.org/10.5194/cp-7-349-2011, 2011
Cited articles
Asikainen, C. A., Francus, P., and Brigham-Grette, J.: Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El'gygytgyn Crater lake, Northeastern Siberia, J. Paleolimnol., 37, 105–122, 2007.
Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y.: The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett, 126, 91–108, 1994.
Bely, V. F. and Belaya, B. V.: Late stage of the OCVB development (upstream of the Enmyvaam River), NEISRI FEB RAS Press, Magadan, 1998 (in Russian).
Bely, V. F. and Raikevich, M. I.: The El'gygytgyn lake basin (geological structure, morphostructure, impactites, problems of investigation and preservation of nature), NEISRI FEB RAS Press, Magadan, 1994 (in Russian).
Borkhodoev, V. Ya.: Accuracy of the fundamental parameter method for x-ray fluorescence analysis of rocks, X-Ray Spectrom., 31, 209–218, 2002.
Brigham-Grette, J., Melles, M., Minyuk, P., and Scientific Party: Overview and significance of a 250 ka paleoclimate record from El'gygytgyn Crater Lake, NE Russia, J. Paleolimnol., 37, 1–16, 2007.
Burov, B. V., Nourgaliev, D. K., and Yasonov, P. G.: Paleomagnetic analysis, KGU Press, Kazan, 1986 (in Russian).
Day, R., Fuller, M., and Schmidt, V. A.: Hysteresis properties of titanomagnetites: grain size and composition dependence, Phys. Earth Planet. Int., 13, 260–267, 1977.
Dean, W.: A 1500-year record of climatic and environmental change in Elk Lake, Clearwater County, Minnesota II: geochemistry, mineralogy, and stable isotopes, J. Paleolimnol., 27, 301–319, 2002.
Dekkers, M. J.: Magnetic properties of natural goethite-I. Grain-size dependence of some low- and high-field related rock magnetic parameters measured at room temperature, Geophys. J., 97, 323–340, 1989a.
Dekkers, M. J.: Magnetic properties of natural pyrrhotite. II High- and low-temperature behavior of Jrs and TRM as function of grain size, Phys. Earth Planet. Int., 57, 266–283, 1989b.
Fagel, N., Alleman, L. Y., Granina, L., Hatert, F., Thamo-Bozso, E., Cloots, R., and Andre, L.: Vivianite formation and distribution in Lake Baikal sediments, Glob. Planet. Change, 46, 315–336, 2005.
Frederichs, T., von Dobeneck, T., Bleil, U., and Dekkers, M. J.: Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties, Phys. Chem. Earth, 28, 669–679, 2003.
Frost, R. L., Weier, M. L., Martens, W., Kloprogge, J. T., and Ding, Z.: Dehydration of synthetic and natural vivianite, Thermochim. Acta, 401, 121–130, 2003.
Gehring, A. U., Fischer, H., Louvel, M., Kunze, K., and Weidler, P. G.: High temperature stability of natural maghemite: a magnetic and spectroscopic study, Geophys. J. Int., 179, 1361–1371, 2009.
Glushkova, O. Yu.: Geomorphological correlation of Late Pleistocene glacial complexes of Western and Eastern Beringia, Quaternary Sci. Rev., 20, 405–417, 2001.
Gurov, E. P., Koeberl, C., and Yamnichenko, A.: El'gygytgyn impact crater, Russia: structure, tectonics, and morphology, Meteorit. Planet. Sci., 42, 307–319, 2007.
Hirt, A. M., Lanci, L., Dobson, J., Weidler, P., and Gehring, A. U.: Low-temperature magnetic properties of lepidocrocite, J. Geophys. Res., 107, 2011, https://doi.org/10.1029/2001JB000242, 2002.
Hrouda, F.: A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge, Geophys. J. Int., 118, 604–612, 1994.
Hrouda, F., Chlupacova, M., and Mrazova, S.: Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks, Phys. Earth Planet. Int., 154, 323–336, 2006.
Kontny, A., De Wall, H., Sharp, T. G., and Posfai, M.: Mineralogy and magnetic behavior of pyrrhotite from a 260° C section at the KTB drilling site, Germany, Am. Min., 85, 1416–1427, 2000.
