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Abstract. This study investigates the response of Red Sea
circulation to sea level and insolation changes during termi-
nation II and across the last interglacial, in comparison with
termination I and the Holocene. Sediment cores from the
central and northern part of the Red Sea were investigated by
micropaleontological and geochemical proxies. The recov-
ery of the planktic foraminiferal fauna following high salini-
ties during marine isotopic stage (MIS) 6 took place at sim-
ilar sea-level stand (∼50 m below present day), and with a
similar species succession, as during termination I. This in-
dicates a consistent sensitivity of the basin oceanography and
the plankton ecology to sea-level forcing. Based on planktic
foraminifera, we find that increased water exchange with the
Gulf of Aden especially occurred during the sea-level high-
stand of interglacial MIS 5e. From MIS 6 to the peak of
MIS 5e, northern Red Sea sea surface temperature (SST)
increased from 21◦C to 25◦C, with about 3◦C of this in-
crease taking place during termination II. Changes in plank-
tic foraminiferal assemblages indicate that the development
of the Red Sea oceanography during MIS 5 was strongly de-
termined by insolation and monsoon strength. The SW Mon-
soon summer circulation mode was enhanced during the ter-
mination, causing low productivity in northern central Red
Sea core KL9, marked by high abundance ofG. sacculifer,
which – as in the Holocene – followed summer insolation.
Core KL11 records the northern tip of the intruding inter-
mediate water layer from the Gulf of Aden and its planktic
foraminifera fauna shows evidence for elevated productivity
during the sea-level highstand in the southern central Red
Sea. By the time of MIS 5 sea-level regression, elevated or-
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ganic biomarker BIT values suggest denudation of soil or-
ganic matter into the Red Sea and high abundances ofG.
glutinata, and high reconstructed chlorophyll-a values, in-
dicate an intensified NE Monsoon winter circulation mode.
Our results imply that the amplitude of insolation fluctua-
tions, and the resulting monsoon strength, strongly influence
the Red Sea oceanography during sea-level highstands by
regulating the intensity of water exchange with the Gulf of
Aden. These processes are responsible for the observation
that MIS 5e/d is characterized by higher primary productiv-
ity than the Holocene.

1 Introduction

The Red Sea is an ideal natural laboratory to investigate the
interplay between sea-level rise and atmospheric forcing dur-
ing and after terminations, due to its sensitivity to sea-level
fluctuations (Winter et al., 1983; Locke and Thunell, 1988;
Thunell et al., 1988; Rohling and Zachariasse, 1996; Rohling
et al., 1998, 2008a, b; Fenton et al., 2000; Siddall et al.,
2003, 2004) and to monsoon-driven oceanographic changes
(Almogi-Labin et al., 1991; Hemleben et al., 1996; Biton
et al., 2010; Trommer et al., 2010). The restricted connec-
tion to the Indian Ocean, the Strait of Bab-el-Mandeb in
the south, and high evaporation rates over the entire basin
(Sofianos et al., 2002) determine the water exchange with
the Gulf of Aden, which results in a characteristic circula-
tion pattern and a strong gradient of environmental parame-
ters along the basin axis (Weikert et al., 1987; Siccha et al.,
2009). Today, the exchange with the Gulf of Aden alternates
seasonally between a three-layer mode during the summer
SW Monsoon and a two-layer mode during the winter NE
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Monsoon (Smeed, 1997, 2004). In winter, a wind driven
surface water layer enters the basin from the south (Patzert,
1974), whereas in summer, nutrient enriched Gulf of Aden
waters enter the basin in an intermediate layer (Souverme-
zoglou et al., 1989). Evaporation rates in the Red Sea reach
∼2 m a−1 in the north of the basin, which is reflected by high
salinities and relatively cool surface water conditions (Sofi-
anos et al., 2002). Overall, the circulation system of the Red
Sea is anti-estuarine and driven by thermohaline forcing with
deep water formation in the northern Gulfs (Cember, 1988;
Eshel et al., 1994; Sofianos and Johns, 2002, 2003; Manas-
rah et al., 2004). Large parts of the Red Sea experience high-
est primary productivity during the winter (Veldhuis et al.,
1997; Siccha et al., 2009), except for the very southern Red
Sea, which is influenced by the inflow of the nutrient-rich in-
termediate water from the Gulf of Aden during the summer
(Smeed, 1997).

Since the circulation and water exchange system are pri-
marily dependent on sea level (Siddall et al., 2003, 2004;
Biton et al., 2008), the abundance of planktic foraminifera re-
flects in first instance salinity conditions (Winter et al., 1983;
Locke and Thunell, 1988; Thunell et al., 1988; Fenton et
al., 2000). The sea-level dependent recovery of the planktic
fauna after termination I was investigated for several organ-
ism groups (Winter et al., 1983; Almogi-Labin et al., 1991;
Legge et al., 2006; Trommer et al., 2010), and an analysis of
the salinity sensitive planktic foraminifera revealed that sea
level must have risen to less than 50–55 m below the present-
day level to allow establishment of a “normal” marine plank-
ton community (Trommer et al., 2010). It has been further
inferred that during the Holocene sea-level highstand, atmo-
spheric forcing became a key control on the circulation sys-
tem throughout the Red Sea (Biton et al., 2010; Trommer et
al., 2010). In addition, it has been found that the Indian Mon-
soon exerted an important influence on Red Sea oceanogra-
phy and its planktic communities (Hemleben et al., 1996)
due to changes in nutrient availability (Siccha et al., 2009;
Trommer et al., 2010) and stratification of the water column
(Almogi-Labin et al., 1991).

