Articles | Volume 8, issue 2
https://doi.org/10.5194/cp-8-765-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-8-765-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability
B. Christiansen
Danish Meteorological Institute, Copenhagen, Denmark
F. C. Ljungqvist
Department of History, Stockholm University, Stockholm, Sweden
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Holocene
Glacial–interglacial seawater isotope change near the Chilean Margin as reflected by δ2H values of C37 alkenones
Upper-ocean temperature characteristics in the subantarctic southeastern Pacific based on biomarker reconstructions
Evaluation of the distributions of hydroxylated glycerol dibiphytanyl glycerol tetraethers (GDGTs) in Holocene Baltic Sea sediments for reconstruction of sea surface temperature: the effect of changing salinity
Technical Note: Past and future warming – direct comparison on multi-century timescales
Co-evolution of the terrestrial and aquatic ecosystem in the Holocene Baltic Sea
Holocene palaeoceanography of the Northeast Greenland shelf
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 2: Application and interpretation
Evaluation of oxygen isotopes and trace elements in planktonic foraminifera from the Mediterranean Sea as recorders of seawater oxygen isotopes and salinity
A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 1: Theoretical concept
Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past?
Evidence from giant-clam δ18O of intense El Ninõ–Southern Oscillation-related variability but reduced frequency 3700 years ago
Empirical estimate of the signal content of Holocene temperature proxy records
Sedproxy: a forward model for sediment-archived climate proxies
Tracing winter temperatures over the last two millennia using a north-east Atlantic coastal record
The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea
Sedimentary archives of climate and sea-level changes during the Holocene in the Rhône prodelta (NW Mediterranean Sea)
Holocene hydrological changes in the Rhône River (NW Mediterranean) as recorded in the marine mud belt
Technical note: Estimating unbiased transfer-function performances in spatially structured environments
Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions)
Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition
Evidence for the non-influence of salinity variability on the Porites coral Sr/Ca palaeothermometer
Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea
Long-term variations in Iceland–Scotland overflow strength during the Holocene
Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciation
Natural variability and anthropogenic effects in a Central Mediterranean core
Tracking climate variability in the western Mediterranean during the Late Holocene: a multiproxy approach
Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach
Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean
Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Andrew M. Dolman, Torben Kunz, Jeroen Groeneveld, and Thomas Laepple
Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, https://doi.org/10.5194/cp-17-825-2021, 2021
Short summary
Short summary
Uncertainties in climate proxy records are temporally autocorrelated. By deriving expressions for the power spectra of errors in proxy records, we can estimate appropriate uncertainties for any timescale, for example, for temporally smoothed records or for time slices. Here we outline and demonstrate this approach for climate proxies recovered from marine sediment cores.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Torben Kunz, Andrew M. Dolman, and Thomas Laepple
Clim. Past, 16, 1469–1492, https://doi.org/10.5194/cp-16-1469-2020, https://doi.org/10.5194/cp-16-1469-2020, 2020
Short summary
Short summary
This paper introduces a method to estimate the uncertainty of climate reconstructions from single sediment proxy records. The method can compute uncertainties as a function of averaging timescale, thereby accounting for the fact that some components of the uncertainty are autocorrelated in time. This is achieved by treating the problem in the spectral domain. Fully analytic expressions are derived. A companion paper (Part 2) complements this with application-oriented examples of the method.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Yue Hu, Xiaoming Sun, Hai Cheng, and Hong Yan
Clim. Past, 16, 597–610, https://doi.org/10.5194/cp-16-597-2020, https://doi.org/10.5194/cp-16-597-2020, 2020
Short summary
Short summary
Tridacna, as the largest marine bivalves, can be used for high-resolution paleoclimate reconstruction in its carbonate skeleton. In this contribution, the modern δ18O shell is suggested to be a proxy for sea surface temperature in the Xisha Islands, South China Sea. Data from a fossil Tridacna (3673 ± 28 BP) indicate a warmer climate and intense ENSO-related variability but reduced ENSO frequency and more extreme El Niño winters compared to modern Tridacna.
Maria Reschke, Kira Rehfeld, and Thomas Laepple
Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-2019, https://doi.org/10.5194/cp-15-521-2019, 2019
Short summary
Short summary
We empirically estimate signal-to-noise ratios of temperature proxy records used in global compilations of the middle to late Holocene by comparing the spatial correlation structure of proxy records and climate model simulations accounting for noise and time uncertainty. We find that low signal contents of the proxy records or, alternatively, more localised climate variations recorded by proxies than suggested by current model simulations suggest caution when interpreting multi-proxy datasets.
Andrew M. Dolman and Thomas Laepple
Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, https://doi.org/10.5194/cp-14-1851-2018, 2018
Short summary
Short summary
Climate proxies from marine sediments provide an important record of past temperatures, but contain noise from many sources. These include mixing by burrowing organisms, seasonal and habitat biases, measurement error, and small sample size effects. We have created a forward model that simulates the creation of proxy records and provides it as a user-friendly R package. It allows multiple sources of uncertainty to be considered together when interpreting proxy climate records.
