Articles | Volume 7, issue 3
https://doi.org/10.5194/cp-7-941-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-7-941-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sensitivity of Red Sea circulation to sea level and insolation forcing during the last interglacial
G. Trommer
Department of Geosciences, University of Tübingen, Tübingen, Germany
European Institute for Marine Studies, Europole Mer, Plouzané, France
M. Siccha
Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
Department of Geosciences, University of Tübingen, Tübingen, Germany
E. J. Rohling
National Oceanography Centre, University of Southampton, Southampton, UK
K. Grant
National Oceanography Centre, University of Southampton, Southampton, UK
M. T. J. van der Meer
Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
S. Schouten
Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
U. Baranowski
Department of Geosciences, University of Tübingen, Tübingen, Germany
M. Kucera
Department of Geosciences, University of Tübingen, Tübingen, Germany
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Sea-level and monsoonal control on the Maldives carbonate platform (Indian Ocean) over the last 1.3 million years
Planktonic foraminiferal assemblages as tracers of paleoceanographic changes within the Northern Benguela current system since the Early Pleistocene
Changes in the Red Sea overturning circulation during Marine Isotope Stage 3
Glacial-interglacial Circumpolar Deep Water temperatures during the last 800,000 years: estimates from a synthesis of bottom water temperature reconstructions
Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception
An Intertropical Convergence Zone shift controlled the terrestrial material supply on the Ninetyeast Ridge
Sea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years
Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Change in the North Atlantic circulation associated with the mid-Pleistocene transition
Thermocline state change in the eastern equatorial Pacific during the late Pliocene/early Pleistocene intensification of Northern Hemisphere glaciation
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
Central Arctic Ocean paleoceanography from ∼ 50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition
Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins
Mediterranean Outflow Water variability during the Early Pleistocene
Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios
Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31–19)
Photic zone changes in the north-west Pacific Ocean from MIS 4–5e
Seasonal changes in glacial polynya activity inferred from Weddell Sea varves
High-latitude obliquity as a dominant forcing in the Agulhas current system
Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition
Oceanic tracer and proxy time scales revisited
Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation
A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient
High Arabian Sea productivity conditions during MIS 13 – odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition?
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Arianna Valentina Del Gaudio, Aaron Avery, Gerald Auer, Werner Erwin Piller, and Walter Kurz
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-16, https://doi.org/10.5194/cp-2024-16, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, the South Atlantic Central Water and the Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575-U1576 to characterize the water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño/Niña-like and deglaciation events.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
David M. Chandler and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2023-850, https://doi.org/10.5194/egusphere-2023-850, 2023
Short summary
Short summary
Sea-level rise and global climate change caused by ice melt in Antarctica is a puzzle of feedbacks between the climate, ocean and ice sheets, over tens to thousands of years. Antarctic Ice Sheet melting is caused mainly by warm deep water from the Southern Ocean. Here, we analyse close relationships between deep water temperatures and global climate in the last 800,000 years. This knowledge can help us to better understanding how climate and sea-level are likely to change in the future.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Xudong Xu, Jianguo Liu, Yun Huang, Lanlan Zhang, Liang Yi, Shengfa Liu, Yiping Yang, Li Cao, and Long Tan
Clim. Past, 18, 1369–1384, https://doi.org/10.5194/cp-18-1369-2022, https://doi.org/10.5194/cp-18-1369-2022, 2022
Short summary
Short summary
Terrestrial materials in marine environments record source information and help us understand how climate and ocean impact sediment compositions. Here, we use evidence on the Ninetyeast Ridge to analyze the relationship between terrestrial material supplementation and climatic change. We find that the ITCZ controlled the rainfall in the Burman source area and that closer connections occurred between the Northern–Southern Hemisphere in the eastern Indian Ocean during the late LGM.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Kim Alix Jakob, Jörg Pross, Christian Scholz, Jens Fiebig, and Oliver Friedrich
Clim. Past, 14, 1079–1095, https://doi.org/10.5194/cp-14-1079-2018, https://doi.org/10.5194/cp-14-1079-2018, 2018
Short summary
Short summary
Eastern equatorial Pacific (EEP) thermocline dynamics during the intensification of Northern Hemisphere glaciation (iNHG; ~ 2.5 Ma) currently remain unclear. In light of this uncertainty, we generated geochemical, faunal and sedimentological data for EEP Site 849 (~ 2.75–2.4 Ma). We recorded a thermocline depth change shortly before the final phase of the iNHG, which supports the hypothesis that tropical thermocline shoaling may have contributed to substantial Northern Hemisphere ice growth.
