Articles | Volume 9, issue 4
https://doi.org/10.5194/cp-9-1841-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-1841-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Albedo and heat transport in 3-D model simulations of the early Archean climate
H. Kienert
Potsdam Institute for Climate Impact Research, Telegrafenberg A62, 14473 Potsdam, Germany
G. Feulner
Potsdam Institute for Climate Impact Research, Telegrafenberg A62, 14473 Potsdam, Germany
V. Petoukhov
Potsdam Institute for Climate Impact Research, Telegrafenberg A62, 14473 Potsdam, Germany
Related authors
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547, https://doi.org/10.5194/esd-14-533-2023, https://doi.org/10.5194/esd-14-533-2023, 2023
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
Julia Brugger, Matthias Hofmann, Stefan Petri, and Georg Feulner
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-36, https://doi.org/10.5194/cp-2018-36, 2018
Manuscript not accepted for further review
Short summary
Short summary
To get a deeper understanding of the various evolutionary changes, which took place during the Devonian (419 to 359 Ma), we here use a coupled climate model to investigate the sensitivity of the Devonian climate to changes in orbital forcing, continental configuration and vegetation cover. Our results are summarised by best-guess simulations for the Early, Middle and Late Devonian showing a decreasing temperature trend in accordance with the reconstructed decreasing atmospheric CO2.
M. Willeit, A. Ganopolski, and G. Feulner
Biogeosciences, 11, 17–32, https://doi.org/10.5194/bg-11-17-2014, https://doi.org/10.5194/bg-11-17-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
A. V. Eliseev, D. Coumou, A. V. Chernokulsky, V. Petoukhov, and S. Petri
Geosci. Model Dev., 6, 1745–1765, https://doi.org/10.5194/gmd-6-1745-2013, https://doi.org/10.5194/gmd-6-1745-2013, 2013
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
C. F. Schleussner and G. Feulner
Clim. Past, 9, 1321–1330, https://doi.org/10.5194/cp-9-1321-2013, https://doi.org/10.5194/cp-9-1321-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Pre-Cenozoic
Effects of ozone levels on climate through Earth history
Climate and ocean circulation in the aftermath of a Marinoan snowball Earth
Deep ocean temperatures through time
The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity
Paleogeographic controls on the evolution of Late Cretaceous ocean circulation
Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath
Diminished greenhouse warming from Archean methane due to solar absorption lines
The faint young Sun problem revisited with a 3-D climate–carbon model – Part 1
The initiation of Neoproterozoic "snowball" climates in CCSM3: the influence of paleocontinental configuration
Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins
The Aptian evaporites of the South Atlantic: a climatic paradox?
The initiation of modern soft and hard Snowball Earth climates in CCSM4
Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model
Clouds and the Faint Young Sun Paradox
Model-dependence of the CO2 threshold for melting the hard Snowball Earth
Russell Deitrick and Colin Goldblatt
Clim. Past, 19, 1201–1218, https://doi.org/10.5194/cp-19-1201-2023, https://doi.org/10.5194/cp-19-1201-2023, 2023
Short summary
Short summary
Prior to 2.5 billion years ago, ozone was present in our atmosphere only in trace amounts. To understand how climate has changed in response to ozone build-up, we have run 3-D climate simulations with different amounts of ozone. We find that Earth's surface is about 3 to 4 °C degrees cooler with low ozone. This is caused by cooling of the upper atmosphere, where ozone is a warming agent. Its removal causes the upper atmosphere to become drier, weakening the greenhouse warming by water vapor.
Lennart Ramme and Jochem Marotzke
Clim. Past, 18, 759–774, https://doi.org/10.5194/cp-18-759-2022, https://doi.org/10.5194/cp-18-759-2022, 2022
Short summary
Short summary
After the Marinoan snowball Earth, the climate warmed rapidly due to enhanced greenhouse conditions, and the freshwater inflow of melting glaciers caused a strong stratification of the ocean. Our climate simulations reveal a potentially only moderate global temperature increase and a break-up of the stratification within just a few thousand years. The findings give insights into the environmental conditions relevant for the geological and biological evolution during that time.