Layer, P.: Argon-40/argon-39 age of the El'gygytgyn impact event, Chukotka, Russia, Meteorit. Planet. Sci., 35, 591–599, 2000.
Li, F. and Franzen, H. F.: Ordering, Incommensuration, and Phase Transitions in Pyrrhotite. Part II: A High-Temperature X-Ray Powder Diffraction and Thermomagnetic Study, J. Solid State Chem., 126, 108–120, 1996.
Mackereth, F. J. H.: Some chemical observations on post-glacial lake sediments, Phil. Trans. Roy. Soc., Ser. B, 256, 165–213, 1966.
Manning, P. G., Murphy, T. P., and Prepas, E. E.: Intensive formation of vivianite in the bottom sediments of mesotrophic Narrow Lake, Alberta, Can. Min., 29, 77–85, 1991.
Manning, P. G., Prepas, E. E., and Serediak, M. S.: Pyrite and vivianite intervals in the bottom sediments of eutrophic Baptiste Lake, Alberta, Canada, Can. Min., 37, 593–601, 1999.
Marincea, S., Constantinescu, E., and Ladriere, J.: Relatively unoxidized vivianite in limnic coal from Capeni Baraolt Basin, Romania, Can. Min., 35, 713–722, 1997.
Matukhina, V. G., Grigor'eva, T. R., Altukhov, V. M., and Rusanov, D. K.: The peaty vivianites and vivianite peats of the Suzun area in Novosibirsk, Sov. Geol. Geophys., 27, 49–53, 1986.
Meijer, H. C., van den Handel, J., and Frikkee, E.: Magnetic behavior of vivianite, Fe3(PO4)2·8H2O, Physica, 34, 475–48, 1967.
Melles, M., Brigham-Grette, J., Glushkova, O. Yu., Minyuk, P., Nowaczyk, N., and Hubberten, W.: Sedimentary geochemistry of a pilot core from Lake El'gygytgyn – a sensitive record of climate variability in the East Siberian Arctic during the past three climate cycles, J. Paleolimnol., 37, 89–104, 2007.
Melles, M., Brigham-Grette, J., Minyuk, P., Koeberl, C., Andreev, A., Cook, T., Fedorov, G., Gebhardt, C., Haltia-Hovi, E., Kukkonen, M., Nowaczyk, N., Schwamborn, G., Wennrich, V., and the El'gygytgyn Scientific Party: The Lake El'gygytgyn Scientific Drilling Project – Conquering Arctic Challenges through Continental Drilling, Scientific Drilling, 11, 29–40, 2011.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.: 2.8 Million Years of Arctic Climate Change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, 2012.
Minyuk, P. S., Brigham-Grette, J., Melles, M., Borkhodoev, V. Ya., and Glushkova, O. Yu.: Inorganic geochemistry of El'gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr, J. Paleolimnol., 37, 123–133, 2007.
Minyuk, P. S., Subbotnikova, T. V., and Plyashkevich, A. A.: Measurements of thermal magnetic susceptibility of hematite and goethite, Izvestia, Phys. Solid Earth, 47, 762–774, 2011.
Minyuk, P. S., Borkhodoev, V. Ya., and Wennrich, V.: Inorganic data from El'gygytgyn Lake sediments: stages 6–11, Clim. Past Discuss., 9, 393–433, https://doi.org/10.5194/cpd-9-393-2013, 2013.
Murdock, K. J., Wilkie, K. M., and Brown, L. L.: Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El'gygytgyn, Far Eastern Russia, Clim. Past Discuss., 8, 4565–4599, https://doi.org/10.5194/cpd-8-4565-2012, 2012.
Nembrin, G. P., Capobianco, J. A., Viel, M., and Williams A. F.: A Mössbauer and chemical study of the formation of vivianite in sediments of Lago Maggiore (Italy), Geochim. Cosmochim. Acta, 47, 1459–1464, 1983.
Nolan, M. and Brigham-Grette, J.: Basic hydrology, limnology, and meteorology of modern Lake El'gygytgyn, Siberia, J. Paleolimnol., 37, 17–35, 2007.