Irina Polovodova Asteman, Helena L. Filipsson, and Kjell Nordberg
Clim. Past, 14, 1097–1118, https://doi.org/10.5194/cp-14-1097-2018, https://doi.org/10.5194/cp-14-1097-2018, 2018
Short summary
Short summary
We present 2500 years of winter temperatures, using a sediment record from Gullmar Fjord analyzed for stable oxygen isotopes in benthic foraminifera. Reconstructed temperatures are within the annual temperature variability recorded in the fjord since the 1890s. Results show the warm Roman and Medieval periods and the cold Little Ice Age. The record also shows the recent warming, which does not stand out in the 2500-year perspective and is comparable to the Roman and Medieval climate anomalies.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Anne-Sophie Fanget, Maria-Angela Bassetti, Christophe Fontanier, Alina Tudryn, and Serge Berné
Clim. Past, 12, 2161–2179, https://doi.org/10.5194/cp-12-2161-2016, https://doi.org/10.5194/cp-12-2161-2016, 2016
Maria-Angela Bassetti, Serge Berné, Marie-Alexandrine Sicre, Bernard Dennielou, Yoann Alonso, Roselyne Buscail, Bassem Jalali, Bertil Hebert, and Christophe Menniti
Clim. Past, 12, 1539–1553, https://doi.org/10.5194/cp-12-1539-2016, https://doi.org/10.5194/cp-12-1539-2016, 2016
Short summary
Short summary
This work represents the first attempt to decipher the linkages between rapid climate changes and continental Holocene paleohydrology in the NW Mediterranean shallow marine setting. Between 11 and 4 ka cal BP, terrigenous input increased and reached a maximum at 7 ka cal BP, probably as a result of a humid phase. From ca. 4 ka cal BP to the present, enhanced variability in the land-derived material is possibly due to large-scale atmospheric circulation and rainfall patterns in western Europe.
Mathias Trachsel and Richard J. Telford
Clim. Past, 12, 1215–1223, https://doi.org/10.5194/cp-12-1215-2016, https://doi.org/10.5194/cp-12-1215-2016, 2016
Short summary
Short summary
In spatially structured environments, conventional cross validation results in over-optimistic transfer function performance estimates. H-block cross validation, where all samples within h kilometres of the test samples are omitted is a method for obtaining unbiased transfer function performance estimates. We assess three methods for determining the optimal h using simulated data and published transfer functions. Some transfer functions perform notably worse when h-block cross validation is used.
B. Jalali, M.-A. Sicre, M.-A. Bassetti, and N. Kallel
Clim. Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, https://doi.org/10.5194/cp-12-91-2016, 2016
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
M. Moreau, T. Corrège, E. P. Dassié, and F. Le Cornec
Clim. Past, 11, 523–532, https://doi.org/10.5194/cp-11-523-2015, https://doi.org/10.5194/cp-11-523-2015, 2015
Short summary
Short summary
The influence of salinity on the Porites Sr/Ca palaeothermometer is still poorly documented. We test the salinity effect on Porites Sr/Ca-based SST reconstructions using a large spatial compilation of published Porites data from the Pacific, Indian Ocean, and the Red Sea. We find no evidence of a salinity bias in the Sr/Ca SST proxy at monthly and interannual timescales using two different salinity products. This result is in agreement with laboratory experiments on coral species.
S. M. P. Berben, K. Husum, P. Cabedo-Sanz, and S. T. Belt
Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, https://doi.org/10.5194/cp-10-181-2014, 2014
D. J. R. Thornalley, M. Blaschek, F. J. Davies, S. Praetorius, D. W. Oppo, J. F. McManus, I. R. Hall, H. Kleiven, H. Renssen, and I. N. McCave
Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013, https://doi.org/10.5194/cp-9-2073-2013, 2013
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
S. Alessio, G. Vivaldo, C. Taricco, and M. Ghil
Clim. Past, 8, 831–839, https://doi.org/10.5194/cp-8-831-2012, https://doi.org/10.5194/cp-8-831-2012, 2012
V. Nieto-Moreno, F. Martínez-Ruiz, S. Giralt, F. Jiménez-Espejo, D. Gallego-Torres, M. Rodrigo-Gámiz, J. García-Orellana, M. Ortega-Huertas, and G. J. de Lange
Clim. Past, 7, 1395–1414, https://doi.org/10.5194/cp-7-1395-2011, https://doi.org/10.5194/cp-7-1395-2011, 2011
C. Martín-Puertas, F. Jiménez-Espejo, F. Martínez-Ruiz, V. Nieto-Moreno, M. Rodrigo, M. P. Mata, and B. L. Valero-Garcés
Clim. Past, 6, 807–816, https://doi.org/10.5194/cp-6-807-2010, https://doi.org/10.5194/cp-6-807-2010, 2010
C. Andersson, F. S. R. Pausata, E. Jansen, B. Risebrobakken, and R. J. Telford
Clim. Past, 6, 179–193, https://doi.org/10.5194/cp-6-179-2010, https://doi.org/10.5194/cp-6-179-2010, 2010
I. Dormoy, O. Peyron, N. Combourieu Nebout, S. Goring, U. Kotthoff, M. Magny, and J. Pross
Clim. Past, 5, 615–632, https://doi.org/10.5194/cp-5-615-2009, https://doi.org/10.5194/cp-5-615-2009, 2009
Cited articles
Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., and Thomas, R. A.: Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model, Proc. Natl. Acad. Sci. USA, 104, 3713–3718, 2007.
