Articles | Volume 8, issue 6
https://doi.org/10.5194/cp-8-1821-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-8-1821-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Coarsely crystalline cryogenic cave carbonate – a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe
K. Žák
Institute of Geology AS CR, Prague, Czech Republic
D. K. Richter
Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, Germany
M. Filippi
Institute of Geology AS CR, Prague, Czech Republic
R. Živor
Institute of Geology AS CR, Prague, Czech Republic
M. Deininger
Heidelberg Academy of Sciences, Heidelberg, Germany
A. Mangini
Heidelberg Academy of Sciences, Heidelberg, Germany
D. Scholz
Institute for Geosciences, Johannes Gutenberg University Mainz, Mainz, Germany
Max-Planck-Institute for Chemistry, Mainz, Germany
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Pleistocene
Climate changes during the Late Glacial in southern Europe: new insights based on pollen and brGDGTs of Lake Matese in Italy
The climate and vegetation of Europe, North Africa and the Middle East during the Last Glacial Maximum (21,000 years BP) based on pollen data
Late Pleistocene glacial chronologies and paleoclimate in the northern Rocky Mountains
Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation
Younger Dryas ice margin retreat in Greenland: new evidence from southwestern Greenland
Pleistocene glacial history of the New Zealand subantarctic islands
Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands
Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia's arid margin interpreted from speleothem records (23–15 ka)
High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data
Constant wind regimes during the Last Glacial Maximum and early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia
Late Pleistocene–Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia)
Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial
Past freeze and thaw cycling in the margin of the El'gygytgyn crater deduced from a 141 m long permafrost record
Geochronological reconsideration of the eastern European key loess section at Stayky in Ukraine
Pre-LGM Northern Hemisphere ice sheet topography
Heinrich event 4 characterized by terrestrial proxies in southwestern Europe
Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans
Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling
Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive
Hydrological variability in the Northern Levant: a 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Short summary
Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the Late Glacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no latitudinal differences are recorded during the Bølling–Allerød, whereas 40–42° N appears as a key junction point between wetter conditions in southern Italy and drier conditions in northern Italy during the Younger Dryas.
Basil Andrew Stansfield Davis, Marc Fasel, Jed O. Kaplan, Emmanuele Russo, and Ariane Burke
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-59, https://doi.org/10.5194/cp-2022-59, 2022
Revised manuscript accepted for CP
Short summary
Short summary
During the last Ice Age 21 k BP, Northern Europe was covered in ice and steppe, and forests were restricted to sheltered regions to the south. However, the composition and extent of forest and its associated climate remains unclear, with models indicating more forest north of the Alps than suggested by the data. A new compilation of pollen records with improved dating suggests greater agreement with model climate, but still suggests models over estimate forest cover especially in the west.
Brendon J. Quirk, Elizabeth Huss, Benjamin J. C. Laabs, Eric Leonard, Joseph Licciardi, Mitchell A. Plummer, and Marc W. Caffee
Clim. Past, 18, 293–312, https://doi.org/10.5194/cp-18-293-2022, https://doi.org/10.5194/cp-18-293-2022, 2022
Short summary
Short summary
Glaciers in the northern Rocky Mountains began retreating 17 000 to 18 000 years ago, after the end of the most recent global ice volume maxima. Climate in the region during this time was likely 10 to 8.5° colder than modern with less than or equal to present amounts of precipitation. Glaciers across the Rockies began retreating at different times but eventually exhibited similar patterns of retreat, suggesting a common mechanism influencing deglaciation.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Kseniia Ashastina, Lutz Schirrmeister, Margret Fuchs, and Frank Kienast
Clim. Past, 13, 795–818, https://doi.org/10.5194/cp-13-795-2017, https://doi.org/10.5194/cp-13-795-2017, 2017
Short summary
Short summary
We present the first detailed description and sedimentological analyses of an 80 m permafrost sequence exposed in a mega-thaw slump near Batagay in the Yana Highlands, Russia, and attempt to deduce its genesis. First dating results (14C, OSL) show that the sequence represents a continental climate record spanning from the Middle Pleistocene to the Holocene. We suggest that the characteristics of the studied deposits are a result of various seasonally controlled climatically induced processes.