Paul J. Valdes, Christopher R. Scotese, and Daniel J. Lunt
Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021, https://doi.org/10.5194/cp-17-1483-2021, 2021
Short summary
Short summary
Deep ocean temperatures are widely used as a proxy for global mean surface temperature in the past, but the underlying assumptions have not been tested. We use two unique sets of 109 climate model simulations for the last 545 million years to show that the relationship is valid for approximately the last 100 million years but breaks down for older time periods when the continents (and hence ocean circulation) are in very different positions.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Jean-Baptiste Ladant, Christopher J. Poulsen, Frédéric Fluteau, Clay R. Tabor, Kenneth G. MacLeod, Ellen E. Martin, Shannon J. Haynes, and Masoud A. Rostami
Clim. Past, 16, 973–1006, https://doi.org/10.5194/cp-16-973-2020, https://doi.org/10.5194/cp-16-973-2020, 2020
Short summary
Short summary
Understanding of the role of ocean circulation on climate is contingent on the ability to reconstruct its modes and evolution. Here, we show that earth system model simulations of the Late Cretaceous predict major changes in ocean circulation as a result of paleogeographic and gateway evolution. Comparisons of model results with available data compilations demonstrate reasonable agreement but highlight that various plausible theories of ocean circulation change coexist during this period.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
B. Byrne and C. Goldblatt
Clim. Past, 11, 559–570, https://doi.org/10.5194/cp-11-559-2015, https://doi.org/10.5194/cp-11-559-2015, 2015
Short summary
Short summary
High methane concentrations are thought to have helped sustain warm surface temperatures on the early Earth (~3 billion years ago) when the sun was only 80% as luminous as today. However, radiative transfer calculations with updated spectral data show that methane is a stronger absorber of solar radiation than previously thought. In this paper we show that the increased solar absorption causes a redcution in the warming ability of methane in the Archaean atmosphere.
G. Le Hir, Y. Teitler, F. Fluteau, Y. Donnadieu, and P. Philippot
Clim. Past, 10, 697–713, https://doi.org/10.5194/cp-10-697-2014, https://doi.org/10.5194/cp-10-697-2014, 2014
Y. Liu, W. R. Peltier, J. Yang, and G. Vettoretti
Clim. Past, 9, 2555–2577, https://doi.org/10.5194/cp-9-2555-2013, https://doi.org/10.5194/cp-9-2555-2013, 2013
A. Voigt and D. S. Abbot
Clim. Past, 8, 2079–2092, https://doi.org/10.5194/cp-8-2079-2012, https://doi.org/10.5194/cp-8-2079-2012, 2012
A.-C. Chaboureau, Y. Donnadieu, P. Sepulchre, C. Robin, F. Guillocheau, and S. Rohais
Clim. Past, 8, 1047–1058, https://doi.org/10.5194/cp-8-1047-2012, https://doi.org/10.5194/cp-8-1047-2012, 2012
J. Yang, W. R. Peltier, and Y. Hu
Clim. Past, 8, 907–918, https://doi.org/10.5194/cp-8-907-2012, https://doi.org/10.5194/cp-8-907-2012, 2012
A. Voigt, D. S. Abbot, R. T. Pierrehumbert, and J. Marotzke
Clim. Past, 7, 249–263, https://doi.org/10.5194/cp-7-249-2011, https://doi.org/10.5194/cp-7-249-2011, 2011
C. Goldblatt and K. J. Zahnle
Clim. Past, 7, 203–220, https://doi.org/10.5194/cp-7-203-2011, https://doi.org/10.5194/cp-7-203-2011, 2011
Y. Hu, J. Yang, F. Ding, and W. R. Peltier
Clim. Past, 7, 17–25, https://doi.org/10.5194/cp-7-17-2011, https://doi.org/10.5194/cp-7-17-2011, 2011
Cited articles
Abbot, D. S., Voigt, A., and Koll, D.: The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res., 116, D18103, https://doi.org/10.1029/2011JD015927, 2011.
Bahcall, J. N., Pinsonneault, M. H., and Basu, S.: Solar models: current epoch and time dependences, neutrinos, and helioseismological properties, Astrophys. J., 555, 990–1012, https://doi.org/10.1086/321493, 2001.
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y., and Pearson, N. J.: The growth of the continental crust: constraints from zircon Hf-isotope data, Lithos, 119, 457–466, https://doi.org/10.1016/j.lithos.2010.07.024, 2010.
Berger, A. L.: Long-term variations of daily insolation and quaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Brandt, R. E., Warren, S. G., Worby, A. P., and Grenfell, T. C.: Surface Albedo of the Antarctic Sea Ice Zone, J. Climate, 18, 3606–3622, https://doi.org/10.1175/JCLI3489.1, 2005.