Andersson, C., Pausata, F. S. R., Jansen, E., Risebrobakken, B., and Telford, R. J.: Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean, Clim. Past, 6, 179–193, https://doi.org/10.5194/cp-6-179-2010, 2010.
Biondi, F., Perkins, D. L., Cayan, D. R., and Hughes, M. K.: July temperature during the second millennium reconstructed from {I}daho tree rings, Geophys. Res. Lett., 26, 1445–1448, 1999.
Bird, B., Abbott, M., Finney, B., and Kutchko, B.: A 2000 year varve-based climate record from the Central Brooks Range, Alaska, J. Paleolimnol., 41, 25–41, 2009.
Bolshyanov, D. Y. Makeev, V. M.: Severnaya Zemlia Archipelago-Glaciation, Development of the Environments (Arkhipelag Severnaya Zemlia – Oldenneniye, Istoriya Razvitiya Prirodnoy Sredy), Gidrometeoizdat, Sankt-Petersburg, 1995 (in Russian).
Bradley, R. S.: Paleoclimatology: {R}econstructing climates of the {Q}uaternary, Hardcourt/Academic Press, San Diego, CA, 2nd Edn., 1999.
Bradley, R. S., Hughes, M. K., and Diaz, H. F.: Climate in medieval time, Science, 302, 404–405, 2003.
Briffa, K. R.: Annual climate variability in the {H}olocene: interpreting the message of ancient trees, Quaternary Sci. Rev., 19, 87–105, 2000.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Harris, I. C., Jones, P. D., Shiyatov, S. G., and Vaganov, E. A.: Low-frequency temperature variations from a northern tree ring density network, J. Geophys. Res., 106, 2929–2941, 2001.
Briffa, K. R., Shishov, V. V., Melvin, T. M., Vaganov, E. A., Grudd, H., Hantemirov, R. M., Eronen, M., and Naurzbaev, M. M.: Trends in recent temperature and radial tree growth spanning 2000 years across Northwest Eurasia, Philos. T. Roy. Soc. B, 363, 2271–2284, 2008.
Broecker, W. S.: Was the medieval warm period global?, Science, 291, 1497–1499, 2001.
Brohan, P., Kennedy, J., Haris, T., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850, J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005jd006548, 2006.
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J.: Summer temperature variations in the {E}uropean {A}lps, AD 755–2004, J. Climate, 19, 5606–5623, 2006.
Büntgen, U., Frank, D. C., Grudd, H., and Esper, J.: Long-term summer temperature variations in the {P}yrenees, Clim. Dynam., 31, 615–631, 2008.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., and Wanner, H.: 2500 years of European climate variability and human susceptibility, Science, 331, 578–582, 2011.
Bürger, G. and Cubasch, U.: Climate reconstruction by regression – 32 variations on a theme, Tellus A, 58, 227–235, 2006.
Christiansen, B.: Reconstructing the NH mean temperature: can underestimation of trends and variability be avoided?, J. Climate, 24, 674–692, 2011.
Christiansen, B.: Reply to "{C}omments on Reconstructing the NH mean temperature: Can underestimation of trends and variability be avoided?" by {T}ingley and {L}i, J., Climate, accepted, https://doi.org/10.1175/JCLI-D-11-00162.1, 2012.
Christiansen, B. and Ljungqvist, F. C.: Reconstruction of the extra-tropical NH mean temperature over the last millennium with a method that preserves low-frequency variability, J. Climate, 24, 6013-6034, 2011.
Christiansen, B. and Ljungqvist, F. C.: Reply to Comments on "Reconstruction of the extra-tropical NH mean temperature over the last millennium with a method that preserves low-frequency variability" by A. Moberg, J. Climate, submitted, available online at: http://web.dmi.dk/fsweb/solar-terrestrial/staff/boc/reply_to_moberg.pdf, 2012.
Christiansen, B., Schmith, T., and Thejll, P.: A surrogate ensemble study of climate reconstruction methods: {s}tochasticity and robustness, J. Climate, 22, 951–976, 2009.
Christiansen, B., Schmith, T., and Thejll, P.: Reply to Comment on "A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness" by Rutherford, S., Mann, M. E., Ammann, C., and Wahl, E., J. Climate, 23, 2839–2844, 2010.
Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., and Ladurie, E. L. R.: Grape ripening as a past climate indicator, Nature, 432, 289–290, 2004.
Cook, T. L., Bradley, R. S., Stoner, J. S., and Francus, P.: Five thousand years of sediment transfer in a {H}igh {A}rctic watershed recorded in annually laminated sediments from {L}ower {M}urray {L}ake, {E}llesmere {I}sland, {N}unavut, {C}anada, J. Paleolimnol., 41, 77–94, 2009.