Pauline C. Treble, Andy Baker, Linda K. Ayliffe, Timothy J. Cohen, John C. Hellstrom, Michael K. Gagan, Silvia Frisia, Russell N. Drysdale, Alan D. Griffiths, and Andrea Borsato
Clim. Past, 13, 667–687, https://doi.org/10.5194/cp-13-667-2017, https://doi.org/10.5194/cp-13-667-2017, 2017
Short summary
Short summary
Little is known about the climate of southern Australia during the Last Glacial Maximum and deglaciation owing to sparse records for this region. We present the first high-resolution data, derived from speleothems that grew 23–5 ka. It appears that recharge to the Flinders Ranges was higher than today, particularly during 18.9–15.8 ka, argued to be due to the enhanced availability of tropical moisture. An abrupt shift to aridity is recorded at 15.8 ka, associated with restored westerly airflow.
Andrea Catalina Gebhardt, Lieven Naudts, Lies De Mol, Jan Klerkx, Kanatbek Abdrakhmatov, Edward R. Sobel, and Marc De Batist
Clim. Past, 13, 73–92, https://doi.org/10.5194/cp-13-73-2017, https://doi.org/10.5194/cp-13-73-2017, 2017
Short summary
Short summary
Seismic profiles from the western and eastern deltas of Lake Issyk-Kul were used to identify lake-level changes of up to 400 m. Seven stratigraphic sequences were identified, each containing a series of delta lobes that were formed during former lake-level stillstands. Lake-level fluctuations point to significant changes in the strength and position of the Siberian High and the mid-latitude Westerlies. Their interplay is responsible for the amount of moisture that reaches this area.
James Shulmeister, Justine Kemp, Kathryn E. Fitzsimmons, and Allen Gontz
Clim. Past, 12, 1435–1444, https://doi.org/10.5194/cp-12-1435-2016, https://doi.org/10.5194/cp-12-1435-2016, 2016
Short summary
Short summary
This paper highlights that small dunes (lunettes) formed on the eastern side of a lake in the Australian sub-tropics at the height of the last ice age (about 21,000 years ago) and in the early part of the current interglacial (9–6,000 years ago). This means that it was fairly wet at these times and also that there were strong westerly winds to form the dunes. Today strong westerly winds occur in winter, and we infer that the same was also true at those times, suggesting no change in circulation.
D. Y. Demezhko and A. A. Gornostaeva
Clim. Past, 11, 647–652, https://doi.org/10.5194/cp-11-647-2015, https://doi.org/10.5194/cp-11-647-2015, 2015
M. Kehl, E. Eckmeier, S. O. Franz, F. Lehmkuhl, J. Soler, N. Soler, K. Reicherter, and G.-C. Weniger
Clim. Past, 10, 1673–1692, https://doi.org/10.5194/cp-10-1673-2014, https://doi.org/10.5194/cp-10-1673-2014, 2014
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
A. Kadereit and G. A. Wagner
Clim. Past, 10, 783–796, https://doi.org/10.5194/cp-10-783-2014, https://doi.org/10.5194/cp-10-783-2014, 2014
J. Kleman, J. Fastook, K. Ebert, J. Nilsson, and R. Caballero
Clim. Past, 9, 2365–2378, https://doi.org/10.5194/cp-9-2365-2013, https://doi.org/10.5194/cp-9-2365-2013, 2013
J. M. López-García, H.-A. Blain, M. Bennàsar, M. Sanz, and J. Daura
Clim. Past, 9, 1053–1064, https://doi.org/10.5194/cp-9-1053-2013, https://doi.org/10.5194/cp-9-1053-2013, 2013
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
D. Mottaghy, G. Schwamborn, and V. Rath
Clim. Past, 9, 119–133, https://doi.org/10.5194/cp-9-119-2013, https://doi.org/10.5194/cp-9-119-2013, 2013
G. Schwamborn, G. Fedorov, N. Ostanin, L. Schirrmeister, A. Andreev, and the El'gygytgyn Scientific Party
Clim. Past, 8, 1897–1911, https://doi.org/10.5194/cp-8-1897-2012, https://doi.org/10.5194/cp-8-1897-2012, 2012
F. Gasse, L. Vidal, A.-L. Develle, and E. Van Campo
Clim. Past, 7, 1261–1284, https://doi.org/10.5194/cp-7-1261-2011, https://doi.org/10.5194/cp-7-1261-2011, 2011
Cited articles
Anderson, R. S. and Anderson, S. P.: Periglacial processes and forms, in: Geomorphology, the Mechanics and Chemistry of Landscapes, Cambridge University Press, Cambridge, UK, 270–303, 2010.