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017, https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Short summary
We investigated a sediment core from the Maldives to unravel the interaction between equatorial climate and ocean variability of the past 200 000 years. The sedimentological, geochemical and foraminiferal data records reveal enhanced dust, which was transported by intensified winter monsoon winds during glacial conditions. Precessional fluctuations of bottom water oxygen suggests an expansion of the Arabian Sea OMZ and a varying inflow of Antarctic Intermediate Water.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Carl Wunsch
Clim. Past, 12, 1281–1296, https://doi.org/10.5194/cp-12-1281-2016, https://doi.org/10.5194/cp-12-1281-2016, 2016
Short summary
Short summary
This paper examines the oxygen isotope data in several deep-sea cores. The question addressed is whether those data support an inference that the abyssal ocean in the Last Glacial Maximum period was significantly colder than it is today. Along with a separate analysis of salinity data in the same cores, it is concluded that a cold, saline deep ocean is consistent with the available data but so is an abyss much more like that found today. LGM model testers should beware.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
G. E. A. Swann and A. M. Snelling
Clim. Past, 11, 15–25, https://doi.org/10.5194/cp-11-15-2015, https://doi.org/10.5194/cp-11-15-2015, 2015
Short summary
Short summary
New diatom isotope records are presented alongside existing geochemical and isotope records to document changes in the photic zone, including nutrient supply and the efficiency of the soft-tissue biological pump, between MIS 4 and MIS 5e in the subarctic north-west Pacific Ocean. The results provide evidence for temporal changes in the strength and efficiency of the regional soft-tissue biological pump, altering the ratio of regenerated to preformed nutrients in the water.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
T. Caley, J.-H. Kim, B. Malaizé, J. Giraudeau, T. Laepple, N. Caillon, K. Charlier, H. Rebaubier, L. Rossignol, I. S. Castañeda, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011, https://doi.org/10.5194/cp-7-1285-2011, 2011
S. Sepulcre, L. Vidal, K. Tachikawa, F. Rostek, and E. Bard
Clim. Past, 7, 75–90, https://doi.org/10.5194/cp-7-75-2011, https://doi.org/10.5194/cp-7-75-2011, 2011
C. Siberlin and C. Wunsch
Clim. Past, 7, 27–39, https://doi.org/10.5194/cp-7-27-2011, https://doi.org/10.5194/cp-7-27-2011, 2011
A. H. L. Voelker, T. Rodrigues, K. Billups, D. Oppo, J. McManus, R. Stein, J. Hefter, and J. O. Grimalt
Clim. Past, 6, 531–552, https://doi.org/10.5194/cp-6-531-2010, https://doi.org/10.5194/cp-6-531-2010, 2010
L. E. Lisiecki
Clim. Past, 6, 305–314, https://doi.org/10.5194/cp-6-305-2010, https://doi.org/10.5194/cp-6-305-2010, 2010
M. Ziegler, L. J. Lourens, E. Tuenter, and G.-J. Reichart
Clim. Past, 6, 63–76, https://doi.org/10.5194/cp-6-63-2010, https://doi.org/10.5194/cp-6-63-2010, 2010
Cited articles
Almogi-Labin, A., Hemleben, C., Meischner, D., and Erlenkeuser, H.: Paleoenvironmental events during the last 13,000 years in the central Red Sea as recorded by pteropoda, Paleoceanography, 6, 83–98, 1991.
Almogi-Labin, A., Schmiedl, G., Hemleben, C., Siman-Tov, R., Segl, M., and Meischner, D.: The influence of the NE winter monsoon on productivity changes in the Gulf of Aden, NW Arabian Sea, during the last 530 ka as recorded by foraminifera, Mar. Micropaleontol., 40, 295–319, 2000.