Corona, C., Edouard, J.-L., Guibal, F., Guiot, J., Bernard, S., Thomas, A., and Denelle, N.: Long-term summer ({AD} 751–2008) temperature fluctuation in the {F}rench {A}lps based on tree-ring data, Boreas, 40, 351–366, 2011.
Cronin, T. M., Dwyer, G. S., Kamiya, T., Schwede, S., and Willard, D. A.: {M}edieval {W}arm {P}eriod, {L}ittle {I}ce {A}ge and 20th century temperature variability from {C}hesapeake {B}ay, Global Planet. Change, 36, 17–29, 2003.
Cronin, T. M., Hayo, K., Thunell, R. C., Dwyer, G. S., Saenger, C. P., and Willard, D. A.: The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean, Palaeogeogr. Palaeocl., 297, 299–310, 2010.
Dansgaard, W., Johnsen, S. J., Möller, J., and C. C. Langway, J.: One thousand centuries of climatic record from {C}amp {C}entury on the {G}reenland ice sheet, Science, 166, 377–381, 1969.
D\'{}Arrigo, R., Jacoby, G., Frank, D., Pederson, N., Cook, E., Buckley, B., Nachin, B., Mijiddorj, R., and Dugarjav, C.: 1738 years of {M}ongolian temperature variability inferred from a tree-ring width chronology of {S}iberian pine, Geophys. Res. Lett., 28, 543–546, 2001.
D\'{}Arrigo, R., Mashig, E., Frank, D., Wilson, R., and Jacoby, G.: Temperature variability over the past millennium inferred from {N}orthwestern {A}laska tree rings, Clim. Dynam., 24, 227–236, 2005.
D\'{}Arrigo, R., Wilson, R., and Jacoby, G.: On the long-term context for late twentieth century warming, J. Geophys. Res., 111, D03103, https://doi.org/{10.1029/2005JD006352}, 2006.
Diaz, H. F., Trigo, R., Hughes, M. K., Mann, M. E., Xoplaki, E., and Barriopedro, D.: Spatial and temporal characteristics of climate in Medieval times revisited, B. Am. Meteorol. Soc., 92, 1487–1500, 2011.
Dobrovolný, P., Moberg, A., Brázdil, R., Pfister, C., Glaser, R., Wilson, R., van Engelen, A., Limanówka, D., Kiss, A., Hal\'ičková, M., Macková, J., Riemann, D., Luterbacher, J., and Böhm, R.: Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500, Climatic Change, 101, 69–107, 2010.
Edwards, T. W. D., Birks, S. J., Luckman, B. H., and MacDonald, G. M.: Climatic and hydrologic variability during the past millennium in the Eastern {R}ocky {M}ountains and Northern {G}reat {P}lains of Western {C}anada, Quaternary Res., 70, 188–197, 2008.
Eichler, A., Olivier, S., Henderson, K., Laube, A., Beer, J., Papina, T., Gäggeler, H. W., and Schwikowski, M.: Temperature response in the A}ltai region lags solar forcing, Geophys. Res. Lett., 36, L01808, https://doi.org/{10.1029/2008GL035930, 2009.
Esper, J. and Frank, D. C.: IPCC on heterogeneous {m}edieval {w}arm {p}eriod, Climatic Change, 94, 267–273, 2009.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability, Science, 295, 2250–2253, 2002{a}.
Esper, J., Schweingruber, F. H., and Winiger, M.: 1300 years of climatic history for W}estern {C}entral {A}sia inferred from tree-rings, Holocene, 12, 267–277, 2002{b.
Esper, J., Shiyatov, S. G., Mazepa, V. S., Wilson, R. J. S., Graybill, D. A., and Funkhouser, G.: Temperature-sensitive {T}ien {S}han tree ring chronologies show multi-centennial growth trends, Clim. Dynam., 8, 699–706, 2003.
Fisher, D. A., Koerner, R. M., Paterson, W. S. B., Dansgaard, W., Gundestrup, N., and Reeh, N.: Effect of wind scouring on climatic records from icecore oxygen isotope profiles, Nature, 301, 205–209, 1983.
Frank, D., Esper, J., Zorita, E., and Wilson, R.: A noodle, hockey stick, and spaghetti plate: a perspective on high-resolution paleoclimatology, WIREs Climatic Change, 1, 507–516, https://doi.org/10.1002/wcc.53, 2010.
Friend, A. D.: Response of Earth's surface temperature to radiative forcing over A.D. 1–2009, J. Geophys. Res., 116, D13112, https://doi.org/{10.1029/2010JD015143}, 2011.
Frisia, S., Borsato, A., Preto, N., and McDermott, F.: Late Holocene annual growth in three {A}lpine stalagmites records the influence of solar activity and the {N}orth {A}tlantic {O}scillation on winter climate, Earth Planet. Sci. Lett., 216, 411–424, 2003.
