Articles | Volume 6, issue 6
https://doi.org/10.5194/cp-6-771-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-6-771-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
R. E. M. Rickaby
Department of Earth Sciences, Oxford University, Parks Road, Oxford, OX1 3PR, UK
Invited contribution by R. E. M. Rickaby, recipient of the EGU Arne Richter Award for Outstanding Young Scientists 2008.
J. Henderiks
Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
now at: Department of Earth Sciences, Paleobiology Program, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
J. N. Young
Department of Earth Sciences, Oxford University, Parks Road, Oxford, OX1 3PR, UK
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change
Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)
Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum
Astronomical calibration of the geological timescale: closing the middle Eocene gap
Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean
A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum
Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Mitchell Lyle, Anna Joy Drury, Jun Tian, Roy Wilkens, and Thomas Westerhold
Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, https://doi.org/10.5194/cp-15-1715-2019, 2019
Short summary
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
Claudia Agnini, David J. A. Spofforth, Gerald R. Dickens, Domenico Rio, Heiko Pälike, Jan Backman, Giovanni Muttoni, and Edoardo Dallanave
Clim. Past, 12, 883–909, https://doi.org/10.5194/cp-12-883-2016, https://doi.org/10.5194/cp-12-883-2016, 2016
Short summary
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
G. R. Dickens
Clim. Past, 7, 831–846, https://doi.org/10.5194/cp-7-831-2011, https://doi.org/10.5194/cp-7-831-2011, 2011
A. Sluijs, P. K. Bijl, S. Schouten, U. Röhl, G.-J. Reichart, and H. Brinkhuis
Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, https://doi.org/10.5194/cp-7-47-2011, 2011
Cited articles
Anderson, O. K.: Coccolithdannelse og kalsifiseringsgrad I en N-cellekultur av Emiliania huxleyi ved fosfatbegrenset vekst I kolbekultur og kjemostat, Thesis, Univ Oslo, Oslo, 1981.
Anning, T., Nimer, N. A., Merrett, M. J., and Brownlee, C.: Costs and benefits of calcification in coccolithophorids, J. Mar. Syst., 9, 45–56, 1996.
Arako, Y. and Gonzalez, E. L.: V- and P-type Ca2+-stimulated ATPase in a calcifying strain of Pleurochrysis sp., (Haptophyceae, in: Biomineralization of Nana and Micro-Structures, edited by: Baeuerlein, E., J. Phycol., 34, 79–88, 1998.
Badger, M. R. and Price, G. D.: The role of carbonic anhydrase in photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Bio., 45, 369–392, 1994.
Badger, M. R., Andrews, T. J., and Whitney, S. M.: The diversity and coevolution of Rubisco, plastics, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae, Can. J. Bot., 76, 1052–1071, 1998.
Badger, M. R., Hanson, D., and Price, G. D.: Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria, Funct. Plant Biol., 29, 161-173, 2002.
Balch, W. M., Fritz, J., and Fernandez, E.: Decoupling of calcification and photosynthesis in the coccolithophore Emiliania huxleyi under steady-state light-limited growth, Mar. Ecol.-Prog. Ser., 142, 87–97, 1996.
Beaufort, L., de Garidel-Thoron, T., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Probert, I., Rickaby, R. E. M., and de Vargas, C.: High sensitivity of calcareous nannoplankton to carbonate chemistry and their potential adaptation to ocean acidification, Nature, in revision, 2010.
Bradshaw, A. L. and Brewer, P. G.: High precision measurements of alkalinity and total carbon dioxide in seawater by potentiometric titration – 1. Presence of unknown protolyte(s), Mar. Chem., 23, 69–86, 1988.
Brassell, S. C. and Dumitrescu, M.: ODP Leg 198 Shipboard Sci Party, Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific, Org. Geochem., 35, 181–188, 2004.
Brownlee, C. and Taylor, A. J.: Calcification in coccolithophores: A cellular perspective, in: Coccolithophores – from molecular process to global impact, edited by: Thierstein, H. R. and Young, J. R., Springer, 31–51, 2004.
Buitenhuis, E., de Baar, H. J. W., and Vedhuis, M. J. W.: Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon, J. Phycol, 35, 949–959, 1999.
Burkhardt, S., Riebesell, U., and Zondervan, I.: Effects of growth rate, CO2 concentration and cell size on the stable carbon isotope fractionation in marine phytoplankton, Geochim. Cosmochim. Acta, 63, 3729–3741, 1999.
Casareto, B. E., Niraula, M. P., Fujimara, H., and Suzuki, Y.: Effects of carbon dioxide on the coccolithophorid Pleurochrysis carterae in incubation experiments, Aquat. Biol., 7, 59070, 2009.