Compared to present-day and Holocene conditions, the
Last Interglacial or marine isotopic stage (MIS) 5e was char-
acterised by unusually high summer insolation, resulting
in global temperatures up to 2◦C higher than today (Otto-
Bliesner et al., 2006; Jouzel et al., 2007) and significantly
reduced continental ice volume (Anklin et al., 1993; Cuf-
fey and Marshall, 2000; Lambeck and Chappell, 2001; Otto-
Bliesner et al., 2006; Rohling et al., 2008b; Kopp et al.,
2009). Sea-level reconstructions suggest that during termi-
nation II, sea level rose in two steps with similar rates as dur-
ing termination I (Siddall et al., 2003, 2006; Rohling et al.,
2008b), reaching a mean level at 4–6 m above the present,
with potential peaks up to 8± 1 m (Plaziat et al., 1995; Mc-
Culloch and Esat, 2000; Orszag-Sperber et al., 2001; Sid-
dall et al., 2006; Rohling et al., 2008b; Kopp et al., 2009;
Muhs et al., 2011). As a consequence of the strong sum-

mer insolation, intensified monsoonal conditions with levels
of rainfall exceeding that observed during the correspond-
ing early Holocene insolation maximum are recorded from
regions reflecting the African Monsoon (Rossignol-Strick,
1983; Rohling et al., 2004; Weldeab et al., 2007), the Asian
Monsoon (Wu et al., 2002; Chen et al., 2003; Yuan et al.,
2004; Wang et al., 2008), and the Indian Monsoon (Van
Campo et al., 1982; Clemens et al., 1991). The high summer
insolation seems to have led to a northward shift of mon-
soonal rainfall as recorded by speleothems in Oman (Burns
et al., 1998, 2001; Fleitmann et al., 2003) and Mediterranean
sapropels (Rohling et al., 2002; Osborne et al., 2008). Model
simulations also indicate shifts of zonal moisture transport
during this time period (Montoya et al., 2000; Herold and
Lohmann, 2009).

However, it remains to be established to what extent, and
according to what relationships, the more intense monsoon
and higher sea level of MIS 5e affected the Red Sea oceanog-
raphy. To provide answers, we investigate termination II
(which had similar rates of sea-level rise as termination I;
Siddall et al., 2003, 2006; Rohling et al., 2008b) and MIS 5e,
when summer insolation was enhanced and sea level stood
higher relative to the Holocene. For this purpose, we present
new high-resolution micropaleontological data from marine
sediment cores in the Red Sea, along with organic geochem-
ical data. Primary productivity, an indicator of circulation
modes in the Red Sea (Veldhuis et al., 1997), is estimated
using planktic foraminiferal transfer functions (Siccha et al.,
2009). Sea surface temperature (SST) is reconstructed for
the northern Red Sea using the TEX86 proxy (TetraEther In-
dex of ketones with 86 carbon atoms (Schouten et al., 2002),
with a Red Sea-specific calibration (Trommer et al., 2009).
The TEX86 is at present the only available method to esti-
mate SST in the Red Sea, as Mg/Ca (Hoogakker et al., 2009)
andδ18O of planktic foraminifera (e.g. Locke and Thunell,
1988) are influenced by salinity and alkenones are only
present in sufficient amounts in the very north of the Red Sea.
The TEX86 is based on glycerol dialkyl glycerol tetraether
(GDGT) membrane lipids of marine Crenarchaeota, which
are widespread in open ocean settings (Fuhrman et al., 1992;
Hoefs et al., 1997; Schouten et al., 2000; Sinninghe Damsté
et al., 2002; Herndl et al., 2005). Recent investigations sug-
gest that the Red Sea may harbour an endemic population
of Crenarchaeota with a specific TEX86 vs. SST relationship
(Trommer et al., 2009). Today, this endemic Crenarchaeota
population occurs in the central and southern Red Sea to-
gether with the open ocean population (Kim et al., 2008,
2010) that enters the basin from the south, which results in a
mixture of two different GDGT signals in the southern and
central Red Sea (Trommer et al., 2009). We use this mixed
GDGT signal in the central Red Sea to estimate the exchange
rate with the Gulf of Aden relative to modern conditions,
based on a simple two end-member mixing model (Biton et
al., 2010).
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Fig. 1. Map of the Red Sea with the investigated cores KL23
(Geiselhart, 1998; Schmelzer, 1998), KL9, and KL11, highlighting
the position of the seasonally active Baraka catchment.

2 Material and methods

In order to detect shifts in the circulation pattern and cor-
responding changes in primary productivity in the Red
Sea, planktic foraminiferal faunal assemblages were in-
vestigated from two marine sediment cores in the cen-
tral Red Sea (Meteor cruise M5/2, piston core GeoTü-
KL9, 19◦57.6′ N, 38◦06.3′ E, and piston core GeoTü-KL11,
18◦45.6′ N, 39◦21.3′ E, Fig. 1).

The core section of KL9 corresponding to MIS 5d–
MIS 6 (387 cm–510 cm,∼107–148 ka BP, see also Rohling
et al. (2008a, b)) was sampled in 1 cm resolution and indi-
vidual samples (n = 77) were dried, weighed, and washed
over a >63 µm mesh; dried again, sieved over>150 µm,
and split with an ASC Scientific microsplitter. For KL11,
the >150 µm fraction of existing samples (653 cm–700 cm,
Schmelzer (1998)) was analysed and combined with newly
taken additional samples (620 cm–653 cm), which were pro-
cessed as for KL9. Altogether a total of 77 samples were
analysed for KL11. Where possible, aliquots containing at
least 300 planktic foraminifera were counted and identified
to species level, following the taxonomy of Hemleben et
al. (1989). Existing micropaleontological data (size frac-
tion >250 µm) from a sediment core in the northern Red

Sea (KL23, 25◦44.9′ N, 35◦03.3′ E, Fig. 1, Geiselhart (1998),
Schmelzer (1998)) were used to compare trends in faunal
community composition along the basin axis in order to de-
termine which changes occurred in the entire Red Sea, possi-
bly reflecting the influence of variability in the Indian Mon-
soon system. Additionally, we applied for the central Red
Sea cores several transfer function approaches (see Siccha et
al., 2009) to reconstruct chlorophyll-a concentrations in sur-
face waters based on the planktic foraminiferal assemblage
composition in the sediments. To this end, we used the soft-
ware C2 (Juggins, 2003) and performed transfer functions
with the Weighted Average-Partial Least Square (WA-PLS)
method, the Modern Analogue Technique (MAT), and the
Imbrie and Kipp method (IKM). Analogy of the fossil as-
semblages to modern ones was tested by applying a prin-
cipal component analysis (PCA) on log-transformed faunal
data after removal of species with total overall abundances
<1 % (Siccha et al., 2009). In the Red Sea, the analogy of
foraminifera assemblages reflects oceanographic conditions,
in particular with respect to circulation patterns and salin-
ity, which are comparable to modern oceanographic condi-
tions (Siccha et al., 2009). Only under such analogue cir-
cumstances do the applied transfer functions produce reliable
reconstructed chlorophyll-a values.