Nowaczyk, N. R., Minyuk, P., Melles, M., Brigham-Grette, J., Glushkova, O. Yu., Nolan, M., Lozhkin, A., Stetsenko, T. V., Anderson, P, and Forman, S. L.: Magnetostratigraphic results from impact crater Lake El'gygytgyn, north-eastern Siberia: a 300 kyr long high-resolution terrestrial paleoclimatic record from the Arctic. Geophys. J. Int., 150, 109–126, 2002.
Nowaczyk, N. R., Melles, M., and Minyuk, P.: A revised age model for core PG1351 from Lake El'gygytgyn, Chukotka, based on magnetic susceptibility variations tuned to northern hemisphere insolation variations, J. Paleolimnol., 37, 65–76, 2007.
Nowaczyk, N. R., Haltia-Hovi, E. M., Ulbricht, D., Wennrich, V., Kukkonen, M., Rosen, P., Vogel, H., Meyer-Jacob, C., Andreev, A., Lozhkin, A. V., and El'gygytgyn Scientific Party: Chronology of lake El'gygytgyn sediments, Clim. Past, in preparation, 2013.
Nriagu, J. O. and Dell, C. I.: Diagenetic formation of iron phosphates in recent lake sediments, Am. Min., 59, 934–946, 1974.
Özdemir, Ö.: High-temperature hysteresis and thermoremanence of single-domain maghemite, Phys. Earth Planet. Int., 65, 125–136, 1990.
Petrovsk\'{y}, E. and Kapička, A.: On determination of the Curie point from thermomagnetic curves, J. Geophys. Res., 111, B12S27, https://doi.org/10.1029/2006JB004507, 2006.
Pratesi, G., Cipriani, C., Guili, G., and Birch, W. D.: Santabarbaraite: a new amorphous phosphate mineral, Eur. J. Mineral., 15, 185–192, 2003.
Pratt, A. R.: Vivianite auto-oxidation, Phys. Chem. Minerals, 25, 24–27, 1997.
Rodgers, K. A.: Metavivianite and kerchenite: A review, Mineral. Mag., 50, 687–691, 1986.
Rodgers, K. A. and Henderson, G. S.: The thermochemistry of some iron phosphate minerals: vivianite, metavivianite, baracite, ludlamite and vivianite/metavivianite admixtures, Thermochim. Acta, 104, 1–12, 1986.
Rodgers, K. A., Kobe, H. W., and Childs, C. W.: Characterization of vivianite from Catavi, Llallagua Bolivia, Mineral. Petrol., 47, 193–208, 1993.
Roldán, R., Barrón, V., and Torrent, J.: Experimental alteration of vivianite to lepidocrocite in a calcareous medium, Clay Minerals, 37, 709–718, 2002.
Rosenquist, I. T.: Formation of vivianite in Holocene clay sediments, Lithos, 3, 327–334, 1970.
Sapota, T., Aldahan, A., and Al-Aasm, I. S.: Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia, J. Paleolimnol., 36, 245–257, 2006.
Stamatakis, M. G. and Koukouzas, N. K.: The occurrence of phosphate minerals in lacustrine clayey diatomite deposits, Thessaly, Central, Greece, Mar. Geol., 139, 33–47, 2001.
Stoops, G.: SEM and light microscopic observations of minerals in bog-ores of the Belgian Campine, Geoderma, 30, 179–186, 1983.
Tanikawa, W., Mishima, T., Hirono, T., Soh, W., and Song, S. R.: High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan, Earth Planet. Sci. Lett., 272, 372–381, 2008.
Thinnappan, V., Merrifield, C. M., Islam F. S., Polya, D. A., Wincott, P., and Wogelius, R. A.: A combined experimental study of vivianite and As (V) reactivity in the pH range 2–11, Appl. Geochem., 23, 3187–3204, 2008.
Wang, L., Pan, Y., Li, J., and Qin, H.: Magnetic properties related to thermal treatment of pyrite, Sci.in China. Ser. D: Earth Sci., 5, 1144–1153, 2008.