Articles | Volume 5, issue 3
https://doi.org/10.5194/cp-5-551-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-5-551-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model
M. Kageyama
LSCE/IPSL, UMR CEA-CNRS-UVSQ 1572, CE Saclay, L'Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette Cedex, France
J. Mignot
LOCEAN, Universite Pierre et Marie Curie, Case courrier 100, 4 place Jussieu, 75252 Paris Cedex 05, France
D. Swingedouw
CERFACS, 42 Avenue Gaspard Coriolis 31057 Toulouse, France
C. Marzin
LSCE/IPSL, UMR CEA-CNRS-UVSQ 1572, CE Saclay, L'Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette Cedex, France
R. Alkama
LSCE/IPSL, UMR CEA-CNRS-UVSQ 1572, CE Saclay, L'Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette Cedex, France
CNRM, 42 av Coriolis, 31057 Toulouse cedex 1, France
O. Marti
LSCE/IPSL, UMR CEA-CNRS-UVSQ 1572, CE Saclay, L'Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette Cedex, France
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Millenial/D-O
High-resolution LGM climate of Europe and the Alpine region using the regional climate model WRF
Causes of the weak emergent constraint on climate sensitivity at the Last Glacial Maximum
Does a difference in ice sheets between Marine Isotope Stages 3 and 5a affect the duration of stadials? Implications from hosing experiments
Impact of mid-glacial ice sheets on deep ocean circulation and global climate
A Bayesian framework for emergent constraints: case studies of climate sensitivity with PMIP
Equilibrium simulations of Marine Isotope Stage 3 climate
Heinrich events show two-stage climate response in transient glacial simulations
Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing
The climate reconstruction in Shandong Peninsula, northern China, during the last millennium based on stalagmite laminae together with a comparison to δ18O
Variability of daily winter wind speed distribution over Northern Europe during the past millennium in regional and global climate simulations
Last interglacial model–data mismatch of thermal maximum temperatures partially explained
Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing
Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study
A mechanism for dust-induced destabilization of glacial climates
The climate in the Baltic Sea region during the last millennium simulated with a regional climate model
Role of CO2 and Southern Ocean winds in glacial abrupt climate change
Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
Weakened atmospheric energy transport feedback in cold glacial climates
Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Martin Renoult, Navjit Sagoo, Jiang Zhu, and Thorsten Mauritsen
Clim. Past, 19, 323–356, https://doi.org/10.5194/cp-19-323-2023, https://doi.org/10.5194/cp-19-323-2023, 2023
Short summary
Short summary
The relationship between the Last Glacial Maximum and the sensitivity of climate models to a doubling of CO2 can be used to estimate the true sensitivity of the Earth. However, this relationship has varied in successive model generations. In this study, we assess multiple processes at the Last Glacial Maximum which weaken this relationship. For example, how models respond to the presence of ice sheets is a large contributor of uncertainty.
Sam Sherriff-Tadano, Ayako Abe-Ouchi, Akira Oka, Takahito Mitsui, and Fuyuki Saito
Clim. Past, 17, 1919–1936, https://doi.org/10.5194/cp-17-1919-2021, https://doi.org/10.5194/cp-17-1919-2021, 2021
Short summary
Short summary
Glacial periods underwent climate shifts between warm states and cold states on a millennial timescale. Frequency of these climate shifts varied along time: it was shorter during mid-glacial period compared to early glacial period. Here, from climate simulations of early and mid-glacial periods with a comprehensive climate model, we show that the larger ice sheet in the mid-glacial compared to early glacial periods could contribute to the frequent climate shifts during the mid-glacial period.