Anklin, M., Barnola, J. M., Beer, J., Blunier, T., Chappellaz, J., Clausen, H. B., Dahljensen, D., Dansgaard, W., Deangelis, M., Delmas, R. J., Duval, P., Fratta, M., Fuchs, A., Fuhrer, K., Gundestrup, N., Hammer, C., Iversen, P., Johnsen, S., Jouzel, J., Kipfstuhl, J., Legrand, M., Lorius, C., Maggi, V., Miller, H., Moore, J. C., Oeschger, H., Orombelli, G., Peel, D. A., Raisbeck, G., Raynaud, D., Schotthvidberg, C., Schwander, J., Shoji, H., Souchez, R., Stauffer, B., Steffensen, J. P., Stievenard, M., Sveinbjornsdottir, A., Thorsteinsson, T., and Wolff, E. W.: Climate instability during the last interglacial period recorded in the GRIP ice core, Nature, 364, 203–207, 1993.
Arz, H. W., Lamy, F., Ganopolski, A., Nowaczyk, N., and Pätzold, J.: Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability, Quaternary Sci. Rev., 26, 312–321, 2007.
Auras-Schudnagies, A., Kroon, D., Ganssen, G., Hemleben, C., and Van Hinte, J. E.: Distributional pattern of planktonic foraminifers and pteropods in surface waters and top core sediments of the Red Sea, and adjacent areas controlled by the monsoonal regime and other ecological factors, Deep-Sea Res., 36, 1515–1533, 1989.
Badawi, A., Schmiedl, G., and Hemleben, C.: Impact of late Quaternary environmental changes on deep-sea benthic foraminiferal faunas of the Red Sea, Mar. Micropaleontol., 58, 13–30, 2005.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. and Hawkesworth, C.: Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals, Geochim. Cosmochim. Ac., 67, 3181–3199, 2003.
Biton, E., Gildor, H., and Peltier, W. R.: Red Sea during the Last Glacial Maximum: Implications for sea level reconstruction, Paleoceanography, 23, PA1214, https://doi.org/10.1029/2007PA001431, 2008.
Biton, E., Gildor, H., Trommer, G., Siccha, M., Kucera, M., van der Meer, M. T. J., and Schouten, S.: Sensitivity of Red Sea circulation to monsoonal variability during the Holocene: An integrated data and modeling study, Paleoceanography, 25, PA4209, https://doi.org/10.1029/2009PA001876, 2010.
Burns, S. J., Matter, A., Frank, N., and Mangini, A.: Speleothem-based paleoclimate record from northern Oman, Geology, 26, 499–502, 1998.
Burns, S. J., Fleitmann, D., Matter, A., Neff, U., and Mangini, A.: Speleothem evidence from Oman for continental pluvial events during interglacial periods, Geology, 29, 623–626, 2001.
Castañeda, I. S., Schefuss, E., Pätzold, J., Sinninghe Damsté, J. S., Weldeab, S., and Schouten, S.: Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years, Paleoceanography, 25, PA1208, https://doi.org/10.1029/2009PA001740, 2010.
Cember, R. P.: On the sources, formation and circulation of Red Sea Deep Water, J. Geophys. Res., 93, 8175–8191, 1988.
Chen, F. H., Qiang, M. R., Zeng, Z. D., Wang, H. B., and Bloemendal, J.: Stable East Asian monsoon climate during the Last Interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau, Global Planet. Change, 36, 171–179, 2003.
Clemens, S., Prell, W., Murray, D., Shimmield, G., and Weedon, G.: Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, 1991.
Conkright, M. E., Locarnini, R. A., Garcia, H. E., O'Brian, T. D., Boyer, T. P., Stephens, C., and Antonov, J. I.: World Ocean Atlas 2001, http://odv.awi.de/en/data/ocean/world_ocean_atlas_2001/, 2001.
Cuffey, K. M. and Marshall, S. J.: Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet, Nature, 404, 591–594, 2000.
Cullen, J. L. and Prell, W. L.: Planktonic foraminifera of the northern Indian Ocean: distribution and preservation in surface sediments, Mar. Micropaleontol., 9, 1–52, 1984.