In addition to the faunal counts, the abundance of GDGT
membrane lipids of marine Crenarchaeota were analysed
in sediment samples from cores KL9 (n = 15) and KL23
(n = 15). The northern Red Sea core KL23 is well suited for
reconstructing SST by applying the TEX86 proxy with the
Red Sea calibration (Trommer et al., 2009). In the central
Red Sea, TEX86 can potentially be used to detect changes
in the mixing regime during the termination between the en-
demic Red Sea GDGT signal and the intruding Gulf of Aden
water carrying an open ocean GDGT signal. In addition to
the TEX86, the BIT (Branched Isoprenoid Tetraether) index
(Hopmans et al., 2004) can be derived from GDGT analyses
that include the soil derived branched tetraether lipids (Hop-
mans et al., 2004). The BIT index is used as an indicator for
the relative contribution of soil organic matter (Kim et al.,
2006; Weijers et al., 2006; Walsh et al., 2008) transported
into the Red Sea in the past. Today, the surrounding desert
conditions and the lack of large rivers draining into the basin
do not suggest a large input of soil derived GDGTs, as shown
by low BIT values (<0.1) in the Red Sea surface sediments
(Trommer et al., 2009).

For the extraction of GDGTs, at least 8 g of sediment
were freeze-dried and homogenized before being extracted
with an accelerated solvent extractor (ASE 200, Dionex) us-
ing dichloromethane (DCM)/MeOH, 9:1 (v:v) at 100◦C and
7.6× 106 Pa. For GDGT analyses, the extract was dried un-
der N2, separated in an apolar and polar fraction, the po-
lar fraction was re-dissolved in hexane/isopropanol (99:1)
and filtered before performing high performance liquid chro-
matography (HPLC) atmospheric pressure chemical ioniza-
tion (APCI) mass spectrometry (MS), according to Hopmans
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Fig. 2. Age models of the sediment cores used in this study:δ18O
records from KL9 and KL11 (data from Rohling et al. (2008b)) and
KL23 (data from Badawi et al. (2005)) (control points 6.3, 5.5 and
5.4 as indicated by vertical lines). Dashed vertical lines mark the
MIS 5e/d (116 ka BP) and MIS 6/5e boundary (132 ka BP, Shackle-
ton et al., 2003).

et al. (2000) and Schouten et al. (2007). Areas of GDGTs
in mass chromatograms were manually integrated and the
TEX86 index was calculated after Schouten et al. (2002),
where GDGTs 1–3 represent GDGTs with 1–3 cyclopentane
moieties, respectively, and GDGT 4’ represents the regio-
isomer of crenarchaeol:

TEX86=
[GDGT2]+[GDGT3]+[GDGT4′

]

[GDGT1]+[GDGT2]+[GDGT3]+[GDGT4′]
(1)

For the northern Red Sea core KL23, TEX86 values were
used to reconstruct SST by applying the northern Red Sea
calibration of Trommer et al. (2009):

SST= (TEX86+0.09)/0.035 (2)

The BIT index is based on the relative abundance of branched
GDGTs representing soil organic matter, and crenarchaeol
representing aquatic organic matter, and is defined as:

BIT =
[GDGT5]+[GDGT6]+[GDGT7]

[GDGT5]+[GDGT6]+[GDGT7]+[GDGT4]
(3)

With GDGT 5–7 being the soil derived branched GDGTs
with 4–6 methyl groups and GDGT 4 being crenarchaeol, the
biomarker for Crenarchaeota (Hopmans et al., 2004).

3 Results

3.1 Age model

For the age model development, oxygen isotope data for
KL23 (Badawi et al., 2005) and high resolution data for

KL9 and KL11 (Rohling et al., 2008b) were correlated. Re-
cently, Rohling et al. (2009) correlated a high resolution
δ18O record of KL9 with the Antarctic Temperature anomaly
(1TAA ) record (Jouzel et al., 2007). However, to maintain
our records comparable with other studies from the Red Sea,
the Gulf of Aden, and the latest sea-level study on the last
interglacial (Kopp et al., 2009), we have used the age model
of Rohling et al. (2008b). Since there is no scientific con-
cordance about the exact stratigraphic location of the MIS
5e boundaries (Shackleton et al., 2003) or their ages (e.g.,
Imbrie et al., 1984; Winograd et al., 1992; Henderson and
Slowey, 2000; Thompson and Goldstein, 2005; Thomas et
al., 2009), the boundaries are not used for developing the
age model, but are indicated only for visual orientation in the
graphics. Following Lisiecki and Raymo (2005) and Rohling
et al. (2008b), sea-level maximum was set at 123 ka BP and
other control points were defined by visual correlation of
the benthic foraminiferalδ18O record of Lisiecki and Raymo
(2005) and the SPECMAPδ18O record (Imbrie et al., 1984,
Table 1, Fig. 2). The simple age model for relative compari-
son of the Red sea cores was derived by linear interpolation
between these control points.