Sam Sherriff-Tadano, Ayako Abe-Ouchi, and Akira Oka
Clim. Past, 17, 95–110, https://doi.org/10.5194/cp-17-95-2021, https://doi.org/10.5194/cp-17-95-2021, 2021
Short summary
Short summary
We perform simulations of Marine Isotope Stage 3 and 5a with an atmosphere–ocean general circulation model to explore the effect of the southward expansion of mid-glacial ice sheets on the Atlantic Meridional Overturning Circulation (AMOC) and climate. We find that the southward expansion of the mid-glacial ice sheet causes a surface cooling over the North Atlantic and Southern Ocean, but it exerts a small impact on the AMOC due to the competing effects of surface wind and surface cooling.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Chuncheng Guo, Kerim H. Nisancioglu, Mats Bentsen, Ingo Bethke, and Zhongshi Zhang
Clim. Past, 15, 1133–1151, https://doi.org/10.5194/cp-15-1133-2019, https://doi.org/10.5194/cp-15-1133-2019, 2019
Short summary
Short summary
We present an equilibrium simulation of the climate of Marine Isotope Stage 3, with an IPCC-class model with a relatively high model resolution and a long integration. The simulated climate resembles a warm interstadial state, as indicated by reconstructions of Greenland temperature, sea ice extent, and AMOC. Sensitivity experiments to changes in atmospheric CO2 levels and ice sheet size show that the model is in a relatively stable climate state without multiple equilibria.
Florian Andreas Ziemen, Marie-Luise Kapsch, Marlene Klockmann, and Uwe Mikolajewicz
Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, https://doi.org/10.5194/cp-15-153-2019, 2019
Short summary
Short summary
Heinrich events are among the dominant modes of glacial climate variability. They are caused by massive ice discharges from the Laurentide Ice Sheet into the North Atlantic. In previous studies, the climate changes were either seen as resulting from freshwater released from the melt of the discharged icebergs or by ice sheet elevation changes. With a coupled ice sheet–climate model, we show that both effects are relevant with the freshwater effects preceding the ice sheet elevation effects.
Nicolas Brown and Eric D. Galbraith
Clim. Past, 12, 1663–1679, https://doi.org/10.5194/cp-12-1663-2016, https://doi.org/10.5194/cp-12-1663-2016, 2016
Short summary
Short summary
An Earth system model is used to explore variability in the global impacts of AMOC disruptions. The model exhibits spontaneous AMOC oscillations under particular boundary conditions, which we compare with freshwater-forced disruptions. We find that the global impacts are similar whether the AMOC disruptions are spontaneous or forced. Freshwater forcing generally amplifies the global impacts, with tropical precipitation and the stability of polar haloclines showing particular sensitivity.
Qing Wang, Houyun Zhou, Ke Cheng, Hong Chi, Chuan-Chou Shen, Changshan Wang, and Qianqian Ma
Clim. Past, 12, 871–881, https://doi.org/10.5194/cp-12-871-2016, https://doi.org/10.5194/cp-12-871-2016, 2016
Short summary
Short summary
The upper part of stalagmite ky1 (from top to 42.769 mm depth), consisting of 678 laminae, was collected from a cave in northern China, located in the East Asia monsoon area. The time of deposition ranges from AD 1217±20 to 1894±20. The analysis shows that both the variations in the thickness of the laminae themselves and the fluctuating degree of variation in the thickness of the laminae of stalagmite ky1 have obviously staged characteristics and synchronized with climate.