Gajewski, K.: Late {H}olocene climate changes in Eastern {N}orth {A}merica estimated from pollen data, Quaternary Res., 29, 255–262, 1988.
Ge, Q., Zheng, J., Fang, X., Man, Z., Zhang, X., Zhang, P., and Wang, W.-C.: Winter half-year temperature reconstruction for the middle and lower reaches of the {Y}ellow {R}iver and {Y}angtze {R}iver, {C}hina, during the past 2000 years, Holocene, 13, 933–940, 2003.
Geirsdóttir, A., Miller, G. H., Thordarson, T., and Ólafsdóttir, K. B.: A 2000 year record of climate variations reconstructed from {H}aukadalsvatn, {W}est {I}celand, J. Paleolimnol., 41, 95–115, 2009.
Glaser, R. and Riemann, D.: A thousand-year record of temperature variations for Germany and Central Europe based on documentary data, J. Quaternary Sci., 24, 437–449, 2009.
González-Rouco, J. F., Beltrami, H., Zorita, E., and von Storch, H.: Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling, Geophys. Res. Lett., 33, L01703, https://doi.org/{10.1029/2005GL024693}, 2006.
Graumlich, L. J.: A 1000-year record of temperature and precipitation in the {S}ierra {N}evada, Quaternary Res., 39, 249–255, 1993.
Gray, B. M.: Early {J}apanese winter temperatures, Weather, 29, 103–107, 1974.
Grootes, P. M. and Stuiver, M.: Oxygen 18/16 variability in {G}reenland snow and ice with $10^3$ to $10^5$-year time resolution, J. Geophys. Res., 102, 26455–26470, 1997.
Groveman, B. S. and Landsberg, H. E.: Simulated Northern Hemisphere temperature departures 1579–1880, Geophys. Res. Lett., 6, 767–770, 1979.
Grudd, H.: Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of North {F}ennoscandian summers, Clim. Dynam., 31, 843–857, 2008.
Grudd, H., Briffa, K. R., Karlén, W., Bartholin, T. S., Jones, P. D., and Kromer, B.: A 7400-year tree-ring chronology in Northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales, Holocene, 12, 657–665, 2002.
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde W. T., and Pollack, H. N.: Detection of human influence on a new, validated 1500-year temperature reconstruction, J. Climate, 20, 650–666, 2007.
Helama, S., Fauria, M., Mielikäinen, K., Timonen, M., and Eronen, M.: Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives, Bull. Geol. Soc. Am., 122, 1981–1988, 2010.
Hofer, D., Raible, C. C., and Stocker, T. F.: Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium, Clim. Past, 7, 133–150, https://doi.org/10.5194/cp-7-133-2011, 2011.
Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., and Johnson, K. R.: Quantification of {H}olocene {A}sian monsoon rainfall from spatially separated cave records, Earth. Planet. Sci. Lett., 266, 221–232, 2008.
Huang, S. P., Pollack, H. N., and Shen, P.-Y.: A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record, Geophys. Res. Lett., 35, L13703, https://doi.org/10.1029/2008GL034187, 2008.
Hughes, M. K. and Diaz, H. F.: Was there a "medieval warm period", and if so, where and when?, Climatic Change, 26, 109–142, 1994.
Hughes, M. K., Vaganov, E. A., Shiyatov, S., Touchan, R., and Funkhouser, G.: Twentieth-century summer warmth in Northern {Y}akutia in a 600-year context, Holocene, 9, 629–634, 1999.
Isaksson, E., Divine, D., Kohler, J., Martma, T., Pohjola, V., Motoyama, H., and Watanabe, O.: Climate oscillations as recorded in S}valbard ice core δ18O records between 1200–1997 {AD, Geogr. Ann., 87A, 203–214, 2005.
Jacoby, G. J., D\'{}Arrigo, R., and Davaajamts, T.: Mongolian tree rings and 20th-century warming, Science, 273, 771–773, 1996.
Jones, P. D. and Bradley, R. A.: Climatic variations over the last 500 years, in: Climate since AD 1500, edited by: Jones, P. D. and Bradley, R. A., Routledge, London, 649–665, 1992.
Jones, P. D., Osborn, T. J., and Briffa, K. R.: Estimating sampling errors in large-scale temperature averages, J. Climate, 10, 2548–2568, 1997.
Jones, P. D., Briffa, K. R., and Osborn, T. J.: Changes in the Northern Hemisphere annual cycle: Implications for paleoclimatology?, J. Geophys. Res., 108, 4588, https://doi.org/10.1029/2003JD003695, 2003.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M., Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplak, E.: High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects, Holocene, 19, 3–49, 2009.
Juckes, M. N., Allen, M. R., Briffa, K. R., Esper, J., Hegerl, G. C., Moberg, A., Osborn, T. J., and Weber, S. L.: Millennial temperature reconstruction intercomparison and evaluation, Clim. Past, 3, 591–609, https://doi.org/10.5194/cp-3-591-2007, 2007.
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010.