3.2 Planktic foraminiferal analyses

We observed a total of 24 species in KL9 (22 in KL11),
of which 17 occur at least once with relative abundance
>1 %. The assemblage is dominated by eight species,
which make up>97 % (>90 % in KL11) of the fauna:
Globigerinita glutinata, Globigerinella calida, Globiger-
inella siphonifera, Globigerinoides ruber, Globigerinoides
sacculifer, Globoturborotalita rubescens, Globoturborotalita
tenella, and Tenuitella parkerae. Concerning the species
G. ruber, in KL11 occasionally the pink variety was found
(∼1.5 % of allG. ruber) until ∼125 ka BP, and in KL9 only
specimens of the white variety were found. The pink variety
is known to have survived in the Indian Ocean until about
120 ka BP ago (Thompson et al., 1979). The foraminiferal
fauna of the two cores (Fig. 3) resembles that of the nearby
core MD1017 (Fenton et al., 2000) and shows similarities to
KL23 (Fig. 3, Schmelzer (1998); Geiselhart (1998)).

The glacial MIS 6 is only represented by three samples
of KL9. The following seven samples in KL9 (and the
first nine samples of KL11) originate from an “aplanktonic
zone” (Fenton et al., 2000), where the total number of plank-
tic foraminifera was below 300 per sample (1.6 cm3 sedi-
ment). Up to the aplanktonic zone,G. ruber dominates the
foraminiferal fauna, whileG. glutinatareaches higher abun-
dances at the boundary of the aplanktonic zone. At termi-
nation II, the transition into MIS 5e, absolute foraminiferal
numbers increase faster in KL11 than in KL9 andG. sac-
culifer is the leading species during the reestablishment of
the foraminiferal fauna in the central to northern Red Sea
(Fig. 3). The period of reestablishment lasts until∼126–
127 ka BP, when absolute abundances reach values similar

Clim. Past, 7, 941–955, 2011 www.clim-past.net/7/941/2011/



G. Trommer et al.: Sensitivity of Red Sea circulation during the last interglacial 945

Table 1. Age model tie points of the observed Red Sea cores.

KL23 core KL9 core KL11 core
depth (cm) depth (cm) depth (cm) age (ka BP) Reference

660 392.25 613 109 5.4 Lisiecki and Raymo (2005)
730 451.25 663 123 5.5 Rohling et al. (2008b);

Lisiecki and Raymo (2005)
870 504.25 753 146 6.3 Imbrie et al. (1984)

to those after termination I (Trommer et al., 2010), indicating
that the surface salinity was within tolerance limits of all reg-
istered species. Highest planktic foraminiferal abundances
occur before the sea-level maximum in KL11 at∼125 ka BP
and∼2.5 ka later in KL9, and in each case the three main
species (G. glutinata, G. ruber, and G. sacculifer) occur in
more or less equal numbers. After the absolute abundance
maxima,G. glutinatadominates the foraminiferal fauna for
the next 12 ka in KL9, reaching a second absolute abun-
dance maximum at∼116.5 ka BP and remaining the dom-
inant species until the end of the record in KL11.G. ruber
shows similar trends asG. glutinata, whereasG. sacculifer
almost completely vanishes. At the end of the KL9 record,
G. glutinataabundances break down andG. ruberdominates
a depauperate assemblage with low total numbers, indicating
rising salinity due to sea-level lowering.

The general trend forG. ruberandG. sacculifercan also
be observed in the>250 µm fraction counts from KL23
(Fig. 3). G. sacculiferis dominating the foraminiferal fauna
after termination II, followed byG. ruber, which reaches
maximum abundances at∼116 ka BP.G. glutinatais present
in very low abundances in the northern Red Sea today (Sic-
cha et al., 2009), but due to the analysed large size fraction
in KL23 this small species is likely to be underrepresented
in the counts from this core. Between∼112 and 106 ka BP,
G. sacculifertakes over as most abundant species in KL23,
whereasG. ruberandG. glutinatacontinue to dominate the
assemblage in central Red Sea cores (Fig. 3).

3.3 Reconstruction of surface productivity using
foraminiferal transfer functions

To ensure the correct interpretation of the applied transfer
functions, the analysed fossil foraminiferal assemblages of
KL9 and KL11 were tested for analogy with modern as-
semblages by a common PCA with the calibration data set
used by Siccha et al. (2009). Analogue conditions are indi-
cated by overlapping PCA component values and were found
for samples between approximately∼129–121 ka BP and
∼112–108 ka BP in KL9 (Fig. 4a), and from 127–121 ka
in KL11 (not shown). Calculated Bray-Curtis-dissimilarities
values for all samples of the analogue periods in both cores
were smaller than 0.15, which is well below the commonly
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Fig. 3. Relative abundances of the dominant planktic foraminifera
species in KL23 (Geiselhart, 1998; Schmelzer, 1998), KL9 and
KL11 (data from this study); their absolute abundances in KL9 and
KL11 and sea-level reconstructions from oxygen isotopes (Rohling
et al., 2008b based on Siddall et al., 2004) for the investigated in-
terval. Grey bars indicate “aplanktonic zone” (Fenton et al., 2000).
Dashed vertical lines mark the MIS 5e/d (116 ka BP) and MIS 6/5e
boundary (132 ka BP, Shackleton et al., 2003).

used thresholds for the application of transfer functions (e.g.
Overpeck et al., 1985; Gersonde et al., 2005; Siccha 2009).
Non-analogue conditions in both cores were determined for
glacial conditions and highG. glutinata abundances. At
present, high abundances ofG. glutinataare observed in the
southern Red Sea (Auras-Schudnagies et al., 1989; Siccha
et al., 2009), but the difference between MIS 6/5d and the
calibration data set most likely derives from the continuous
presence ofG. tenellain the MIS 6/5d samples.G. tenellais
found in core top samples only in the northern Red Sea (Sic-
cha et al., 2009) and is almost absent in regions wereG. gluti-
nata is present, causing non-analogue conditions between
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MIS 6/5d to the calibration data set (Fig. 4b). It is not known
under which specific conditionsG. tenellathrives and it must
be concluded that absolute reconstructed chlorophyll-a val-
ues of the transfer functions are not reliable during the period
that has no modern analogue.