Emeis, K. C., Anderson, D. M., Doose, H., Kroon, D., and Schulz-Bull, D.: Sea-Surface Temperatures and the History of Monsoon Upwelling in the Northwest Arabian Sea during the Last 500,000 Years, Quaternary Res., 43, 355–361, 1995.
Esat, T. M., McCulloch, M. T., Chappell, J., Pillans, B., and Omura, A.: Rapid fluctuations in sea level recorded at Huon Peninsula during the penultimate deglaciation, Science, 283, 197–201, 1999.
Eshel, G. and Naik, N. H.: Climatological Coastal Jet Collision, Intermediate Water Formation, and the General Circulation of the Red Sea, American Meteorological Society, 27, 1233–1257, 1997.
Eshel, G., Cane, M. A., and Blumenthal, M. B.: Modes of subsurface, intermediate, and deep water renewal in the Red Sea, J. Geophys. Res., 99, 15941–15952, 1994.
Fenton, M.: Late quaternary history of Red Sea outflow, Ph. D. Thesis, School of Ocean and Earth Science, Southampton University, Southampton, 226 pp., 1998.
Fenton, M., Geiselhart, S., Rohling, E., and Hemleben, C.: Aplanktonic zones in the Red Sea, Mar. Micropaleontol., 40, 277–294, 2000.
Fleitmann, D., Burns, S. J., Neff, U., Mangini, A., and Matter, A.: Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems, Quaternary Res., 60, 223–232, 2003.
Fuhrman, J. A., McCallum, K., and Davis, A.: Novel major archaebacterial group from marine plankton, Nature, 356, 148–149, 1992.
Geiselhart, S.: Late Quaternary paleoceanographic and paleoclimatologic history of the Red Sea during the last 380.000 years: Evidence from stable isotopes and faunal assemblages, Tübinger Mikropaläontologische Mitteilungen, 17, 1–87, 1998.
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum – A circum-Antarctic view based on siliceous microfossil records, Quaternary Sci. Rev., 24, 869–896, 2005.
Hemleben, C., Meischner, D., Zahn, R., Almogi-Labin, A., Erlenkeuser, H., and Hiller, B.: Three hundred eighty thousand year long stable isotope and faunal records from the Red Sea: Influence of global sea level change on hydrography, Paleoceanography, 11, 147–156, 1996.
Hemleben, C., Spindler, M., and Anderson, O.: Modern Planktonic Foraminifera, Springer-Verlag, New York, 363 pp., 1989.
Henderson, G. M. and Slowey, N. C.: Evidence from U-Th dating against Northern Hemisphere forcing of the penultimate deglaciation, Nature, 404, 61–66, 2000.
Herndl, G. J., Reinthaler, T., Teira, E., van Aken, H., Veth, C., Pernthaler, A., and Pernthaler, J.: Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean, Appl. Environ. Microb., 71, 2303–2309, 2005.
Herold, M. and Lohmann, G.: Eemian tropical and subtropical African moisture transport: an isotope modelling study, Clim. Dyn., 33, 1075–1088, https://doi.org/10.1007/s00382-008-0515-2, 2009.
Hoefs, M. J., Schouten, S., de Leeuw, J. W., King, L. L., Wakeham, S. G., and Sinninghe Damsté, J. S.: Ether Lipids of Planktonic Archaea in the Marine Water Column, Appl. Environ. Microb., 63, 3090–3095, 1997.
Hoogakker, B. A. A., Klinkhammer, G. P., Elderfield, H., Rohling, E. J., and Hayward, C.: Mg/Ca paleothermometry in high salinity environments, Earth Planet. Sc. Lett., 284, 583–589, 2009.
Hopmans, E. C., Schouten, S., Pancost, R. D., van der Meer, M. T. J., and Sinninghe Damsté, J. S.: Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry, Rapid Communications in Mass Spectrometry, 14, 585–589, 2000.
Hopmans, E. C., Weijers, J. W. H., Schefuss, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sc. Lett., 224, 107–116, 2004.