Kalugin, I. A., Daryin, A. V., and Babich, V. V.: Reconstruction of annual air temperatures for three thousand years in Altai region by lithological and geochemical indicators in Teletskoe Lake sediments, Dokl. Earth Sci., 426, 681–684, 2009.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T., and Vinther, B. M.: Recent warming reverses long-term Arctic cooling, Science, 325, 1236–1239, 2009.
Kirchhefer, A. J.: Reconstruction of summer temperatures from tree-rings of S}cots pine ({Pinus sylvestris L.) in coastal Northern {N}orway, Holocene, 11, 41–52, 2001.
Klimenko, V. V., Klimanov, V. A., Sirin, A. A., and Sleptsov, A. M.: Climate changes in {W}estern {E}uropean {R}ussia in the {L}ate {H}olocene, Dokl. Earth Sci., 377, 190–194, 2001.
Kobashi, T., Severinghaus, J. P., Barnola, J.-M., Kawamura, K., Carter, T., and Nakaegawa, T.: Persistent multi-decadal {G}reenland temperature fluctuation through the last millennium, Climatic Change, 100, 733–756, 2010.
Lamoureux, S. F. and Bradley, R. S.: A late {H}olocene varved sediment record of environmental change from Northern {E}llesmere {I}sland, J. Paleolimnol., 16, 239–255, 1996.
Larocque-Tobler, I., Grosjean, M., Heiri, O., Trachsel, M., and Kamenik, C.: Thousand years of climate change reconstructed from chironomid subfossils preserved in varved lake {S}ilvaplana, {E}ngadine, {S}witzerland, Quaternary Sci. Rev., 29, 1940–1949, 2010.
Leijonhufvud, L., Wilson, R., Moberg, A., Söderberg, J., Retsö D., and Söderlind, U.: Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations, Climatic Change, 101, 109–141, 2010.
Linderholm, H. W. and Gunnarson, B. E.: Summer temperature variability in central {S}candinavia during the last 3600 years, Geogr. Ann. A, 87, 231–241, 2005.
Lindholm, M., Jalkanen, R., Salminen, H., Aalto, T., and Ogurtsov, M.: The height increment record of summer temperature extended over the last millennium in {F}ennoscandia, Holocene, 21, 319–326, 2011.
Ljungqvist, F. C.: A new reconstruction of temperature variability in the extra-tropical {N}orthern {H}emisphere during the last two millennia, Geogr. Ann. A, 92, 339–351, 2010.
Ljungqvist, F. C., Krusic, P. J., Brattström, G., and Sundqvist, H. S.: Northern Hemisphere temperature patterns in the last 12 centuries, Clim. Past, 8, 227–249, https://doi.org/10.5419/cp-8-227-2012, 2012.
Loehle, C. and McCulloch, J. H.: Correction to: A 2000-year global temperature reconstruction based on non-tree ring proxies, Energy and Environment, 19, 93–100, 2008.
Loso, M. G.: Summer temperatures during the {M}edieval {W}arm {P}eriod and {L}ittle {I}ce {A}ge inferred from varved proglacial lake sediments in Southern {A}laska, J. Paleolimnol., 41, 117–128, 2009.
Luckman, B. H. and Wilson, R. J. S.: Summer temperatures in the {C}anadian {R}ockies during the last millennium: a revised record, Clim. Dynam., 24, 131–144, 2005.
Luckman, B. H., Briffa, K. R., Jones, P. D., and Schweingruber, F. H.: Tree-ring based reconstruction of summer temperatures at the Columbia Icefield, Alberta, Canada, AD 1073–1983, Holocene, 7, 375–389, 1997.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Global-scale temperature patterns and climate forcing over the past six centuries, Nature, 392, 779–787, 1998.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern {H}emisphere temperatures during the past millennium: inferences, uncertainties, and limitations, Geophys. Res. Lett., 26, 759–762, 1999.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, Proc. Natl. Acad. Sci. USA, 105, 13252–13257, 2008.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. H., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global signatures and dynamical origins of the {L}ittle {I}ce {A}ge and {M}edieval {C}limate {A}nomaly, Science, 326, 1256–1260, 2009.
Matthews, J. A. and Briffa, K. R.: The "{L}ittle {I}ce {A}ge": re-evaluation of an evolving concept, Geogr. Ann. A, 87, 17–36, 2005.
McKay, N. P., Kaufman, D. S., and Michelutti, N.: Biogenic silica concentration as a high-resolution, quantitative temperature proxy at H}allet {L}ake, South-Central {A}laska, Geophys. Res. Lett., 35, L055709, https://doi.org/{10.1029/2007GL032876, 2008.
Moberg, A.: Comments on "Reconstruction of the extra-tropical NH mean temperature over the last millennium with a method that preserves low-frequency variability", J. Climate, submitted, 2012.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlén, W.: Highly variable {N}orthern {H}emisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, 2005.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., Karlén, W., and Lauritzen, S.-E.: Corrigendum: {H}ighly variable {N}orthern {H}emisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 439, 1014, https://doi.org/10.1038/nature04575, 2006.