All applied transfer functions (MAT-, WA-PLS-, and
IKM-approaches) on the foraminiferal assemblages of the
observed period displayed the same trends in productivity,
which is why we show only the WA-PLS results (best per-
formance after Siccha et al. (2009), Fig. 5b). During termi-
nation II, whenG. sacculiferreaches maximum abundances
(Fig. 5c), reconstructed chlorophyll-a values are low, mostly
below the present day value at the core position in the cen-
tral Red Sea (Fig. 5b). With increasingG. glutinataabun-
dances, reconstructed chlorophyll-a values increase, reach-
ing modern productivity conditions in the central Red Sea be-
tween 127–125 ka BP. The increasing productivity trend con-
tinues, following the increase inG. glutinataand decrease
in G. sacculifer, until chlorophyll-a values return to modern
conditions in KL9 at∼110 ka BP. Absolute values between
121–112 ka BP are not reliable due to the lack of present day
faunal analogues, but the high abundance ofG. glutinatain-
dicates that productivity was higher than today and during
the Holocene (Trommer et al., 2010) in the central Red Sea,
as this species is often associated with elevated productivity
(Cullen and Prell, 1984; Naidu and Malmgren, 1996; Schulz
et al., 2002).

3.4 TEX86 and BIT index

The TEX86increases in both cores from glacial to interglacial
(Fig. 6b), while KL23 shows generally lower TEX86values
than KL9, which is consistent with recent temperature dif-
ferences in the northern compared to in the central Red Sea
(Conkright et al., 2001). TEX86 values from KL9 range from
0.68 to 0.86 and for KL23 from 0.63 to 0.79. From∼129
to 125 ka BP, a steep increase in the TEX86 of KL23 is ob-
served, which coincides with the decrease in foraminiferal
δ18O during the termination (Fig. 6).

In contrast to the TEX86 trends, the BIT indices of the core
records of KL23 and KL9 show strong fluctuations (Fig. 6c).
During the MIS 6/5 transition, the BIT values are relatively
low (0–0.2), and they rise in both cores to around 0.45–0.55
in the latter part of MIS 5e. In KL9 an earlier maximum
can be observed during the glacial, around∼145 ka BP. At
present, BIT values in subsurface sediments throughout the
Red Sea are lower than 0.1 (Trommer et al., 2009), and the
observed peak values during MIS 5e are comparable with
coastal marine sediments in, e.g. the Mediterranean Sea,
where significant amounts of soil organic matter is supplied
through fluvial transport (Kim et al., 2006, 2010). An en-
hanced input of soil organic matter (SOM) can potentially
influence the TEX86. But since there is no conspicuous total
organic carbon maximum recorded from this time in the cen-
tral Red Sea (Rohling et al., 1998) and there does not seem to
be a consistent change in TEX86 coinciding with the change
in BIT, it seems that the TEX86 is not biased to a large degree
by influx of SOM in the Red Sea.
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3

Fig. 5. (a) Sea-level reconstructions from KL9 and KL11 oxy-
gen isotopes (Rohling et al., 2008b) based on Siddall et al. (2004),
(b) KL9 and KL11 chlorophyll-a reconstructions by the WA-PLS
transfer functions approach, and(c) KL9 relative abundances of the
three most abundant species:G. glutinata, G. ruber, andG. sac-
culifer. Grey bars indicate approximate analogue to present-day
periods (112–108 ka BP only for KL 9). Dashed vertical lines mark
MIS-boundaries.

Therefore, we use the TEX86 in the northern Red Sea core
KL23 to estimate SST with the recently developed Red Sea
TEX86 calibration (Trommer et al., 2009). Calculated SSTs
indicate a SST increase from 21 to 25◦C (±0.5◦C, com-
bined analytical (Schouten et al., 2007) and calibration er-
ror (Trommer et al., 2009)) from the glacial to interglacial,
with a possible minor SST peak of 24.5◦C shortly before
the δ18O minimum/sea-level maximum (Fig. 6b). SST can
not be directly inferred from the Red Sea TEX86 calibration
in KL9, as this core lies in an area which is considered to
be influenced by an open ocean GDGT signal advected from
the open ocean during interglacials (Trommer et al., 2009).
In the discussion, we therefore explore whether the central
Red Sea TEX86 signal can be interpreted as a relatively pure
(endemic) SST signal during glacials, and as a mixture of
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(endemic) Red Sea and (advected) open-ocean signals dur-
ing the termination and interglacial.

4 Discussion

4.1 Climate conditions during termination II and
sea-level maximum

Planktic foraminifera reappeared in the central Red Sea at
about 130 ka BP, which is about 2 ka earlier than in the north-
ern Red Sea (128 ka BP in KL23) (Fig. 3). At this time, sea
level stood about 70 m lower than today (Fig. 3, 5a) and salin-
ity must have dropped below 47, the salinity tolerance limit
of G. sacculifer(Hemleben et al., 1989). The complete re-
covery of the foraminiferal fauna in terms of abundance oc-
curred at around 127–126 ka BP, at similar sea level to the
complete recovery during termination I (approximately 50–
55 m below the present-day level) (Trommer et al., 2010),
and is also characterised by a similar succession of species.
This finding indicates a regular response of the Red Sea
oceanography and planktic foraminifera community during
terminations with similar rates of sea-level rises.

The dominance ofG. sacculiferin KL9 after termination
II, lasting approximately∼5 ka, is similar to what was ob-
served during termination I (overlapping samples in Fig. 7)
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Fig. 7. Comparison of foraminiferal assemblages of MIS 6-5d and
Holocene in core KL9 (most abundant species according to Siccha
et al. (2009)). Plotted is PCA component 1 vs. PCA component 2.
Overlapping areas display similar assemblages.