Bryan, K. and Lewis, L. J.: A water mass model of the world ocean, J. Geophys. Res., 84, 2503–2517, https://doi.org/10.1029/JC084iC05p02503, 1979.
Budyko, M. I.: The effect of solar radiation variations on the climate of the earth, Tellus, 21, 611–619, https://doi.org/10.1111/j.2153-3490.1969.tb00466.x, 1969.
Campbell, I. H.: Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites, Am. J. Sci., 303, 319–351, https://doi.org/10.2475/ajs.303.4.319, 2003.
Cesana, G. and Chepfer, H.: How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models, Geophys. Res. Lett., 39, L20803, https://doi.org/10.1029/2012GL053153, 2012.
Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P., Stubenrauch, C. J., and Zeng, S.: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP), J. Geophys. Res.-Atmos., 115, D00H16, https://doi.org/10.1029/2009JD012251, 2010.
Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I. I., Petoukhov, V., Stone, P., and Wang, Z.: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models, Clim. Dynam., 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1, 2002.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., and Lin, S. J.: Description of the NCAR community atmosphere model (CAM 3.0), Technical Note TN-464+ STR, National Center for Atmospheric Research, Boulder, CO, 2004.
Dhuime, B., Hawkesworth, C. J., Cawood, P. A., and Storey, C. D.: A change in the geodynamics of continental growth 3 billion years ago, Science, 335, 1334–1336, https://doi.org/10.1126/science.1216066, 2012.
Eby, M., Weaver, A. J., Alexander, K., Zickfeld, K., Abe-Ouchi, A., Cimatoribus, A. A., Crespin, E., Drijfhout, S. S., Edwards, N. R., Eliseev, A. V., Feulner, G., Fichefet, T., Forest, C. E., Goosse, H., Holden, P. B., Joos, F., Kawamiya, M., Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I. I., Monier, E., Olsen, S. M., Pedersen, J. O. P., Perrette, M., Philippon-Berthier, G., Ridgwell, A., Schlosser, A., Schneider von Deimling, T., Shaffer, G., Smith, R. S., Spahni, R., Sokolov, A. P., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., Zeng, N., and Zhao, F.: Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity, Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, 2013.
Enderton, D. and Marshall, J.: Explorations of atmosphere-ocean-ice climates on an aquaplanet and their meridional energy transports, J. Atmos. Sci., 66, 1593–1611, https://doi.org/10.1175/2008JAS2680.1, 2009.
Ferreira, D., Marshall, J., and Campin, J. M.: Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation, J. Climatol., 23, 1456–1476, https://doi.org/10.1175/2009JCLI3197.1, 2010.
Feulner, G.: The faint young Sun problem, Rev. Geophys., 50, RG2006, https://doi.org/10.1029/2011RG000375, 2012.
Fichefet, T. and Morales Maqueda, M. A.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans, 102, 12609–12646, 1997.
Flament, N.: Secular cooling of the solid Earth, emergence of the continents, and evolution of Earth's external envelopes, Ph.D. thesis, University of Sydney and \'Ecole Normale Supérieure de Lyon, Lyon, 2009.
Flament, N., Coltice, N., and Rey, P. F.: A case for late-Archaean continental emergence from thermal evolution models and hypsometry, Earth Planet. Sc. Lett., 275, 326–336, https://doi.org/10.1016/j.epsl.2008.08.029, 2008.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: chap. Changes in Atmospheric Constituents and in Radiative Forcing, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Gent, P. R. and McWilliams, J. C.: Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990.
Goldblatt, C. and Zahnle, K. J.: Clouds and the Faint Young Sun Paradox, Clim. Past, 7, 203–220, https://doi.org/10.5194/cp-7-203-2011, 2011.
Goldblatt, C., Claire, M. W., Lenton, T. M., Matthews, A. J., Watson, A. J., and Zahnle, K. J.: Nitrogen-enhanced greenhouse warming on early Earth, Nat. Geosci., 2, 891–896, https://doi.org/10.1038/ngeo692, 2009.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004.
Gregory, J. M., Dixon, K. W., Stouffer, R. J., Weaver, A. J., Driesschaert, E., Eby, M., Fichefet, T., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Sokolov, A. P., and Thorpe, R. B.: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration, Geophys. Res. Lett., 32, L12703, https://doi.org/10.1029/2005GL023209, 2005.