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, Sebastian Wagner, and Juan José Gómez-Navarro
Clim. Past, 12, 317–338, https://doi.org/10.5194/cp-12-317-2016, https://doi.org/10.5194/cp-12-317-2016, 2016
P. Bakker and H. Renssen
Clim. Past, 10, 1633–1644, https://doi.org/10.5194/cp-10-1633-2014, https://doi.org/10.5194/cp-10-1633-2014, 2014
L. Menviel, A. Timmermann, T. Friedrich, and M. H. England
Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, https://doi.org/10.5194/cp-10-63-2014, 2014
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
B. F. Farrell and D. S. Abbot
Clim. Past, 8, 2061–2067, https://doi.org/10.5194/cp-8-2061-2012, https://doi.org/10.5194/cp-8-2061-2012, 2012
S. Schimanke, H. E. M. Meier, E. Kjellström, G. Strandberg, and R. Hordoir
Clim. Past, 8, 1419–1433, https://doi.org/10.5194/cp-8-1419-2012, https://doi.org/10.5194/cp-8-1419-2012, 2012
R. Banderas, J. Álvarez-Solas, and M. Montoya
Clim. Past, 8, 1011–1021, https://doi.org/10.5194/cp-8-1011-2012, https://doi.org/10.5194/cp-8-1011-2012, 2012
J. Álvarez-Solas, M. Montoya, C. Ritz, G. Ramstein, S. Charbit, C. Dumas, K. Nisancioglu, T. Dokken, and A. Ganopolski
Clim. Past, 7, 1297–1306, https://doi.org/10.5194/cp-7-1297-2011, https://doi.org/10.5194/cp-7-1297-2011, 2011
I. Cvijanovic, P. L. Langen, and E. Kaas
Clim. Past, 7, 1061–1073, https://doi.org/10.5194/cp-7-1061-2011, https://doi.org/10.5194/cp-7-1061-2011, 2011
S. C. Lewis, A. N. LeGrande, M. Kelley, and G. A. Schmidt
Clim. Past, 6, 325–343, https://doi.org/10.5194/cp-6-325-2010, https://doi.org/10.5194/cp-6-325-2010, 2010
Cited articles
Alkama, R., Kageyama, M., Ramstein, G., Marti, O., Ribstein, P., and Swingedouw, D.: Impact of a realistic river routing in coupled ocean-atmosphere simulations of the {L}ast {G}lacial {M}aximum climate, Clim. Dynam., 30, 855–869, https://doi.org/10.1007/s00382-007-0330-1, 2007.
Altabet, M. A., Higginson, M. J., and Murray, D. W.: The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2, Nature, 415, 159–162, 2002.
Berger, A. L.: Long-term variations of daily insolation and {Q}uaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Bitz, C. M., Chiang, J. C. H., Cheng, W., and Barsugli, J. J.: Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates, Geophys. Res. Lett., 34, L07708, https://doi.org/10.1029/2006GL029237, 2007.
Bjerknes, J.: Atlantic air-sea interaction, Academic Press, 10, 1–82, 1964.
Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., Raynaud, D., Jouzel, J., Clausen, H. B., Hammer, C. U., and Johnsen, S. J.: Asynchrony of {A}ntarctic and {G}reenland climate change during the last glacial period, Nature, 394, 739–743, 1998.
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: correlations between climate records from {N}orth {A}tlantic sediments and {G}reenland ice, Nature, 365, 143–147, 1993.
Bout-Roumazeilles, V., Nebout, N. C., Peyron, O., Cortijo, E., Landais, A., and Masson-Delmotte, V.: Connection between S}outh {M}editerranean climate and {N}orth {A}frican atmospheric circulation during the last 50 000 yr {BP {N}orth A}tlantic cold events, Quaternary Sci. Rev., {26, 3197–3215, 2007.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, 2007a.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget, Clim. Past, 3, 279–296, 2007b.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to {N}orthern {H}emisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Chang, P., Zhang, R., Hazeleger, W., Wen, C., Wan, X. Q., Ji, L., Haarsma, R. J., Breugem, W. P., and Seidel, H.: Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon, Nature Geosci., 1, 444–448, 2008.
Chiang, J. C. H. and Bitz, C. M.: Influence of high latitude ice cover on the marine {I}ntertropical {C}onvergence {Z}one, Clim. Dynam., 25, 477–496, 2005.
Chiang, J. C. H., Cheng, W., and Bitz, C. M.: Fast teleconnections to the tropical {A}tlantic sector from {A}tlantic thermohaline adjustment, Geophys. Res. Lett., 35, L07704, https://doi.org/10.1029/2008GL033292, 2008.