Colman, B., Huertas, I. E., Bhatti, S., and Dason, J. S.: The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae, Funct. Plant Biol., 29, 261–271, 2002.
Conte, M. H., Thompson, A., Eglinton, G., and Green, J. C.: Lipid biomarker diversity in the coccolithophorid Emiliania Huxleyi (Prymnesiophyceae) and the related species Gephyrocapsa oceanica, J. Phycol., 31, 272–282, 1995.
Dickson, A. J. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, Corrigenda, Deep-Sea Res., 36, 983, 1987.
Dixon, G. K., Brownlee, C. J., and Merrett, M. J.: Measurement of interal pH in the coccolithophore Emiliania huxleyi using 2',7'-Bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein acetoxymethylester and digital imaging, Planta, 178, 443–449, 1989.
Dudley, W. C., Blackwelder, P. L., Brand, L. E., and Duplessy, J. C.: Stable isotope composition of coccoliths, Mar. Micropalaeontol., 10, 1–8, 1986.
Elzenga, J. T. M., Prins, H. B. A., and Stefels, J.: The role of external carbonic anhydrase in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): a comparison with other marine algae using the isotopic disequilibrium technique, Limnol. Oceanogr., 45, 372–380, 2000.
Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J. P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M. D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A., and Riebesell, U.: Testing the direct effect of CO2 concentration on a bloom of coccolihorid Emiliania huxleyi in mesocsom experiments, Limnol. Oceanogr., 50, 493–507, 2005.
Falkowski, P., Schofield, O., Katz, M. E., Van de Schootbrugge, B., and Knoll, A. H.: Why is the land green and the ocean red, in: Coccolithophores – from molecular process to global impact, edited by: Thierstein, H. R. and Young, J. R., Springer, 429–455, 2004.
Farrimond, P., Eglinton, G., and Brassell, S. C.: Alkenones in Cretaceous Black Shales, Blake-Bahama Basin, Western North Atlantic, Org. Geochem., 10, 897–903, 1986.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cy., 6, 185–198, 1992.
Giordano, M., Beardall, J., and Raven, J. A.: CO2-concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol., 56, 99–131, 2005.
Gran, G.: Determination of the equivalence point in potentiometric titrations in seawater with hydrochloric acid, Oceanol. Acta, 5, 209–218, 1952.
Grelaud, M., Schimmelmann, A., and Beaufort, L.: Coccolithophore response to climate and surface hydrography in Santa Barbara Basin, California, AD 1917-2004, Biogeosciences, 6, 2025–2039, https://doi.org/10.5194/bg-6-2025-2009, 2009.
Halloran, P. R., Hall, I. R., Colmenero-Hidalgo, E., and Rickaby, R. E. M.: Evidence for a multi-species coccolith volume change over the past two centuries: understanding a potential ocean acidification response, Biogeosciences, 5, 1651–1655, https://doi.org/10.5194/bg-5-1651-2008, 2008.
Henderiks, J. and Pagani, M.: Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone based pCO2 records, Paleoceanography, 22, PA3202, https://doi.org/3210.1029/2006PA001399, 2007.
Henderiks, J. and Rickaby, R. E. M.: A coccolithophore concept for constraining the Cenozoic carbon cycle, Biogeosciences, 4, 323–329, https://doi.org/10.5194/bg-4-323-2007, 2007.
Henriksen, K. and Stipp, S. L. S.: Controlling Biomienralization: The effect of solution composition on coccolith polysaccharide functionality, Cryst. Growth Des., 9, 2088–2097, 2009.
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., von Passow, P., Rehm, E., Armbrust, E. V., and Boessenkool, K.: Phytoplankton calcification in a high CO2 world, Science, 320, 336–340, 2008.
Jasper, J. P., Hayes, J. M., Mix, A. C., and Prahl, F. G.: Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years, Paleoceanography, 9, 781–798, 1994.
Keller, K. and Morel, F. M. M.: A model of carbon isotopic fractionation and active carbon uptake in phytoplankton, Mar. Ecol.-Prog. Ser., 182, 295–298, 1999.
Keller, M. D., Selvin, R. C., Claus, W., and Guillard, R. R. L.: Media for the culture of oceanic ultraphytoplankton, J. Phycol., 23, 633–638, 1987.
Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., and Robbins, L. L.: Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research, sponsored by NSF, NOAA, and the U.S. Geological Survey, 2006.
Langer, G., Geisen, M., Baumann, K. H., Klas, J., Riebesell, U., Thoms, S., and Young, J. R.: Species-specific responses of calcifying algae to changing seawater carbonate chemistry, G. Cubed, 7, Q09006, https://doi.org/10.1029/2005GC001227, 2006.
Langer, G., Nehrke, G., Probert, I., Ly, J., and Ziveri, P.: Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry, Biogeosciences, 6, 2637–2646, https://doi.org/10.5194/bg-6-2637-2009, 2009.
Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., and Macko, S. A.: Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results, Geochim. Cosmochim. Acta, 59, 1131–1138, 1995.
Laws, E. A., Bidigare, R. R., and Popp, B. N.: Effect of growth rate and CO2 concentration on carbon fractionation by the marine diatom Phaeodactylum tricornutum, Limnol. Oceanogr., 42, 1552–1560, 1997.
Laws, E. A., Popp, B. N., Cassar, N., and Tanimotot, J.: 13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms and implications for palaeoreconstructions, Funct. Plant Biol., 29, 323–333, 2002.
Leonardos, N., Read, B., Thake, B., and Young, J. R.: No mechanistic dependence of photosynthesis on calcification in the coccolithophorid Emiliania Huxleyi (Haptophyta), J. Phycol., 45, 1046–1051, 2009.
Lowenstein, T. K. and Demicco, R. V.: Elevated Eocene atmospheric CO2 and its subsequent decline, Science, 313, 1928, 2006.
Mackensen, A., Hubberten, H. W., Scheele, N., and Schlitzer, R.: Decoupling of δ13CΣCO2 and phosphate in recent Weddell Sea deep and bottom water: implications for glacial Southern Ocean paleoceanography, Paleoceanography, 11, 203–215, 1996.
Marlowe, I. T., Brassell, S. C., Eglinton, G., and Green, J. C.: Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments, Chem. Geol., 88, 349–375, 1990.
Matsuda, Y., Satoh, K., Harada, H., Satoh, D., Hiraoka, Y., and Hara, T.: Regulation of the expression of HCO3- uptake and intracellular carbonic anhydrase in response to CO2 concentration in the marine diatom Phaeodactylum sp., Funct. Plant Biol., 29, 279–287, 2002.
Medlin, L. K., Saez, A. G., and Young, J. R.: A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary, Mar. Micropalaeontol., 67, 69–86, 2008.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement of the apparent dissociation constant of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Minoletti, F., Hermoso, M., and Gressier, V.: Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry, Nature Protoc., 4, 14–24, 2009.
Mook, W. G., Bommerson, J. C., and Staverman, W. H.: Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sc. Lett., 22, 169–176, 1974.
Morel, F. M. M., Cox, E. H., Krapiel, A. M. L., Lane, T. W., Milligan, A. J., Schaperdoth, I., Reinfelder, J. R. R., and Tortell, P.: Acquisition of inorganic carbon by the marine diatom Thallasiosira weisflogii, Funct. Plant Biol., 29, 301–308, 2002.
Nimer, N. A. and Merrett, M. J.: Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann), New Phytol., 121, 173–177, 1992.
Nimer, N. A., Guan, Q., and Merrett, M. J.: Extra- and intra-cellular carbonic anhydrase in relation to culture age in a high calcifying strain of Emiliania huxleyi, New Phytol., 126, 601–607, 1994.
Nimer, N. A., Iglesias-Rodriguez, M. D., and Merrett, M. J.: Bicarbonate utilization by marine phytoplankton species, J. Phycol., 33, 625–631, 1997.
Nimer, N. A., Ling, M. X., Brownlee, C., and Merrett, M. J.: Inorganic carbon limitation, exofacial carbonic anhydrase activitity and plasma membrane redox activity in marine phytoplankton species, J. Phycol., 35, 1200–1205, 1999.
Paasche, E.: A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi, Physiol. Plantarum, 3, 5–82, 1964.
Paasche, E.: A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification – photosynthesis interactions, Phycologia, 40, 503–529, 2001.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene, Science, 309, 600–603, 2005.
Paneth, P. and O'Leary, M. H.: Carbon isotope effect on dehydration of bicarbonate ion catalyzed by carbonic anhydrase, Biochemistry, 24, 5143–5147, 1985.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695–699, 2000.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the Eocene-Oligocene climate transition, Nature, 461, 1110–1113, 2009.
Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K. L., and Wakeham, S. G.: Effect of phytoplankton cell geometry on carbon isotopic fractionation, Geochim. Cosmochim. Acta, 62, 69–77, 1998.
Quiroga, O. and Gonzalez, E.: Carbonic anhydrase in the chloroplast of a coccolithophorid (Prymnesiophyceae), J. Phycol., 29, 321–324, 1993.
Raven, J. A.: Putting the C in phycology, Eur. J. Phycol., 32, 319–333, 1997.
Raven, J. A. and Johnston, A. M.: Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources, Limnol. Oceanogr., 36, 1701–1714, 1991.
Rau, G. H., Riebesell, U., and Wolf-Gladrow, D.: A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake, Mar. Ecol.-Prog. Ser., 133, 275–285, 1996.