Halevy, I., Pierrehumbert, R. T., and Schrag, D. P.: Radiative transfer in CO2-rich paleoatmospheres, J. Geophys. Res., 114, D18112, https://doi.org/10.1029/2009JD011915, 2009.
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-Atmos., 110, D18104, https://doi.org/10.1029/2005JD005776, 2005.
Held, I. M. and Hou, A. Y.: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37, 515–533, 1980.
Hofmann, M. and Morales Maqueda, M. A.: Performance of a second-order moments advection scheme in an ocean general circulation model, J. Geophys. Res.-Oceans, 111, C05006, https://doi.org/10.1029/2005JC003279, 2006.
Hurley, P. M. and Rand, J. R.: Pre-drift continental nuclei, Science, 164, 1229–1242, https://doi.org/10.1126/science.164.3885.1229, 1969.
Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, W. R.: Neoproterozoic "snowball Earth" simulations with a coupled climate/ice-sheet model, Nature, 405, 425–429, https://doi.org/10.1038/35013005, 2000.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D.: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chap. Palaeoclimate, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Jenkins, G. S.: A general circulation model study of the effects of faster rotation rate, enhanced CO2 concentration, and reduced solar forcing: implications for the faint young sun paradox, J. Geophys. Res., 98, 20803–20811, https://doi.org/10.1029/93JD02056, 1993a.
Jenkins, G. S.: The effects of reduced land fraction and solar forcing on the general circulation: results from the NCAR CCM, Global Planet. Change, 7, 321–333, https://doi.org/10.1016/0921-8181(93)90004-8, 1993b.
Jenkins, G. S.: Early Earth's climate: Cloud feedback from reduced land fraction and ozone concentrations, Geophys. Res. Lett., 22, 1513–1516, https://doi.org/10.1029/95GL00818, 1995.
Jenkins, G. S.: A sensitivity study of changes in Earth's rotation rate with an atmospheric general circulation model, Global Planet. Change, 11, 141–154, https://doi.org/10.1016/0921-8181(95)00050-X, 1996.
Jenkins, G. S., Marshall, H. G., and Kuhn, W. R.: Precambrian climate: The effects of land area and Earth's rotation rate, J. Geophys. Res., 98, 8785–8791, doi10.1029/93JD00033, 1993.
Kasting, J. F.: Early Earth: faint young Sun redux, Nature, 464, 687–689, https://doi.org/10.1038/464687a, 2010.
Kasting, J. F., Pollack, J. B., and Crisp, D.: Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early earth, J. Atmos. Chem., 1, 403–428, https://doi.org/10.1007/BF00053803, 1984.
Kiehl, J. T. and Dickinson, R. E.: A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures, J. Geophys. Res., 92, 2991–2998, https://doi.org/10.1029/JD092iD03p02991, 1987.
Kienert, H., Feulner, G., and Petoukhov, V.: Faint young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth, Geophys. Res. Lett., 39, L23710, https://doi.org/10.1029/2012GL054381, 2012.
Kirschvink, J. L.: Late proterozoic low-latitude global glaciation: the snowballl earth, in: The Proterozoic Biosphere: A Multidisciplinary Study, edited by: Schopf, J. W. and Klein, C., Cambridge University Press, Cambridge, 51–52, 1992.
Kröner, A.: Evolution of the archean continental crust, Annu. Rev. Earth Planet. Sci., 13, 49–74, https://doi.org/10.1146/annurev.ea.13.050185.000405, 1985.
Labrosse, S. and Jaupart, C.: Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics, Earth Planet. Sc. Lett., 260, 465–481, https://doi.org/10.1016/j.epsl.2007.05.046, 2007.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Lewis, J. P., Weaver, A. J., and Eby, M.: Snowball versus slushball Earth: dynamic versus nondynamic sea ice?, J. Geophys. Res.-Oceans, 112, https://doi.org/10.1029/2006JC004037, 2007.
Lowe, D. R.: Archean sedimentation, Annu. Rev. Earth Planet. Sci., 8, 145–167, https://doi.org/10.1146/annurev.ea.08.050180.001045, 1980.
Marshall, J., Ferreira, D., Campin, J.-M., and Enderton, D.: Mean climate and variability of the atmosphere and ocean on an aquaplanet, J. Atmos. Sci., 64, 4270–4286, https://doi.org/10.1175/2007JAS2226.1, 2007.