Imbrie, J., Hayes, J., Martinson, D., McIntyre, A., Mix, A., Morley, J., Pisias, N., Prell, W., Shackleton, N., and Berger, A.: The orbital theory of Pleistocene climate: support from a revised chronology of the marine $\delta ^{18}$O record, in: Milankovitch and Climate, Understanding the Response to Orbital Forcing, Part 1, edited by: Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., D. Reidel Publishing Company, Norwell, Massachusetts, 269–305, 1984.
Ivanova, E., Schiebel, R., Singh, A. D., Schmiedl, G., Niebler, H. S., and Hemleben, C.: Primary production in the Arabian Sea during the last 135 000 years, Palaeogeogr. Palaeocl., 197, 61–82, 2003.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793–796, 2007.
Juggins, S.: C2 Data Analysis, 2003.
Kim, J. H., Schouten, S., Buscail, R., Ludwig, W., Bonnin, J., Sinninghe Damsté, J. S., and Bourrin, F.: Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index, Geochem. Geophy. Geosy., 7, Q11017, https://doi.org/10.1029/2006GC001306, 2006.
Kim, J., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damsté, J. S.: Global sediment core-top calibration of the TEX86 paleothermometer in the ocean, Geochim. Cosmochim. Ac., 72, 1154–1173, 2008.
Kim, J. H., Zarzycka, B., Buscail, R., Peterse, F., Bonnin, J., Ludwig, W., Schouten, S., and Sinninghe Damsté, J. S.: Contribution of river-borne soil organic carbon to the Gulf of Lions (NW Mediterranean), Limnol. Oceanogr., 55, 507–518, 2010.
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.: Probabilistic assessment of sea level during the last interglacial stage, Nature, 462, 863–867, https://doi.org/10.1038/nature08686, 2009.
Kukla, G., Bender, M., de Beaulieu, J., Bond, G., Broecker, W., Cleveringa, P., Gavin, J., Herbert, T., Imbrie, J., Jouzel, J., Keigwin, L. D., Knudsen, K.-L., McManus, J. F., Merkt, J., Muhs, D. R., Müller, H., Poore, R. Z., Porter, S. C., Seret, G., Shackleton, N. J., Turner, C., Tzedakis, P. C., and Winograd, I. J.: Last Interglacial Climates, Quaternary Res., 58, 2–13, 2002.
Lambeck, K. and Chappell, J.: Sea level change through the last glacial cycle, Science, 292, 679–686, 2001.
Legge, H. L., Mutterlose, J., and Arz, H. W.: Climatic changes in the northern Red Sea during the last 22,000 years as recorded by calcareous nannofossils, Paleoceanography, 21, PA1003, https://doi.org/10.1029/2005PA001142, 2006.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locke, S. and Thunell, R.: Paleoceanographic record of the last glacial/interglacial cycle in the Red Sea and Gulf of Aden, Palaeogeogr. Palaeocl., 64, 163–187, 1988.
Manasrah, R., Badran, M., Lass, H. U., and Fennel, W.: Circulation and winter deep-water formation in the northern Red Sea, Oceanologia, 46, 5–23, 2004.
McCulloch, M. and Esat, T.: The coral record of last interglacial sea levels and sea surface temperatures, Chem. Geol., 169, 107–129, 2000.
Moeyersons, J., Vermeersch, P. M., and Van Peer, P.: Dry cave deposits and their palaeoenvironmental significance during the last 115 ka, Sodmein Cave, Red Sea Mountains, Egypt, Quaternary Sci. Rev., 21, 837–851, 2002.
Montoya, M., von Storch, H. and Crowley, T. J.: Climate simulation for 125 kyr BP with a coupled ocean-atmosphere general circulation model, J. Climate, 13, 1057–1072, 2000.
Muhs, D. R., Simmons, K. R., Schumann, R. R., and Halley, R. B.: Sea-level history of the past two interglacial periods: new evidence from U-series dating of reef corals from south Florida, Quaternary Sci. Rev., 30, 570–590, https://doi.org/10.1016/j.quascirev.2010.12.019, 2011.
Naidu, P. D. and Malmgren, B. A.: A high-resolution record of late quaternary upwelling along the Oman Margin, Arabian Sea based on planktonic foraminifera, Paleoceanography, 11, 129–140, 1996.