Baker, A., Smart, P. L., and Ford, D. C.: Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits, Palaeogeogr. Palaeoclimatol. Palaeoecol., 100, 291–301, 1993.
Boch, R., Cheng, H., Spötl, C., Edwards, R. L., Wang, X., and Häuselmann, Ph.: NALPS: a precisely dated European climate record 120–60 ka, Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, 2011.
Brown, J., Ferrians, H. M., Heginbottom, J. A., and Melnikov, E. S.: Circum-arctic map of the permafrost and ground-ice conditions, Map CP-45, Circum-Pacific map series, USGS, Washington, D.C., USA, 1997.
Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., and Asmeron, Y.: The half-lives of uranium-234 and thorium-230, Chem. Geol., 169, 17–33, 2000.
Clark, I. D. and Lauriol, B.: Kinetic enrichment of stable isotopes in cryogenic calcites, Chem. Geol., 102, 217–228, 1992.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, 2009.
Czudek, T.: Quaternary development of landscape relief in the Czech Republic, Moravian Museum, Brno, 238 pp., 2005.
DePaolo, D. J.: Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions, Geochim. Cosmochim. Acta, 75, 1039–1056, 2011.
Dobi\'{n}ski, W.: Permafrost in the Tatra Mts.: genesis, features, evolution, Przeglad Geograficzny, 76, 327–343, 2004.
Dobi\'{n}ski, W.: Permafrost of the Carpathian and Balkan Mountains, eastern and southeastern Europe, Permafrost Periglac. Process., 16, 395–398, 2005.
Dobi\'{n}ski, W.: Permafrost, Earth Sci. Rev., 108, 158–169, 2011.
Dragoun, J., Vejlupek, J., and Novotn\'{y}, J.: Jeskyně Na Javorce, propast Žbluňk, Speleofórum, 30, 21–24, 2011.
Dreybrodt, W.: Evolution of the isotopic composition of carbon and oxygen in calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites, Geochim. Cosmochim. Acta, 72, 4712–4724, 2008
Dreybrodt, W. and Scholz, D.: Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite, Geochim. Cosmochim. Acta, 75, 734–752, 2011.
Durakiewicz, T., Hałas, S., Migaszewski, M., and Urban, J.: Origin of "calcite groats" in the Chelosiowa Cave near Kielce (Holy Cross Mts.) inferred from petrographic and isotopic investigations, Geol. Q., 39, 75–94, 1995.
Ek, C. and Pissart, A.: Depôt de carbonate de calcium par congélation et teneur en bicarbonate des eaux résiduelles, Acad. Sci. Paris Comptes Rendus, 260, 929–932, 1965.
Erlenmeyer, M. and Schudelski, A.: Der Malachitdom und die anderen Höhlen im Steinbruch Düstertal, in: Der Malachitdom, Ein Beispiel interdisziplinärer Höhlenforschung im Sauerland, Geologisches Landesamt Nordrhein-Westfalen, Krefeld, 39–68, 1992.