Meadows, V. S. and Crisp, D.: Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface, J. Geophys. Res., 101, 4595–4622, 1996.
Montoya, M., Griesel, A., Levermann, A., Mignot, J., Hofmann, M., Ganopolski, A., and Rahmstorf, S.: The earth system model of intermediate complexity CLIMBER-3α, Part 1: description and performance for present-day conditions, Clim. Dynam., 25, 237–263, https://doi.org/10.1007/s00382-005-0044-1, 2005.
Navarra, A. and Boccaletti, G.: Numerical general circulation experiments of sensitivity to Earth rotation rate, Clim. Dynam., 19, 467–483, https://doi.org/10.1007/s00382-002-0238-8, 2002.
Pacanowski, R. C. and Griffies, S. M.: The MOM-3 manual, Tech. Rep. 4, NOAA/Geophyical Fluid Dynamics Laboratory, Princeton, NJ, USA, 1999.
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of intermediate complexity, Part I: model description and performance for present climate, Clim. Dynam., 16, 1–17, 2000.
Petoukhov, V., Ganopolski, A., and Claussen, M.: POTSDAM – a set of atmosphere statistical-dynamical models: theoretical background, Tech. Rep. 81, Potsdam Institute for Climate Impact Research, Potsdam, 2003.
Pierrehumbert, R. T.: Principles of Planetary Climate, Cambridge University Press, Cambridge, 2010.
Pierrehumbert, R. T., Abbot, D. S., Voigt, A., and Koll, D.: Climate of the Neoproterozoic, in: Annual Review of Earth and Planetary Sciences, Vol. 39, edited by: Jeanloz, R. and Freeman, K. H., Annual Reviews, Palo Alto, 417–460, 2011.
Plattner, G.-K., Knutti, R., Joos, F., Stocker, T. F., von Bloh, W., Brovkin, V., Cameron, D., Driesschaert, E., Dutkiewicz, S., Eby, M., Edwards, N. R., Fichefet, T., Hargreaves, J. C., Jones, C. D., Loutre, M. F., Matthews, H. D., Mouchet, A., Müller, S. A., Nawrath, S., Price, A., Sokolov, A., Strassmann, K. M., and Weaver, A. J.: Long-term climate commitments projected with climate carbon cycle models, J. Climatol., 21, 2721, https://doi.org/10.1175/2007JCLI1905.1, 2008.
Redi, M. H.: Oceanic isopycnal mixing by coordinate rotation, J. Phys. Oceanogr., 12, 1154–1158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2, 1982.
Rey, P. F. and Coltice, N.: Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs, Geology, 36, 635–638, 2008.
Rosing, M. T., Bird, D. K., Sleep, N. H., and Bjerrum, C. J.: No climate paradox under the faint early Sun, Nature, 464, 744–747, https://doi.org/10.1038/nature08955, 2010.
Sagan, C. and Mullen, G.: Earth and Mars: Evolution of atmospheres and surface temperatures, Science, 177, 52–56, https://doi.org/10.1126/science.177.4043.52, 1972.
Schneider, T.: The General Circulation of the Atmosphere, Ann. Rev. Earth Pl. Sc., 34, 655–688, https://doi.org/10.1146/annurev.earth.34.031405.125144, 2006.
Segura, A., Meadows, V. S., Kasting, J. F., Crisp, D., and Cohen, M.: Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres, Astron. Astrophys., 472, 665–679, https://doi.org/10.1051/0004-6361:20066663, 2007.
Shine, K. P. and Henderson-Sellers, A.: The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization, J. Geophys. Res., 90, 2243–2250, https://doi.org/10.1029/JD090iD01p02243, 1985.
Showman, A. P., Cho, J. Y.-K., and Menou, K.: Atmospheric Circulation of Exoplanets, in: Exoplanets, edited by: Seager, S., University of Arizona Press, Tucson, AZ, USA, 471–516, 2011.
Smith, R. S., Dubois, C., and Marotzke, J.: Global climate and ocean circulation on an aquaplanet ocean-atmosphere general circulation model, J. Climatol., 19, 4719–4737, 2006.
Stephens, G. L.: Cloud feedbacks in the climate system: a critical review, J. Climatol., 18, 237–273, https://doi.org/10.1175/JCLI-3243.1, 2005.