Claussen, M., Ganopolski, A., Brovkin, V., Gerstengarbe, F.-W., and Werner, P.: Simulated global-scale response of the climate system to {D}ansgaard/{O}eschger and Heinrich events, Clim. Dynam., 21, 361–370, 2003.
Clement, A. C. and Peterson, L. C.: Mechanisms of abrupt climate change of the last glacial period, Rev. Geophys., 46, RG4002, https://doi.org/10.1029/2006RG000204, 2008.
Combourieu Nebout, N., Turon, J.-L., Zhan, R., Capotondi, L., Londeix, L., and Pahnke, K.: Enhanced aridity and atmospheric high-pressure stablity over the western {M}editerranean during the {N}orth {A}tlantic cold events of the past 50 k.y., Geology, 30, 863–866, 2002.
Crowley, T. J.: North Atlantic deep water cools the Southern Hemisphere, Paleoceanography, 7, 489–497, 1992.
Dallenbach, A., Blunier, T., Fluckiger, J., Stauffer, B., Chappellaz, J., and Raynaud, D.: Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the {L}ast {G}lacial and the transition to the {H}olocene, Geophys. Res. Lett., 27, 1005–1008, 2000.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbj{ö}rnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Denton, G. H., Alley, R. B., Comer, G. C., and Broecker, W. S.: The role of seasonality in abrupt climate change, Quaternary Sci. Rev., 24, 1159–1182, 2005.
Elliot, M., Labeyrie, L., and Duplessy, J.-C.: Changes in {N}orth {A}tlantic deep-water formation associated with the {D}ansgaard-{O}eschger temperature oscillations (60–10 ka), Quaternary Sci. Rev., 21, 1153–1165, 2002.
EPICA community members: One-to-one coupling of glacial climate variability in {G}reenland and {A}ntarctica, Nature, 444, https://doi.org/10.1038/nature05301, 2006.
Feng, S. and Hu, Q.: How the {N}orth {A}tlantic {M}ultidecadal {O}scillation may have influenced the {I}ndian summer monsoon during the past two millennia, Geophys. Res. Lett., 35, L01707, https://doi.org/10.1029/2007GL032484, 2008.
Fl{ü}ckiger, J., D{ä}llenbach, A., Blunier, T., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.: Variations in atmospheric N2O concentration during abrupt climatic changes, Science, 285, 227–230, 1999.
Flückiger, J., Knutti, R., White, J. W. C., and Renssen, H.: Modeled seasonality of glacial abrupt climate events, Clim. Dynam., 31, 633–645, https://doi.org/10.1007/s00382-008-0373-y, 2008.
Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153–158, 2001.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S.: Precise dating of {D}ansgaard-{O}eschger climate oscillations in western {E}urope from stalagmite data, Nature, 421, 833–937, 2003.
Gonz{á}lez, C., Dupont, L. M., Behling, H., and Wefer, G.: Neotropical vegetation response to rapid climate changes during the last glacial period: Palynological evidence from the Cariaco Basin, Quaternary Res., 69, 217–230, 2008.
Goswami, B. N., Madhusoodanan, M. S., Neema, C. P., and Sengupta, D.: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon, Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803, 2006.
Grimm, E. C., Watts, W. A., Jacobson, Jr., G. L., Hansen, B. C. S., Almquist, H. R., and Dieffenbacher-Krall, A. C.: Evidence for warm wet Heinrich events in Florida, Quaternary Sci. Rev., 25, 2197–2211, 2006.
He, H. Y., Sui, C. H., Jian, M. Q., Wen, Z. P., and Lan, G. D.: The evolution of tropospheric temperature field and its relationship with the onset of Asian summer monsoon, J. Meteorol. Soc. Jpn, 81, 1201–1223, 2003.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast {A}tlantic ocean during the past 130 000 years, Quaternary Res., 29, 142–152, 1988.