Fairchild, I. J., Killawee, J. A., Spiro, B., and Tison, J.-L.: Calcite precipitates formed by freezing processes: kinetic controls on morphology and geochemistry, in: Proceedings Fourth International Symposium on the Geochemistry of Earth's Surface, Ilkley, England, 178–183, 1996.
Ford, D. and Williams, P.: Karst hydrogeology and geomorphology, John Wiley & Sons, New York, 562 pp., 2007.
Forti, F.: La grotta Malachitdom: un ambiente mineralogico eccezionale che rischia di andare distrutto, Riv. Ital. Mineral. Paleontol., 67, 3–7, 1990.
Frank, N., Braum, M., Hambach, U., Mangini, A., and Wagner, G.: Warm period growth of travertine during the last interglacial in Southern Germany, Quatern. Res., 54, 38–48, 2000.
French, H. M.: The periglacial environment, John Wiley & Sons, Chichester, 458 pp., 2007.
Frenzel, B., Pécsi, M., and Velichko, A. A.: Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere. Late Pleistocene – Holocene, Geographical Research Institute, Hungarian Academy of Sciences and Gustav Fischer Verlag, Budapest and Stuttgart, 153 pp., 1992.
Gadek, B. and Grabiec, M.: Glacial ice and permafrost distribution in the Medena Kotlina (Slovak Tatras): mapped with application of GPR and GST measurements, Studia Geomorphologica Carpatho Balcanica, 42, 5–22, 2008.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S.: Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data, Nature, 421, 833–837, 2003.
Gross, G. W., Wong, P. M., and Humes, K.: Concentration dependent solute redistribution at the ice-water phase boundary, III. Spontaneous convection. Chloride solutions, J. Chem. Phys., 67, 5264–5274, 1977.
Harris, C., Vonder Mühll, D., Isaksen, K., Haeberli, W., Sollid, J. L., King, L., Holmlund, P., Dramis, F., Guglielmin, M., and Palacios, D.: Warming permafrost in European mountains, Global Planet. Change, 39, 215–225, 2003.
Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N., Seppälä, M., Springman, S. M., and Vonder Mühll, D.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth Sci. Rev., 92, 117–171, 2009.
Hendy, C. H.: The isotopic geochemistry of speleothems, I. The calculation of the effects of different modes of formation and the isotope composition of speleothems and their applicability as palaeoclimatic indicators, Geochim. Cosmochim. Acta, 35, 801–824, 1971.
Hill, C. A. and Forti, P.: Cave Minerals of the World, 2nd Edn., National Speleological Society, Huntsville, Alabama, USA, 463 pp., 1997.
Hoffmann, D. L., Prytulak, J., Richards, D. A., Elliott, T., Coath, C. D., Smart, P. L., and Scholz, D.: Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS, Int. J. Mass Spectrom., 264, 97–109, 2007.
Honczaruk, M. and \'{S}liwi\'{n}ski, Ł.: Results of hydrogeological research of the deep permafrost zone in the Udry\'{n} PIG 1 borehole, Biuletyn Pa\'{n}stwowego Instytutu Geologicznego, 445, 203–216, 2011.
Jochum, K. P., Wilson, S. A., Abouchami, W., Amini, M., Chmeleff, J., Eisenhauer, A., Hegner, E., Iaccheri, L. M., Kieffer, B., Krause, J., McDonough, W. F., Mertz-Kraus, R., Raczek, I., Rudnick, R. L., Scholz, D., Steinhoefel, G., Stoll, B., Stracke, A., Tonarini, S., Weis, U., and Woodhead, J. D.: GSD-1G and MPI-DING Reference Glasses for In Situ and Bulk Isotopic Determination, Geostand. Geoanal. Res., 35, 193–226, 2011.