(Geiselhart, 1998; Schmelzer, 1998; Fenton et al., 2000;
Trommer et al., 2010). For termination I, this has been inter-
preted as the result of oligotrophic conditions in the central
Red Sea caused by strengthened summer circulation mode
(Trommer et al., 2010), which was corroborated by mod-
elling results (Biton et al., 2010). During termination II,
G. sacculiferabundance changes appear to follow the sum-
mer insolation trend, in a similar manner as during the early
Holocene (Fig. 8). The temporal coincidence of the changes
in foraminiferal abundances during both insolation maxima
points towards the same cause and effect mechanism acting
during MIS 5e and the early Holocene period, with a domi-
nating effect of the enhanced Indian SW Monsoon. Although
KL11 lies in the central Red Sea, the foraminiferal faunas are
rich in G. glutinata, as found today only in the southern Red
Sea. We propose that this results from a strong summer cir-
culation during a regime of enhanced Indian SW Monsoons
(shaded area in Fig. 8). This would cause the KL11 site be-
ing affected by intruding nutrient-rich (intermediate-depth)
waters from the south, causing chlorophyll-a values that are
more than twice as high as today (Fig. 5b). At the same
time, KL9 site remained beyond the influence of the intrud-
ing waters, and thus its reconstructed chlorophyll-a values
remained comparable to present-day values (Fig. 5b). Such
an intensified inflow of subsurface water into the Red Sea
during MIS 5e could also explain the discrepancy between
the oxygen isotope records of KL9 and KL11 and the result-
ing sea-level reconstruction (Fig. 5a). Whereas the annual
mean sea surface temperature at the site of KL11 today is
0.5◦C higher than at the site of KL9 (Conkright et al., 2001),
a northward shift of the warm surface waters to KL9 and pen-
etration of cooler waters from the south to KL11 would re-
sult in a lighter oxygen isotope ratio in planktic foraminiferal
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ate waters during pronounced summer circulation.

tests in KL9, relative to KL11. A temperature difference of
+1◦C (annual mean) at KL9, relative to KL11, would explain
the∼0.2 ‰ difference in the oxygen isotope ratios between
the cores (Fig. 2) and the sea-level reconstruction incongruity
as indicated by Rohling et al. (2009).

TEX86 values for the northern Red Sea (KL23) during ter-
mination II reveal an SST increase of∼3◦C from 129 to
125 ka (Figs. 6, 9). Since there is no contemporaneous shift
of TEX86 with the co-registered BIT index, this increase can-
not be attributed to an input of SOM. At present day, the
northern Red Sea shows a pure endemic GDGT signal, but a
strong northward advection of the open ocean GDGT signal
during termination II might have reached the core location in
the northern Red Sea and increased its TEX86. In this case,
the central Red Sea core KL9 should show an even greater
TEX86 increase during the termination, since it should be
even more affected, but which is not observed. Furthermore,
as discussed in the previous paragraph, the central Red Sea
KL9 seems to be located beyond the northward penetration of
the intruding subsurface waters. Hypothetically, an increase
of about 3◦C in the northern Red Sea record could also be ex-
plained by a shift of the growth season of the Crenarchaeota
towards summer or by non-thermal factors such as salin-
ity and nutrients. However, the membrane lipid distribution
in the present day northern Red Sea correlates neither with
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Fig. 9. TEX86-based SST interpretations. KL23 SST record (dot-
ted line, horizontal dotted = modern SST at the core site) and KL9
SST signal interpreted as reflecting different mixing ratios of Red
Sea versus open ocean Crenarchaeota population: 100 % endemic
Red Sea population (solid line) and after 130 ka BP 69 % endemic
and 31 % open ocean population (solid bold line, vertical solid
line = modern SST at the core site).

seasonal or deep water temperatures nor with salinity, nu-
trient concentrations, or diagenetic effects (Trommer et al.,
2009). Additionally, our findings are consistent with esti-
mates of SST increases during termination II of 2–3◦C in
the Arabian Sea using different proxies (Emeis et al., 1995;
Rostek et al., 1997; Saher et al., 2009) and are similar to the
magnitude of SST changes in tropical oceans across termi-
nation II (McCulloch and Esat, 2000; Kukla et al., 2002).
The SST increase during the termination I in the northern
Red Sea was reported as about 1◦C (TEX86 reconstruction,
Trommer et al., 2010) or 2◦C (UK

37 reconstruction, Arz et al.,
2007). Therefore, it seems reasonable that SST has increased
by ∼3◦C in the northern Red Sea during termination II.

The TEX86 trend during termination II in central Red Sea
core KL9 must be considered as a mixed signal between an
endemic Red Sea GDGT signal and an advected open ocean
signal. At present, the calibration of Trommer et al. (2009)
suggests a contribution of about 72 % of the endemic Red
Sea Crenarchaeota population and 28 % from the open-ocean
population, at the site of KL9. The degree of admixture of
the open ocean Crenarchaeota signal could be influenced by
sea-level change, because this severely affects the water ex-
change between the Red Sea and the open ocean. At low sea
level, such as during the time before the recovery of planktic
foraminiferal faunas in termination II, exchange between the
Red Sea and Gulf of Aden was severely restricted (Rohling
and Zachariasse, 1996; Rohling et al., 1998; Siddall et al.,
2003, 2004; Biton et al., 2008), such that enhanced water
residence times caused salinities in the Red Sea in excess
of 47. With such limited exchange, advection of significant
amounts of open-ocean GDGTs into the Red Sea is unlikely.
Assuming no exchange over the entire observed period, this
would theoretically imply an SST increase of 4–4.5◦C in to-
tal from MIS 6 to MIS 5e, with only∼1◦C change during the

actual termination (Fig. 9, 100/0). But as sea level rose, im-
proved exchange caused salinity to drop below the 47 thresh-
old, increasing the potential for advection (and maybe sur-
vival) of the open-ocean GDGT signal into the Red Sea. Ac-
cordingly, we assume that before 130 ka BP the central Red
Sea TEX86 signal derived exclusively from northern Red Sea
Crenarchaeota (and hence TEX86 values reflect SST follow-
ing the Trommer et al. (2009) calibration) (Fig. 9). Given
that sea level rose towards higher levels than today during
MIS 5e (Plaziat et al., 1995; McCulloch and Esat, 2000;
Orszag-Sperber et al., 2001; Siddall et al., 2006; Rohling et
al., 2008b; Kopp et al., 2009; Muhs et al., 2011), it is highly
likely that after 130 ka BP mixing between the two popula-
tions would have had taken place, so that the TEX86 values
cannot be straightforwardly interpreted in terms of SST. In-
stead, they would represent a mixing product between the
endemic Red Sea and open ocean populations.