Orszag-Sperber, F., Plaziat, J., Baltzer, F., and Purser, B.: Gypsum salina-coral reef relationships during the Last Interglacial (Marine Isotopic Stage 5e) on the Egyptian Red Sea coast: a Quaternary analogue for Neogene marginal evaporites?, Sediment. Geol., 140, 61–85, 2001.
Osborne, A. H., Vance, D., Rohling, E. J., Barton, N., Rogerson, M., and Fello, N.: A humid corridor across the Sahara for the migration of early modern humans out of Africa 120,000 years ago, P. Natl. Acad. Sci. U.S.A., 105, 16444–16447, 2008.
Otto-Bliesner, B. L., Marsha, S. J., Overpeck, J. T., Miller, G. H., and Hu, A. X.: Simulating arctic climate warmth and icefield retreat in the last interglaciation, Science, 311, 1751–1753, 2006.
Overpeck, J. T., Webb, T., and Prentice, I. C.: Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs, Quaternary Res., 23, 87–108, 1985.
Patzert, W. C.: Wind-induced reversal in Red Sea circulation, Deep-Sea Res., 21, 109–121, 1974.
Plaziat, J. C., Baltzer, F., Choukri, A., Conchon, O., Freytet, P., Orszag-Sperber, F., Purser, B., Raguideau, A., and Reyss, J. L.: Quaternary changes in the Egyptian shoreline of the northwestern Red Sea and Gulf of Suez, Quatern. Int., 30, 11–22, 1995.
Reichart, G. J., den Dulk, M., Visser, H. J., van der Weijden, C. H., and Zachariasse, W. J.: A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea), Palaeogeogr. Palaeocl., 134, 149–169, 1997.
Rohling, E. J. and Zachariasse, W. J.: Red Sea outflow during the last glacial maximum, Quatern. Int., 31, 77–83, 1996.
Rohling, E. J., Fenton, M., Jorissen, F. J., Bertrand, P., Ganssen, G., and Caulet, J. P.: Magnitudes of sea-level lowstands of the past 500,000 years, Nature, 394, 162–165, 1998.
Rohling, E. J., Cane, T. R., Cooke, S., Sprovieri, M., Bouloubassi, I., Emeis, K. C., Schiebel, R., Kroon, D., Jorissen, F. J., Lorre, A., and Kemp, A. E. S.: African monsoon variability during the previous interglacial maximum, Earth Planet. Sc. Lett., 202, 61–75, 2002.
Rohling, E. J., Sprovieri, M., Cane, T., Casford, J. S. L., Cooke, S., Bouloubassi, I., Emeis, K. C., Schiebel, R., Rogerson, M., and Hayes, A.: Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5, Mar. Micropaleontol., 50, 89–123, 2004.
Rohling, E. J., Grant, K., Hemleben, C., Kucera, M., Roberts, A. P., Schmeltzer, I., Schulz, H., Siccha, M., Siddall, M., and Trommer, G.: New constraints on the timing of sea level fluctuations during early to middle marine isotope stage 3, Paleoceanography, 23, PA3219, https://doi.org/10.1029/2008PA001617, 2008a.
Rohling, E. J., Grant, K., Hemleben, C., Siddall, M., Hoogakker, B. A. A., Bolshaw, M., and Kucera, M.: High rates of sea-level rise during the last interglacial period, Nat. Geosci., 1, 38–42, 2008b.
Rohling, E. J., Grant, K., Bolshaw, M., Roberts, A. P., Siddall, M., Hemleben, C., and Kucera, M.: Antarctic temperature and global sea level closely coupled over the past five glacial cycles, Nat. Geosci., 2, 500–504, 2009.
Rossignol-Strick, M.: African monsoons, and immediate climate response to orbital insolation, Nature, 304, 46–49, 1983.
Rostek, F., Bard, E., Beaufort, L., Sonzogni, C., and Ganssen, G.: Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea, Deep-Sea Res. Pt. II, 44, 1461–1480, 1997.
Saher, M., Rostek, F., Jung, S. J. A., Bard, E., Schneider, R., Greaves, M., Ganssen, G., Elderfield, H., and Kroon, D.: Western Arabian Sea SST during the penultimate interglacial: A comparison of U^{K\chem{'}}37 and Mg/Ca paleothermometry, Paleoceanography, 24, PA2212, https://doi.org/10.1029/2007PA001557, 2009.