Ridgwell, A. and Zeebe, R. E.: The role of the global carbonate cycle in the regulation and evolution of the Earth system, Earth Planet. Sc. Lett., 234, 299–315, 2005.
Riebesell, U., Burkhardt, S., Dauelsberg, A., and Kroon, B.: Carbon isotope fractionation by a marine diatom: dependence on the growth rate limiting resource, Mar. Ecol.-Prog. Ser., 193, 295–303, 1999.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M. M.: Reduced calcification in marine plankton in response to increased atmospheric CO2, Nature, 407, 364–367, 2000.
Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhofer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J., and Zollner, E.: Enhanced biological carbon consumption in a high CO2 world, Nature, 450, 545–548, 2007.
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump: Responses to environmental changes, in: Coccolithophores – from molecular process to global impact, edited by: Thierstein, H. R. and Young, J. R., Springer, 99–125, 2004.
Rost, B., Zondervan, I., and Riebesell, U.: Light dependant carbon isotope fractionation in the coccolithophorid Emiliania huxleyi, Limnol. Oceanogr., 47, 120–128, 2002.
Rost, B., Riebesell, U., Burkhardt, S., and Sultemeyer, D.: Carbon acquisition of bloom-forming marine phytoplankton, Limnol. Oceanogr., 48, 55–67, 2003.
Sekino, K. and Shiraiwa. Y.: Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi, Plant Cell Physiol., 35, 353–361, 1994.
Sharkey, T. D. and Berry, J. A.: Carbon isotope fractionation of algae influenced by an inducible CO2 concentrating mechanism, in: Inorganic carbon uptake byaquatic photosynthetic organisms, edited by: Lucas, W. J., and Berry, J. A., American Society of Plant Physiologists, Rockville, MD, 389–401, 1985.
Sikes, C. S., Roer, R. D., and Wilbur, K. M.: Photosynthesis and coccolith formation: inorganic carbon sources and net reaction of deposition, Limnol. Oceanogr., 25, 248–262, 1980.
Sikes, C. S. and Wilbur, K. M.: Function of coccolith formation, Limnol. Oceangr., 27, 18–26, 1982.
Soto, A. R., Zheng, H., Shoemaker, D., Rodriguez, J., Read, B. A., and Wahlund, T. M.: Identification and Preliminary characterisation of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi, Appl. Environ. Microbiol., 72, 5500–5511, 2006.
Stoll, M. H. C., Bakker, K., Nobbe, G. H., and Haese, R. R.: Continuous-Flow Analysis of Dissolved Inorganic Carbon Content in Seawater, Anal. Chem., 73, 4111–4116, 2001.
Taylor, A. H., Russell, M. A., Harper, G. M., Collins, T. F. T., and Brownlee, C.: Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicus ssp. braarudii, Eur. J. Phycol., 42, 125–136, 2007.
Thierstein, H. R., Geitzenauer, K. R., Molfino, B., and Shackleton, N. J.: Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes, Geology, 5, 400–404, 1977.
Tortell, P. D.: Evolutionary and Ecological Perspectives on carbon acquisition in phytoplankton, Limnol. Oceanogr., 45, 744–750, 2000.
Tortell, P. D., Reinfelder, J. R., and Morel, F. M. M.: Active uptake of bicarbonate by diatoms, Nature, 390, 243–244, 1997.
Trimborn, S., Langer G., and Rost, B.: Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi, Limnol. Oceanogr., 52, 2285–2293, 2007.
Trimborn, S., Lundholm, N., Thoms, S., Richter, K.-U., Krock, B., Hansen, P. J., and Rost, B.: Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry, Physiol. Plantarum, 133, 92–105, 2008.
Tyrrell, T. and Zeebe, R. E.: History of carbonate ion concentration over the last 100 million years, Geochim. Cosmochim. Acta, 68(17), 3521–3530, 2004.
Young, J. R., Didymus, J. M., Bown, P. R., Prins, B., and Mann, S.: Crystal Assembly and phylogenetic evolution in heterococcoliths, Nature, 356, 516–518, 1992.
Young, J. R.: Function of coccoliths, in: Coccolithophores, edited by: Winter, A., and Siesser, W. G., Cambridge Univ. Press, 63–82, 1994.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater: Equilibrium, kinetics, isotopes, Elsevier Science, 2001.
Ziveri, P., Stoll, H., Probert, I., Klaas, C., Geisen, M., Ganssen, G., and Young, J.: Stable Isotope "vital" effects in coccolith calcite, Earth Planet. Sc. Lett., 210, 137–149, 2003.
Zondervan, I., Rost, B., and Riebesell, U.: Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and day lengths, J. Exp. Mar. Biol. Ecol., 272, 55–70, 2002.