Jouzel, J. and Souchez, R. A.: Melting-refreezing at the glacier sole and the isotopic composition of the ice, J. Glaciol., 28, 35–42, 1982.
Keller, F., Frauenfelder, R., Gardaz, J.-M., Hoelzle, M., Kneisel, C., Lugon, R., Phillips, M., Reynard, E., and Wenker, L.: Permafrost map of Switzerland, in: Proceedings Permafrost – Seventh International Conference, Yellowknife, Collection Nordiciana, 55, 557–562, 1998.
Kempe, S.: Sinterschäden verursacht durch Permafrost or Erdbeben?, Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., München, 35, 87–90, 1989.
Kempe, S.: Natural speleothem damage in Postojnska Jama (Slovenia), caused by glacial cave ice?, Acta Carsol., 33, 265–289, 2004.
Kempe, S.: Natürliche Sinterschäden, Indikatoren für glaziales Höhleneis in Mitteleuropa, Stalactite, 58, 39–42, 2008.
Kempe, S. and Rosendahl, W.: Speleothem damage in Central European Caves, a result of permafrost processes?, Proceedings Climate Changes: the Karst Record III, 3rd International Conference, 11–14 May 2003, Montpellier, France, 88–89, 2003.
Kempe, S., Doeppes, D., Bauer, I., Dirks, H., Dorsten, I., Hueser, A., and Eisenhauer, A.: Naturally damaged speleothems, indicators of glacial cave ice in Central Europe, Karst Waters Institute Special Publication, 10, Charles Town, West Virginia, USA, p. 35, 2006.
Killawee, J. A., Fairchild, I. J., Tison, J.-L., Janssen, L., and Lorrain, R.: Segregation of solutes and gases in experimental freezing of dilute solutions: Implications for natural glacial systems, Geochim. Cosmochim. Acta, 62, 3637–3655, 1998.
King, L.: Permafrost in Skandinavien. Untersuchungsergebnise aus Lappaland, Jotunheimen und Dovre/Rondane, Heidelberger Geographische Arbeiten, 76, 1–174, 1984.
Kunsk\'{y}, J.: Některé formy ledov\'{y}ch krápníku, Rozpravy II. Třídy České akademie, 49, 1–8, 1939.
Kyrle, G.: Frostsprengungen im Höhlensinter, Speläol. Jb., 11/12, 134–136, 1929–1931.
Lacelle, D.: Environmental setting (micro)morphologies and stable C-O-isotope composition of cold climate carbonate precipitation, A review and evaluation of their potential as paleoclimatic proxies, Quaternary Sci. Rev., 26, 1670–1689, 2007.
Lacelle, D., Lauriol, B., and Clark, I. D.: Effect of chemical composition of water on the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates, Arctic Canada: Implications in paleoclimatic studies, Chem. Geol., 234, 1–16, 2006.
Lacelle, D., Lauriol, B., and Clark, I. D.: Formation of seasonal ice bodies and associated cryogenic carbonates in Caverne de l'Ours, Québec, Canada: Kinetic isotope effects and pseudo-biogenic crystal structures, J. Cave Karst Stud., 71, 48–62, 2009.
Lauriol, B., Carrier, L., and Thiebaudeau, P.: Topoclimatic zones and ice dynamics in the caves of the Northern Yukon, Canada, Arctic, 41, 215–220, 1988.
Lauriol, B., Prévost, C., and Lacelle, D.: The distribution of diatom flora in ice caves of the northern Yukon Territory, Canada: relationship to air circulation and freezing, Int. J. Speleol., 35, 83–92, 2006.
Lehmann, M. and Siegenthaler, U.: Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water, J. Glaciol., 37, 23–26, 1991.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleooceanography, 20, 1–17, 2005.
Lowe, J. J., Rasmussen, S. O., Björck, S., Hoek, W. Z., Staffensen, J. P., Walker, M. J. C., Yu, Z. C., and the INTIMATE group: Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group, Quaternary Sci. Rev., 27, 6–17, 2008.