Schmelzer, I.: High-frequency event-stratigraphy and paleoceanography of the Red Sea, Ph. D. Thesis, Institute of Geosciences, University of Tübingen, Tübingen, 124 pp., 1998.
Schouten, S., Hopmans, E. C., Pancost, R. D., and Sinninghe Damsté, J. S.: Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles, P. Natl Acad. Sci. U.S.A., 97, 14421–14426, 2000.
Schouten, S., Hopmans, E. C., Schefuss, E., and Sinninghe Damsté, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sc. Lett., 204, 265–274, 2002.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., and Sinninghe Damsté, J. S.: Analytical Methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, Anal. Chem., 79, 2940–2944, 2007.
Schulz, H., von Rad, U., Ittekkot, V., Clift, P. D., Kroon, D., Gaedicke, C., and Craig, J.: Planktic foraminifera, particle flux and oceanic productivity off Pakistan, NE Arabian Sea: modern analogues and application to the paleoclimatic record, in: The Tectonic and Climatic Evolution of the Arabian Sea Region, No. 195, Geological Society Special Publications, London, 499–516, 2002.
Shackleton, N. J., Sanchez-Goni, M. F., Pailler, D., and Lancelot, Y.: Marine Isotope Substage 5e and the Eemian interglacial, Global Planet. Change, 36, 151–155, 2003.
Siccha, M.: Planktonic foraminifera transfer function approach to Red Sea paleoceanography, Ph. D. Thesis, Institute of Geosciences, University of Tübingen, Tübingen, 144 pp., 2009.
Siccha, M., Trommer, G., Schulz, H., Hemleben, C., and Kucera, M.: Factors controlling the distribution of planktonic foraminifera in the Red Sea and implications for the development of transfer functions, Mar. Micropaleontol., 72, 146–156, 2009.
Siddall, M., Rohling, E., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., and Smeed, D.: Sea-level fluctuations during the last glacial cycle, Nature, 423, 853–858, 2003.
Siddall, M., Smeed, D., Hemleben, C., Rohling, E. J., Schmelzer, I., and Peltier, W.: Understanding the Red Sea response to sea level, Earth Planet. Sc. Lett., 225, 421–434, 2004.
Siddall, M., Bard, E., Rohling, E. J., and Hemleben, C.: Sea-level reversal during Termination II, Geology, 34, 817–820, 2006.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Prahl, F. G., Wakeham, S. G., and Schouten, S.: Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea, Appl. Environ. Microb., 68, 2997–3002, 2002.
Smeed, D.: Seasonal variation of the flow in the strait of Bab al Mandab, Oceanol. Acta, 20, 773–781, 1997.
Smeed, D.: Exchange through the Bab el Mandab, Deep-Sea Res. Pt. II, 51, 455–474, 2004.
Sofianos, S. and Johns, W.: An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 1. Exchange between the Red Sea and the Indian Ocean, J. Geophys. Res., 107, 3196, https://doi.org/10.1029/2001JC001184, 2002.
Sofianos, S. and Johns, W.: An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea, J. Geophys. Res., 108, 3066, https://doi.org/10.1029/2001JC001185, 2003.
Sofianos, S., Johns, W., and Murray, S.: Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb, Deep-Sea Res. Pt. II, 49, 1323–1340, 2002.
Souvermezoglou, E., Metzl, N., and Poisson, A.: Red Sea budgets of salinity, nutrients and carbon calculated in the Strait of Bab-El-Mandab during the summer and winter seasons, J. Mar. Res., 47, 441–456, 1989.
Storz, D., Schulz, H., Waniek, J. J., Schulz-Bull, D. E., and Kucera, M.: Seasonal and interannual variability of the planktic foraminiferal flux in the vicinity of the Azores Current, Deep-Sea Res. Pt. I, 56, 107–124, 2009.
Thomas, A. L., Henderson, G. M., Deschamps, P., Yokoyama, Y., Mason, A. J., Bard, E., Hamelin, B., Durand, N., and Camoin, G.: Penultimate Deglacial Sea-Level Timing from Uranium/Thorium Dating of Tahitian Corals, Science, 324, 1186–1189, 2009.