Stone, P. H.: Constraints on dynamical transports of energy on a spherical planet, Dynam. Atmos. Ocean, 2, 123–139, https://doi.org/10.1016/0377-0265(78)90006-4, 1978.
Stone, P. H. and Carlson, J. H.: Atmospheric lapse rate regimes and their parameterization, J. Atmos. Sci., 36, 415–423, 1979.
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G., and Weber, S. L.: Investigating the causes of the response of the thermohaline circulation to past and future climate changes, J. Climatol., 19, 1365–1387, https://doi.org/10.1175/JCLI3689.1, 2006.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Taylor, S. R. and McLennan, S. M.: The Continental Crust: Its Composition and Evolution, Blackwell, Palo Alto, CA, 1985.
Tsvetsinskaya, E. A., Schaaf, C. B., Gao, F., Strahler, A. H., Dickinson, R. E., Zeng, X., and Lucht, W.: Relating MODIS-derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula, Geophys. Res. Lett., 29, 1353, https://doi.org/10.1029/2001GL014096, 2002.
Voigt, A. and Abbot, D. S.: Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins, Clim. Past, 8, 2079–2092, https://doi.org/10.5194/cp-8-2079-2012, 2012.
Voigt, A. and Marotzke, J.: The transition from the present-day climate to a modern Snowball Earth, Clim. Dynam., 35, 887–905, https://doi.org/10.1007/s00382-009-0633-5, 2010.
Voigt, A., Abbot, D. S., Pierrehumbert, R. T., and Marotzke, J.: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model, Clim. Past, 7, 249–263, https://doi.org/10.5194/cp-7-249-2011, 2011.
von Paris, P., Rauer, H., Lee Grenfell, J., Patzer, B., Hedelt, P., Stracke, B., Trautmann, T., and Schreier, F.: Warming the early earth – CO2 reconsidered, Planet. Space Sci., 56, 1244–1259, https://doi.org/10.1016/j.pss.2008.04.008, 2008.
Walker, J. C. G.: Climatic factors on the Archean Earth, Palaeogeogr. Palaeocl., 40, 1–11, https://doi.org/10.1016/0031-0182(82)90082-7, 1982.
Wang, W. C. and Stone, P. H.: Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model, J. Atmos. Sci., 37, 545–552, https://doi.org/10.1175/1520-0469(1980)037<0545:EOIAFO>2.0.CO;2, 1980.
Warren, S. G., Brandt, R. E., Grenfell, T. C., and McKay, C. P.: Snowball Earth: ice thickness on the tropical ocean, J. Geophys. Res.-Oceans, 107, 3167, https://doi.org/10.1029/2001JC001123, 2002.
Williams, G. E.: Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit, Rev. Geophys., 38, 37–60, https://doi.org/10.1029/1999RG900016, 2000.
Williams, G. P.: The dynamical range of global circulations – I, Clim. Dynam., 2, 205–260, https://doi.org/10.1007/BF01371320, 1988.
Wordsworth, R., Forget, F., and Eymet, V.: Infrared collision-induced and far-line absorption in dense CO2 atmospheres, Icarus, 210, 992–997, https://doi.org/10.1016/j.icarus.2010.06.010, 2010.
Yang, J., Peltier, W. R., and Hu, Y.: The initiation of modern "Soft Snowball" and "Hard Snowball" climates in CCSM3, Part I: the influences of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization, J. Climatol., 25, 2711–2736, https://doi.org/10.1175/JCLI-D-11-00189.1, 2012a.
Yang, J., Peltier, W. R., and Hu, Y.: The initiation of modern "Soft Snowball" and "Hard Snowball" climates in CCSM3, Part II: climate dynamic feedbacks, J. Climatol., 25, 2737–2754, https://doi.org/10.1175/JCLI-D-11-00190.1, 2012b.
Zahnle, K. and Walker, J. C. G.: A constant daylength during the precambrian era?, Precambrian Res., 37, 95–105, https://doi.org/10.1016/0301-9268(87)90073-8, 1987.
Zilitinkevich, S. S.: On the computation of the basic parameters of the interaction between the atmosphere and the ocean, Tellus, 21, 17–24, https://doi.org/10.1111/j.2153-3490.1969.tb00414.x, 1969.
Zilitinkevich, S. S.: Dynamics of the Atmospheric Boundary Layer, Gidrometeoizdat, Leningrad, 1970.