Moore, J. J., Hughen, K. A., Miller, G. H., and Overpeck, J. T.: {L}ittle {I}ce {A}ge recorded in summer temperature reconstruction from varved sediments of {D}onard {L}ake, {B}affin {I}sland, {C}anada, J. Paleolimnol., 25, 503–517, 2001.
Mǒzný, M., Brázdil, R., Dobrovolný, O., and Trnka, M.: Cereal harvest dates in the {C}zech {R}epublic between 1501 and 2008 as a proxy for March–June temperature reconstruction, Climatic Change, 110, 801–821, 2012.
National Research Council: Surface temperature reconstructions for the Last 2000 years, National Academies Press, Washington, DC, 2006.
Naurzbaev, M. M., Vaganov, E. A., Sidorova, O. V., and Schweingruber, F. H.: Summer temperatures in Eastern {T}aimyr inferred from a 2427-year late-{H}olocene tree-ring chronology and earlier floating series, Holocene, 12, 727–736, 2002.
NGRIP members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
Popa, I. and Kern, Z.: Long-term summer temperature reconstruction inferred from tree-ring records from the {E}astern {C}arpathians, Clim. Dynam., 32, 1107–1117, 2009.
Proctor, C. J., Baker, A., and Barnes, W. L.: A three thousand year record of North {A}tlantic climate, Clim. Dynam., 19, 449–454, 2002.
Qiang, M.-R., Chen, F.-H., Zhang, J.-W., Gao, S.-Y., and Zhou, A.-F.: Climatic changes documented by stable isotopes of sedimentary carbonate in L}ake {S}ugan, Northeastern {T}ibetan {P}lateau of {C}hina, since 2 ka {BP, Chinese Sci. Bull., 50, 1930–1939, 2005.
Ran, L., Jiang, H., Knudsen, K. L., and Eir\'iksson, J.: Diatom-based reconstruction of palaeoceanographic changes on the {N}orth {I}celandic shelf during the last millennium, Palaeogeogr. Palaeocl., 302, 109–119, 2011.
Salzer, M. W. and Kipfmueller, K. F.: Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the S}outhern {C}olorado {P}lateau, {USA, Climatic Change, 70, 465–487, 2005.
Servonnat, J., Yiou, P., Khodri, M., Swingedouw, D., and Denvil, S.: Influence of solar variability, CO2 and orbital forcing between 1000 and AD 1850 in the IPSLCM4 model, Clim. Past, 6, 445–460, https://doi.org/10.5194/cp-6-445-2010, 2010.
Sicre, M.-A., Hall, I. R., Mignot, J., Khodri, M., Ezat, U., Truong, M.-X., Eir\'{i}ksson, J., and Knudsen, K.-L.: Sea surface temperature variability in the subpolar Atlantic over the last two millennia, Paleoceanography, 26, PA4218, https://doi.org/10.1029/2011PA002169, 2011.
Sidorova, O. V., Vaganov, E. A., Naurzbaev, M. M., Shishov, V. V., and Hughes, M. K.: Regional features of the radial growth of larch in North Central Siberia according to millennial tree-ring chronologies, Russ. J. Ecol., 38, 90–93, 2007.
Sleptsov, A. M. and Klimenko V. V.: Multi-proxy reconstruction of the climate of Eastern Europe during the last 2000 years, Izvestiya of the Russian Geographical Society, 6, 45–54, 2003 (in Russian).
Smerdon, J. E. and Kaplan, A.: Comments on {"Testing the fidelity of methods used in proxy-based reconstructions of past climate"}: {T}he role of the standardization interval, J. Climate, 20, 5666–5670, 2007.
Smerdon, J. E., Kaplan, A., Zorita, A., González-Rouco, J. F., and Evans, M. N.: Spatial performance of four climate field reconstruction methods targetting the Common Era, Geophys. Res. Lett., 38, L11795, https://doi.org/10.1029/2011GL047372, 2011.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
Stendel, M., Mogensen, I. A., and Christensen, J. H.: Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model, Clim. Dynam., 26, 1–15, 2006.
Sundqvist, H. S., Holmgren, K., Moberg, A., Spötl, C., and Mangini, A.: Stable isotopes in a stalagmite from NW Sweden document environmental changes over the past 4000 years, Boreas, 39, 77–86, 2010.
Swingedouw, D., Terray, L., Cassou, C., Voldoire, A., Salas-Mélia, D., and Servonnat, J.: Natural forcing of climate during the last millennium: fingerprint of solar variability. Low frequency solar forcing and NAO, Clim. Dynam., 36, 1349–1364, 2011.
Tan, M., Liu, T. S., Hou, J., Qin, X., Zhang, H., and Li, T.: Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature, Geophys. Res. Lett., 30, 1617, https://doi.org/{10.1029/2003GL017352}, 2003.
Taricco, C., Ghil, M., Alessio, S., and Vivaldo, G.: Two millennia of climate variability in the Central Mediterranean, Clim. Past, 5, 171–181, https://doi.org/10.5194/cp-5-171-2009, 2009.