Following Biton et al. (2010), we calculate the contribu-
tions of the different GDGT signals by assuming that the
SST trend at KL9 was similar to that at KL23, with an ap-
proximate offset of 3◦C, as found today. These calculations
suggest that the Crenarchaeota population at the site of KL9
would consist of 69 % northern Red Sea population and 31 %
of the open ocean population during MIS 5e (Fig. 9), which
is, within the uncertainties, similar to the observed modern
mixing relationship at that site (Biton et al., 2010). How-
ever, a mixing rate higher than 70 % endemic and 30 % open
ocean contribution to TEX86 results in unrealisticly high re-
constructed SSTs for this site after 117ka BP. The environ-
mental conditions for the period after 117 ka BP, that is a
minimum in summer insolation (Fig. 8) and already lowered
sea level (Figs. 5a, 6), oppose a mixing ratio with higher than
30 % open ocean component by intrusion of Gulf of Aden in-
termediate water. Foraminifera data of our study indicate that
this might have occurred at KL11 (and only before∼120 ka
BP, Fig. 8) but not at KL9. Therefore, the GDGT mixing
rates at KL9 must be considered as lying in between the re-
lationships of 100/0 and 70/30 (Red Sea/open ocean popula-
tion) in the investigated interglacial period, which is similar
to Holocene results (Biton et al., 2010).

Unlike at termination I, there is no sapropel-like (anoxic
sediment) layer at or after termination II in the investigated
cores. Since rates of sea-level rise were roughly similar dur-
ing termination II and termination I (Siddall et al., 2003,
2006; Rohling et al., 2008b), other processes need to be
inferred to explain the lack of a termination II sapropel.
Arid climate conditions and water mass cooling through high
evaporation rates promote deep water formation today in the
Gulf of Suez and Aqaba (Eshel et al., 1994; Eshel and Naik,
1997; Manasrah et al., 2004). Therefore, increased or at
least continuous exchange between the Gulf of Aqaba and
the northern Red Sea may have led to a continuous venti-
lation of the deep water and surface sediments. In addition
to very arid climate conditions during termination II (Bar-
Matthews et al., 2003; Fleitmann et al., 2003), we propose
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that the mid-termination drop in sea level (Esat, 1999; Sid-
dall et al., 2006; Thomas et al., 2009) may have caused inter-
mittently sufficient higher salinity in the Red Sea, improving
ventilation and preventing the build-up of anoxic conditions
during termination II.

After termination II, we observe an increase in the BIT in-
dex in both cores that culminates between 122 and 120 ka BP,
1.5–3 ka after the sea-level highstand. Holocene sediments
in the central Red Sea as well as recent subsurface sediments
throughout the Red Sea show BIT indices on average lower
than 0.1 (Trommer et al., 2009, 2010). The elevated BIT
index observed contemporaneously in two cores suggests a
relative increase in the input of SOM (Hopmans et al., 2004;
Weijers et al., 2006; Kim et al., 2006; Walsh et al., 2008) into
the Red Sea, for which several explanations must be consid-
ered. A first potential mechanism for delivering soil material
into the Red Sea would be through flooding of the basin’s
wide shelf areas during sea-level rise, but this does not agree
with the timing of the BIT increase several millennia after the
actual sea-level rise (Fig. 6). A second potential explanation
might be that the higher BIT values resulted from decreased
levels of crenarchaeol and thus Crenarchaeota productivity
(cf. Castãneda et al., 2010). But given that chlorophyll-a re-
constructions suggest higher productivity during this period,
and that the TEX86 index (which considers the Crenarchaeol
isomer) shows no consistent change, the increase of BIT as
an indication of a decrease in Crenarchaeota productivity is
not supportable.

The most likely explanations for the increase in the BIT
index must therefore include enhanced river-discharge of
SOM. There is a plausible river system that drains the Baraka
(Tokar) catchment in Sudan (Fig. 1), which today is active
40–70 days per year (mainly during autumn), discharging
between 200 and 970× 106 m3 water at 18.5◦ N into the Red
Sea (Whiteman, 1971). As a possible third mechanism, it
could be expected that this increased discharge of SOM into
the Red Sea occured with the onset of increased precipitation
around the Red Sea region (Bar-Matthews et al., 2003; Fleit-
mann et al., 2003). Yet due to the arid conditions during MIS
6, as indicated by aeolian dust peaks (Rohling et al., 2008a),
no soils would have been available by this time to be washed
out. However, also the timing of the BIT increase does not
coincide with the precipitation onset in MIS 5e during termi-
nation II .