Lundberg, J. and McFarlane, D. A.: Cryogenic fracturing of calcite flowstone in caves: theoretical considerations and field observations in Kents Cavern, Devon, UK, Int. J. Speleol., 41, 307–316, 2012.
May, B., Spötl, C., Wagenbach, D., Dublyansky, Y., and Liebl, J.: First investigations of an ice core from Eisriesenwelt cave (Austria), The Cryosphere, 5, 81–93, https://doi.org/10.5194/tc-5-81-2011, 2011.
Meissner, P., Richter, D. K., and Immenhauser, A.: Cryogenic calcites in caves of the Rhenish Slate Mountains – a new proxy for palaeoclimate reconstructions?, SDGG Heft, 68, 385, Darmstadt, 2010.
Meyer, M. C., Cliff, R. A., Spötl, C., Knipping, M., and Mangini, A.: Speleothems from the earliest Quaternary: Snapshots of paleoclimate and landscape evolution at the northern rim of the Alps, Quaternary Sci. Rev., 28, 1374–1391, 2009.
Mickler, P. J., Stern, L. A., and Banner, J. L.: Large kinetic isotope effects in modern speleothems, Geol. Soc. Am. Bull., 118, 65–81, 2006.
Mulvaney, R., Wolff, E. W., and Oates, K.: Sulphuric acid at grain boundaries in Antarctic ice, Nature, 331, 247–249, 1988.
North Greenland Ice Core Project Members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
O'Neil, J. R.: Hydrogen and oxygen isotope fractionation between ice and water, J. Phys. Chem., 72, 3683–3684, 1968.
Onac, B. P., Wynn, J. G., and Citterio, M.: Ikaite in the Scarisoara Ice Cave (Romania): origin and significance, Geophys. Res. Abstr., 13, EGU2011-5188, 2011.
Orvošová, M. and Vlček, L.: New finds of the cryogenic cave carbonates, Bull. Slovak Speleol. Soc., 43, 58–64, 2012.
Orvošová, M. and Žák, K.: Cryogenic carbonate precipitation in caves: Jaskyňa Studeného Vetra Cave (Low Tatras, Slovakia) case study, Karst and Cryokarst, 25th Speleological School and 8th GLACKIPR Symposium, Sosnowiec, Wrocław, Poland, Guidebook & Abstracts, 104–105, 2007.
Palmer, A. N.: Cave geology, Cave Books, Dayton, 454 pp., 2007.
Permafrost Subcommittee, National Research Council of Canada: Glossary of permafrost and related ground-ice terms, National Research Council of Canada Technical Memorandum No. 142, Ottawa, Ontario, Canada, 156 pp., 1988.
Petrenko, V. F. and Withworth, R. W.: Physics of Ice, Oxford University Press, Oxford, 390 pp., 1999.
Pielsticker, K.-H.: Die Gro{ß}e Sunderner Höhle, Sundern, Hochsauerlandkreis, BRD, Sinterbrüche und Umlagerungen, Eisdruck oder Erdbeben, Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., München, 44, 4–11, 1998.
Pielsticker, K.-H.: Höhlen und Permafrost – Thermophysikalische Prozesse von Höhlenvereisungen während des Quartärs, Bochumer Geol. Geotech. Arbeit., 55, 187–196, 2000.
Pollard, W., Omelon, C., Andersen, D., and McKay, C.: Perennial spring occurrence in the Expedition Fiord area of western Axel Heiberg Island, Canadian High Arctic, Can. J. Earth Sci., 36, 105–120, 1999.
Pons-Branchu, E., Hamelin, B., Losson, B., Jaillet, S., and Brulhet, J.: Speleothem evidence of warm episodes in northeastern France during Marine Oxygen Isotope Stage 3 and implications for permafrost distribution in northern Europe, Quatern. Res., 74, 246–251, 2010.