Thompson, P. R., Be, A. W. H., Duplessy, J. C., and Shackleton, N. J.: Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans, Nature, 280, 554–558, 1979.
Thompson, W. G. and Goldstein, S. L.: Open-system coral ages reveal persistent suborbital sea-level cycles, Science, 308, 401–404, 2005.
Thunell, R. C., Locke, S., and Williams, D. F.: Glacio-eustatic sea-level control on Red Sea salinity, Nature, 334, 601–604, 1988.
Trommer, G., Siccha, M., van der Meer, M. T. J., Schouten, S., Sinninghe Damsté, J. S., Schulz, H., Hemleben, C., and Kucera, M.: Distribution of Crenarchaeota tetraether membrane lipids in surface sediments from the Red Sea, Org. Geochem., 40, 724–731, 2009.
Trommer, G., Siccha, M., Rohling, E. J., Grant, K., van der Meer, M. T. J., Schouten, S., Hemleben, C., and Kucera, M.: Millennial-scale variability in Red Sea circulation in response to Holocene insolation forcing, Paleoceanography, 25, PA3203, https://doi.org/10.1029/2009PA001826, 2010.
Van Campo, E., Duplessy, J. C., and Rossignol-Strick, M.: Climatic conditions deduced from a 150-kyr oxygen isotope-pollen record from the Arabian Sea, Nature, 296, 56–59, 1982.
van der Meer, M. T. J., Baas, M., Rijpstra, W. I. C., Marino, G., Rohling, E. J., Sinninghe Damsté, J. S., and Schouten, S.: Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition, Earth Planet. Sc. Lett., 262, 594–600, 2007.
Veldhuis, M., Kraay, G., Van Bleijswijk, J., and Baars, M.: Seasonal and spatial variability in phytoplankton biomass, productivity and growth in the northwestern Indian Ocean: the southwest and northeast monsoon, 1992-1993, Deep-Sea Res. Pt. I, 44, 425–449, 1997.
Walsh, E., Ingalls, A., and Keil, R.: Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver-Washington Margin: A multiproxy approach using δ13C$_{\rm org}$, lignin phenols, and the ether lipid BIT index, Limnol. Oceanogr., 53, 1054–1063, 2008.
Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X. G., Shao, X. H., Chen, S. T., Wu, J. Y., Jiang, X. Y., Wang, X. F., and An, Z. S.: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Nature, 451, 1090–1093, 2008.
Weijers, J., Schouten, S., Spaargaren, O., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index, Org. Geochem., 37, 1680–1693, 2006.
Weikert, H., Edwards, F., and Head, S.: Plankton and the pelagic environment, in: Red Sea (key environments), edited by: Edwards, A. J. and Head, S. M., Pergamon Press, Oxford, 90–111, 1987.
Weldeab, S., Lea, D., Schneider, R., and Andersen, N.: 155,000 years of West African Monsoon and ocean thermal evolution, Science, 316, 1303–1307, 2007.
Winograd, I. J., Coplen, T. B., Landwehr, J. M., Riggs, A. C., Ludwig, K. R., Szabo, B. J., Kolesar, P. T., and Revesz, K. M.: Continuous 500,000-Year Climate Record from Vein Calcite in Devils Hole, Nevada, Science, 258, 255–260, 1992.
Winter, A., Almogi-Labin, A., Erez, Y., Halicz, E., Luz, B., and Reiss, Z.: Salinity tolerances or marine organisms deduced from Red Sea Quaternary record, Mar. Geol., 53, M17–M22, 1983.
Whiteman, A.: The Geology of the Sudan Republic, Clarendon Press, Oxford, 290 pp., 1971.
Wu, G. J., Pan, B. T., Guan, Q. Y., Liu, Z. G., and Li, J. J.: Loess record of climatic changes during MIS5 in the Hexi Corridor, northwest China, Quatern. Int., 97-8, 167–172, 2002.
Yuan, D., Cheng, H., Edwards, R., Dykoski, C., Kelly, M., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J. A., An, Z., and Cai, Y.: Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon, Science, 304, 575–578, 2004.