Tarussov, A.: The {A}rctic from {S}valbard to {S}evernaya {Z}emlya: climatic reconstruction from ice cores, in: Climate since AD 1500, edited by: Bradley, R. S. and Jones, P. D., Routledge, London, 505–516, 1992.
Thomas, E. K. and Briner, J. P.: Climate of the past millennium inferred from varved proglacial lake sediments on Northeast {B}affin {I}sland, {A}rctic {C}anada, J. Paleolimnol., 41, 209–224, 2009.
Thompson, L. G., Mosley-Thompson, E., Brecher, H., Davis, M. E., Leon, B., Les, D., Mashiotta, T. A., Lin, P.-N., and Mountain, K.: Evidence of abrupt tropical climate change: past and present, Proc. Natl. Acad. Sci. USA, 103, 10536–10543, 2006.
Tingley, M. P. and Li, B.: Comments on "{R}econstructing the NH mean temperature: can underestimation of trends and variability be avoided?", J. Climate, accepted, https://doi.org/10.1175/JCLI-D-11-00005.1, 2012.
Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt-Shamseldin, E., and Rajaratnam, B.: Piecing together the past: {s}tatistical insights into paleoclimatic reconstructions, Quaternary Sci. Rev., 35, 1–25, 2012.
Treydte, K. S., Frank, D. C., Saurer, M., Helle, G., Schleser, G. H., and Esper, J.: Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record, Geochim. Cosmochim. Ac., 73, 4635–4647, 2009.
van Engelen, A. F. V., Buisman, J., and IJnsen, F.: A millennium of weather, winds and water in the low countries, in: History and Climate: Memories of the Future?, edited by: Jones, P. D., Ogilvie, A. E. J., Davies, T. D., and Briffa, K. R., Kluwer Academic/Plenum Publishers, New York, 101–124, 2001.
Vinther, B. M., Johnsen, S. J., Andersen, K. K., Clausen, H. B., and Hansen, A. W.: NAO signal recorded in the stable isotopes of G}reenland ice cores, Geophys. Res. Lett., 30, 1387, https://doi.org/{10.1029/2002GL016193, 2003.
Vinther, B. M., Clausen, H. B., Fisher, D. A., Koerner, R. M., Johnsen, S. J., Andersen, K. K., Dahl-Jensen, D., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.: Synchronizing ice cores from the {R}enland and {A}gassiz ice caps to the {G}reenland {I}ce {C}ore {C}hronology, J. Geophys. Res., 113, D08115, https://doi.org/10.1029/2007JD009143, 2008.
Vinther, B. M., Jones, P. D., Briffa, K. R., Clausen, H. B., Andersen, K. K., Dahl-Jensen, D., and Johnsen, S. J.: Climatic signals in multiple highly resolved stable isotope records from {G}reenland, Quaternary Sci. Rev., 29, 522–538, 2010.
von Storch, H., Zorita, E., Jones, J. M., Dimitriev, Y., González-Rouco, F., and Tett, S. F. B.: Reconstructing past climate from noisy data, Science, 306, 679–882, 2004.
Wang, S.-W., Gong, D., and Zhu, J.: Twentieth-century climatic warming in {C}hina in the context of the {H}olocene, Holocene, 11, 313–321, 2001.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S., Pentice, C., Solomina, O., Stocker, T., Tarasov, P., Wagner, M., and Widmann, M.: Mid to late {H}olocene climate change – an overview, Quaternary Sci. Rev., 27, 1791–1828, 2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123, 2011.
Yang, B., Braeuning, A., Johnson, K. R., and Yafeng, S.: General characteristics of temperature variation in C}hina during the last two millennia, Geophys. Res. Lett., 29, 1324, https://doi.org/{10.1029/2001GL014485, 2002.
Yi, L., Yu, H., Ge, J., Lai, Z., Xu, X., Qin, L., and Peng, S.: Reconstructions of annual summer precipitation and temperature in North-Central C}hina since 1470 {AD based on drought/flood index and tree-ring records, Climatic Change, 110, 469–498, 2012.
Zhang, Q., Gemmer, M., and Chen, J.: Climate changes and flood/drought risk in the {Y}angtze {D}elta, {C}hina, during the past millennium, Quaternary Int., 176–177, 62–69, 2008.
Zhang, Q.-B., Cheng, G., Yao, T., Kang, X., and Huang, J.: A 2326-year tree-ring record of climate variability on the Northeastern Q}inghai-{T}ibetan {P}lateau, Geophys. Res. Lett., 30, 1739, https://doi.org/{10.10292003GL017425, 2003.
Zhu, H. F., Shao, X.-M., Yin, Z.-Y., Xu, P., Xu, Y., and Tian, H.: August temperature variability in the Southeastern T}ibetan {P}lateau since {AD 1385 inferred from tree rings, Palaeogeogr. Palaeocl., 305, 84–92, 2011.
Zorita, E., González-Rouco, F., and von Storch, H.: Comments on "{T}esting the fidelity of methods used in proxy-base reconstructions of past climate", J. Climate, 20, 3693–3698, 2007.