Hewitt, C. D., Broccoli, A. J., Crucifix, M., Gregory, J. M., Mitchell, J. F. B., and Stouffer, R. J.: The effect of a large freshwater perturbation on the glacial {N}orth {A}tlantic ocean using a coupled {G}eneral {C}irculation {M}odel, J. Climate, 19, 4436–4447, 2006.
Hu, A., Otto-Bliesner, B. L., Meehl, G. A., Han, W., Morrill, C., Brady, E. C., and Briegleb, B.: Response of Thermohaline Circulation to Freshwater Forcing under Present Day and LGM Conditions, J. Climate, 21, 2239–2258, 2008.
Jin, L., Chen, F., Ganopolski, A., and Claussen, M.: Response of {E}ast {A}sian climate to {D}ansgaard-{O}eschger and {H}einrich events in a coupled model of intermediate complexity, J. Geophys. Res., 112, D06117, https://doi.org/10.1029/2006JD007316, 2007.
Jullien, E., Grousset, F., Malaize, B., Duprat, J., Sanchez-Goni, M. F., Eynaud, F., Charlier, K., Schneider, R., Bory, A., Bout, V., and Flores, J. A.: Low-latitude "dusty events" vs. high-latitude "icy {H}einrich events", Quaternary Res., 68, 379–386, 2007.
Kageyama, M., La{\^i}n{é}, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C. D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W. R., Vettoretti, G., Weber, S. L., and MARGO project members}: Last {G}lacial {M}aximum temperatures over the {N}orth {A}tlantic, {E}urope and western {S}iberia: a comparison between {PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions, Quaternary Sci. Rev., 25, 2082–2102, 2006.
Kissel, C.: Magnetic signature of rapid climatic variations in glacial North Atlantic, a review, Comptes-RendusGeoscience, 337, 908–918, 2005.
Krebs, U. and Timmermann, A.: Tropical air-sea interactions accelerate the recovery of the Atlantic Meridional Overturning Circulation after a major shutdown, J. Climate, 20, 4940–4956, 2007.
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E.: Moisture transport across {C}entral {A}merica as a positive feedback on abrupt climatic changes, Nature, 445, 908–911, 2007.
Leuschner, D. C. and Sirocko, F.: The low-latitude monsoon climate during {D}ansgaard-{O}eschger cycles and {H}einrich {E}vents, Quaternary Science Reviews, 19, 243–254, 2000.
Lu, R., Dong, B., and Ding, H.: Impact of the {A}tlantic {M}ultidecadal {O}scillation on the {A}sian summer monsoon, Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655, 2006.
Lynch-Stieglitz, J., , Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R., Herguera, J. C., Hirschi, J. J.-M., Ivanova, E. V., Kissel, C., Marchal, O., Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E.-F., and Zahn, R.: Atlantic Meridional Overturning Circulation During the Last {Glacial} Maximum, Science, 316, 66–69, https://doi.org/10.1126/science.1137127, 2007.
Manabe, S. and Stouffer, R. J.: Simulation of abrupt climate change induced by freshwater input to the {N}orth {A}tlantic {O}cean, Nature, 378, 165–167, 1995.
Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cadule, P., Caubel, A., Denvil, S., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Foujols, M.-A., Fichefet, T., Friedlingstein, P., Goosse, H., Grandpeix, J.-Y., Hourdin, F., Krinner, G., Lévy, C., Madec, G., Musat, I., de Noblet, N., Polcher, J., and Talandier, C.: The new IPSL climate system model: IPSL-CM4, Tech. Rep. 26, IPSL, Note du Pôle de Modélisation, iSSN 1288–1619, 84 pp., 2006.
Marti, O., Braconnot, P., Dufresne, J.-L., Hourdin, F., Denvil, S., Friedlingstein, P., Swingedouw, D., Mignot, J., Goosse, H., Fichefet, T., Codron, F., Guilyardi, E., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cadule, P., Caubel, A., Fairhead, L., Foujols, M.-A., Grandpeix, J.-Y., Hourdin, F., Kageyama, M., Krinner, G., Lévy, C., Madec, G., Musat, I., de Noblet, N., and Talandier, C.: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution, Clim. Dynam., accepted, 2009.