The fourth and most likely argumentation for the observed
increase in the BIT index involves the development of vege-
tation cover in the Red Sea region. Records from the Red Sea
Mountains in Egypt show vegetation depositions from a wet
period of local significance (Moeyersons et al., 2002), and
speleothem records around the Red Sea show increasing rain-
falls/humidity with the beginning of MIS 5e in Oman (Fleit-
mann et al., 2003) and from 124–119 ka BP in Israel (Bar-
Matthews et al., 2003). This period of enhanced zonal pre-
cipitation (Herold and Lohmann, 2009) was coincident with
a period of strong insolation-forced African Monsoons that

caused intense sapropel formation in the eastern Mediter-
ranean (Rossignol-Strick, 1983; Rohling et al., 2002; van der
Meer et al., 2007; Osborne et al., 2008). Our BIT data there-
fore indicate that during this humid period the vegetation
cover could develop and substantial amounts of soil formed
in the Red Sea region. Consequently, as aridity increased and
vegetation weakened after∼122–120 ka BP, seasonally still
significant rainfalls were able to wash out SOM into the Red
Sea and caused these elevated BIT values. Although SOM
import from such a system could be locally measurable, it
has to be emphasised that the system’s modern freshwater
flux is equivalent to at most 2 mm of sea level when dis-
tributed over the entire Red Sea. Even with a hypothetical
100-fold increase in its flux during MIS 5e, the total fresh-
water flux would remain a negligible term in the overall Red
Sea freshwater budget, and hence in the Red Sea sea-level
method.

4.2 Oceanography of MIS 5 after the sea-level
maximum

After the sea-level maximum and with rising BIT,G. gluti-
nata starts to dominate the assemblage at the KL9 core po-
sition for over 10 ka. This differs from the faunal assem-
blage changes at this site during the Holocene and the present
(Figs. 4, 7) and likely reflects a different oceanographic sit-
uation. The observed dominance ofG. glutinatain the cen-
tral Red Sea (see also Fenton, 1998) is unique, since highest
G. glutinataabundances in the Red Sea are today observed
only in the very south (Auras-Schudnagies et al., 1989; Sic-
cha et al., 2009).G. glutinata occurs in general in produc-
tive regions (Cullen and Prell, 1984; Naidu and Malmgren,
1996; Schulz et al., 2002; Storz et al., 2009), suggesting that
the cause of this increase is indeed linked to productivity, as
indicated by our transfer function results, although absolute
values have to be taken with care due to non-analogue con-
ditions (Fig. 5). Concomitant with theG. glutinata trend
in the central Red Sea, aG. ruber maximum occurs in the
record of KL23 (Fig. 3), which points to a significant change
in the circulation system affecting the Red Sea far north.

The timing of theG. glutinataincrease in KL11 could be
viewed as an expression of increased nutrient advection from
the Gulf of Aden into the Red Sea due to high sea level and
strong SW Monsoon circulation. But this scenario does not
explain the further rise ofG. glutinataabundances, as also
seen in KL9, following the winter insolation increase (Fig. 8)
when sea level was falling (Rohling et al., 2008b) and the SW
Monsoon was weakening (Fleitmann et al., 2003). After∼

120 ka BP, productivity reconstructions for KL9 and KL11
reach similar levels (Fig. 5b) and oxygen isotope ratios are
also similar (Fig. 5a), which suggests that the foraminifera
lived in same water masses at the core positions. Modern
observations show that winter is the more productive season
in the central to northern Red Sea (Veldhuis et al., 1997).
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Consequently, the observed productivity increase may sug-
gest more pronounced winter conditions, which followed the
period of enhanced Indian SW Monsoon circulation.

Strong SW Monsoons were obviously limited to peak in-
terglacial MIS 5e (Burns et al., 1998, 2001; Fleitmann et al.,
2003) before sea-level regression heralded more glacial con-
ditions (Anklin et al., 1993) and the NE Monsoon became
enhanced (Rostek et al., 1997). At the same time as ourG.
glutinata peak, Reichart et al. (1997) report dry glacial-like
conditions from Murray Ridge in the Arabian Sea, and there
is evidence for increased NE winter monsoonal winds over
the Arabian Sea (Montoya et al., 2000), which are held re-
sponsible for a productivity maximum (Rostek et al., 1997;
Ivanova et al., 2003). Benthic foraminiferal faunas from the
Red Sea (Badawi et al., 2005) and the Gulf of Aden (Almogi-
Labin et al., 2000) also suggest a short productivity peak un-
der enhanced NE Monsoon conditions. The sensitivity of
Red Sea circulation to atmospheric forcing is perhaps best
demonstrated by the fact that the relative abundance changes
of G. glutinatanot only follow the changes in winter insola-
tion, but even reflect the higher amplitude of the insolation
changes during MIS 5 relative to those during the Holocene
(Fig. 8).

5 Conclusions

The investigation of termination II and interglacial stages
MIS 5e-d in the Red Sea with newly developed multi-proxy
data reveals similarities to termination I and the Holocene.
During both terminations, the planktic foraminiferal faunas
recovered from glacial aplanktonic conditions at similar rates
and with a similar sensitivity to sea level, following the
same species succession (withG. sacculiferas the leading
species). We find that higher sea level during MIS 5e alone
had no superior effect on the Red Sea circulation, which was
instead controlled by the insolation-driven intense Indian SW
Monsoon. Changes in the abundance ofG. sacculiferclosely
followed the summer insolation pattern. The abundance of
this species reflects oligotrophic summer conditions during
a strong prevailing SW monsoon, which is reflected in low
chlorophyll-a reconstructions for the central Red Sea. A sub-
sequent productivity maximum is reconstructed between 122
and 112 ka BP, based on high abundances of especiallyG.
glutinata. This is interpreted in terms of more pronounced
winter circulation at a time when the climate conditions be-
came characterized by an intensification of the NE monsoon.

Our GDGT results suggest that the application of the
TEX86 on glacial-interglacial timescales in the Red Sea gives
reasonable SST estimates in the northern Red Sea with the
newly developed Red Sea calibration. SST in the northern
Red Sea is found to have increased from 21◦C during the
glacial to 25◦C during MIS 5d. Our interpretation of the
TEX86 record for the central Red Sea (only KL9) suggests
that the mixing ratio between endemic and open-ocean Cre-

narchaeota was about 70:30 during the Last Interglacial (MIS
5e), which is similar to that reconstructed for the present.
Around∼120 ka BP, we find relatively enhanced amounts of
soil-derived organic matter input, which likely reflect the im-
pact of soil out-wash due to seasonal runoff events in a period
of generally increasing aridity and reducing vegetation.
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