Poser, H.: Boden- und Klimaverhältnisse in Mittel- und Westeuropa während der Würmeiszeit, Erdkunde, 2, 53–68, 1948.
Pulina, M.: Geomorphological effects of the cryochemical process, Quaestiones Geographicae, 13/14, 99–112, 1990.
Richter, D. K. and Niggemann, S.: Kryogene Calcite in Höhlen des Rheinischen Schiefergebirges, Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher, München, 51, 129–132, 2005.
Richter, D. K. and Riechelmann, D. F. C.: Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany): origin, unusual internal structure and stable C-O isotope composition, Int. J. Speleol., 37, 119–129, 2008.
Richter, D. K., Neuser, R. D., and Voigt, S.: Cryogenic calcite particles from the Heilenbecker Cave in Ennepetal, NE Bergisches Land/North-Rhine Westphalia, Höhle, 59, 37–47, 2008.
Richter, D. K., Dreyer, R., Niggemann, S., and Pielsticker, K.-H.: Kryokalcite in der Gro{ß}en Sunderner Höhle (Sauerland) – ein weiterer Beleg für die vormalige Eishöhle, Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., München, 55, 80–85, 2009a.
Richter, D. K., Mangini, A., and Voigt, S.: Erste Th/U-datierte Kryocalcite der mittleren Weichseleiszeit aus einer Höhle des Rheinischen Schiefergebirges (Heilenbecker Höhle, Bergisches Land), Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., München, 55, 125–127, 2009b.
Richter, D. K., Voigt, S., and Neuser, R. D.: Kryogene Calcite unterschiedlicher Kristallform und Kathodolumineszenz aus der Glaseishöhle am Schneiber (Steinernes Meer/Nationalpark Berchtesgaden, Deutschland), Höhle, 60, 3–9, 2009c.
Richter, D. K., Meissner, P., Immenhauser, A., Schulte, U., and Dorsten, I.: Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods: a case study from the Herbstlabyrinth-Advent Cave system (Germany), The Cryosphere, 4, 501–509, https://doi.org/10.5194/tc-4-501-2010, 2010a.
Richter, D. K., Schulte, U., Mangini, A., Erlenmeyer, A., and Erlenmeyer, M.: Mittel- und oberpleistozäne Calcitpartikel kryogener Entstehung aus der Apostelhöhle südöstlich Brilon (Sauerland, NRW), Geologie und Paläontologie in Westfalen, 78, 61–71, 2010b.
Richter, D .K., Mischel, S., Dorsten, I., Mangini, A., Neuser, R. D., and Immenhauser, A.: Zerbrochene Höhlensinter und Kryocalcite als Indikatoren für eiszeitlichen Permafrost im Herbstlabyrinth-Adventhöhle-System bei Breitscheid-Erdbach (N-Hessen), Höhle, 62, 31–45, 2011.
Richter, D. K., Meyer, S., Scholz, D., and Immenhauser, A.: Multiphase formation of Weichselian cryogenic calcites, Riesenberg Cave, NW Germany, Zeitschrift der Deutschen Gesellschaft für Geosciences, in review, 2012.
R$\mathring{u}$žičková, E. and Zeman, A.: The Blahutovice-1 borehole near Hranice na Moravě: weathering effects in Badenian deposits, Scripta, Geological Series, Masaryk University, Brno, 22, 128–132, 1992.
Šafanda, J. and Rajver, D.: Signature of the Last Ice Age in the present subsurface temperatures in the Czech Republic and Slovenia, Global Planet. Change, 29, 241–257, 2001.
Šafanda, J., Szewczyk, J., and Majorowicz, J.: Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet, Geophys. Res. Lett., 31, L07211, https://doi.org/10.1029/2004GL019547, 2004.
Savchenko, E. B.: Mineral deposits on ice samples in the cave "Friendship", Peshchery (Caves), 16, 21–24, 1976.
Schmidt, F.-X.: Mineralogische Besonderheiten aus dem Höhlensystem Kreiselhalle-Malachitdom, in: Der Malachitdom, Ein Beispiel interdisziplinärer Höhlenforschung im Sauerland, Geologisches Landesamt Nordrhein-Westfalen, Krefeld, 91–104, 1992.
Scholz, D., Mühlinghaus, C., and Mangini, A: Modelling δ13C and δ18O in the solution layer on stalagmite surfaces, Geochim. Cosmochim. Acta, 73, 2592–2602, 2009
Skřivánek, F.: Jeskyně na Chlumu v Českém krasu, Československ\'{y} kras, 7, 25–34, 1954.
Šmída, B.: Geomorfológia a genéza Plaveckého krasu ako modelového územia tzv. konktaktného krasu Západn\'{y}ch Karpát s nižšou energiou reliéfotvorby, Ph.D. Thesis, Faculty of Natural Sciences, Comenius University in Bratislava, 220 pp., 2010.
Souchez, R. A. and Jouzel, J.: On the isotopic composition in δD and δ18O of water and ice during freezing, J. Glaciol., 30, 369–372, 1984.
Spektor, V. B. and Spektor, V. V.: Karst processes and phenomena in the perennially frozen carbonate rocks of the Middle Lena River Basin, Permafrost Periglac., 20, 71–78, 2009.
Spötl, C.: Kryogene Karbonate im Höhleneis der Eisriesenwelt, Höhle, 59, 26–36, 2008.
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M. J., Spielhagen, R. F., and Stein, R.: Late Quaternary ice sheet history of northern Eurasia, Quaternary Sci. Rev., 23, 1229–1271, 2004.
Szewczyk, J. and Nawrocki, J.: Deep-seated relic permafrost in northeastern Poland, Boreas, 40, 385–388, 2011.
Tulis, J. and Novotn\'{y}, L.: System of Stratenská Cave, Osveta Publishers, Martin, 464 pp., 1989.
Urban, J. and Złonkiewicz, Z.: Wst\c{e}pne wyniki bada\'{n} geologicznych jaskini Chelosiowa Jama w Jaworzni koło Kielc, Geol. Q., 33, 367–369, 1989.
Vandenberghe, J.: Permafrost during the Pleistocene in north west and central Europe, in: Permaforst response on economic development, environmental security and natural resources, Kluwer Acad. Publ., Dordrecht, The Netherlands, 185–194, 2001.
Viehmann, I.: Příspěvky k v\'{y}voji jeskynních perel (Un nouveau processus de génèse des perles de caverne), Československ\'{y} Kras, 12, 177–185, 1960.
Washburn, A. L.: Geocryology. A survey of periglacial processes and environments, John Wiley & Sons, New York, 406 pp., 1980.
Wrede, V.: Sinterschäden in der Gro{ß}en Sunderner Höhle ein Beweis für Eisdruck?, Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., München, 45, 12–14, 1999.
Wright, J. D.: Global climate change in marine stable isotope records, in: Quaternary geochronology: methods and applications, edited by: Noller, J. S., Sowers, J. M., and Lettis, W. R., American Geophysical Union, Washington, D. C., 427–433, 2000.
Žák, K., Urban, J., Cílek, V., and Hercman, H.: Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model, Chem. Geol., 206, 119–136, 2004.
Žák, K., Onac, B. P., and Perşoiu, A.: Cryogenic carbonates in cave environments: A review, Quatern. Int., 187, 84–96, 2008.
Žák, K., Hercman, H., Orvošová, M., and Jačková, I.: Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian, Int. J. Speleol., 38, 139–152, 2009.
Žák, K., Šmída, B., Filippi, M., Živor, R., Komaško, A., and Vybíral, S.: New localities of cryogenic cave carbonates in the Czech Republic and Slovakia, Speleofórum, Czech Speleol. Soc., 30, 103–110, 2011.