Masson-Delmotte, V., Kageyama, M., Braconnot, P., Charbit, S., Krinner, G., Ritz, C., Guilyardi, E., Jouzel, J., Abe-Ouchi, A., Crucifix, M., Gladstone, R. M., Hewitt, C. D., Kitoh, A., LeGrande, A. N., Marti, O., Merkel, U., Motoi, T., Ohgaito, R., Otto-Bliesner, B., Peltier, W. R., Ross, I., Valdes, P. J., Vettoretti, G., Weber, S. L., Wolk, F., and Yu, Y.: Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints, Clim. Dynam., 26, 513–529, 2006.
Monnin, E.and Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B., Stocker, T. F.and Raynaud, D., and Barnola, J.-M.: Atmospheric CO2 concentrations over the last glacial termination, Science, 291, 112–114, 2001.
Msadek, R. and Frankignoul, C.: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model, Clim. Dynam., 33, 45–62, 2009.
Muller, J., Kylander, M., Wüst, R. A. J., Weiss, D., Martinez-Cortizas, A., LeGrande, A. N., Jennerjahn, T., Behling, H., Anderson, W. T., and Jacobson, G.: Possible evidence for wet Heinrich phases in tropical NE Australia: the Lynchs Crater deposit, Quaternary Sci. Rev., 27, 468–475, 2008.
Otto-Bliesner, B. L., Schneider, R., Brady, E. C., Kucera, M., Abe-Ouchi, A., Bard, E., Braconnot, P., Crucifix, M., Hewitt, C. D., Kageyama, M., Marti, O., Paul, A., Rosell-Mele, A., Waelbroeck, C., Weber, S. L., Weinelt, M., and Yu, Y.: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum, Clim. Dynam., 32, 799–815, https://doi.org/{10.1007/s00382-008-0509-0}, 2009.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age e}arth: The {ICE-5G ({VM2}) Model and GRACE, Annual Review of Earth and Planetary Science, 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Peterson, L. C., Haug, G. H., Hughen, K. A., and R{ö}hl, U.: Rapid changes in the hydrologic cycle of the tropical {N}orth {A}tlantic during the last glacial, Science, 290, 1947–1951, 2000.
Porter, S. and An, Z.: Correlation between climate events in the {N}orth {A}tlantic and {C}hina during the last glaciation, Nature, 375, 305–308, 1995.
Rahmstorf, S.: Rapid climate transitions in a coupled ocean-atmosphere model, Nature, 372, 82–85, 1994.
Ramstein, G., Kageyama, M., Guiot, J., Wu, H., Hély, C., Krinner, G., and Brewer, S.: How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison, Clim. Past, 3, 331–339, 2007.
Rashid, H., Flower, B. P., Poore, R. Z., and Quinn, T. M.: A similar to 25 ka {I}ndian {O}cean monsoon variability record from the {A}ndaman Sea, Quaternary Sci. Rev., 26, 2586–2597, 2007.
Ruth, U., Bigler, M., Röthlisberger, R., Siggard-Andersen, M.-L., Kipfstuhl, S., Goto-Azuma, K., Hansson, M. E., Johnsen, S. J., Lu, H., and Steffensen, J. P.: Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate, Geophys. Res. Lett., 34, L03706, https://doi.org/10.1029/2006GL027876, 2007.
Sánchez-Goñi, M. F., Landais, A., Fletcher, W. J., Naughton, F., Desprat, S., and Duprat, J.: Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters, Quaternary Sci. Rev., 27, 1136–1151, 2008.
S{á}nchez-Go{ñ}i, M.-F., Cacho, I., Turon, J.-L., Guiot, J., Sierro, F. J., Peypouquet, J.-P., Grimalt, J. O., and Shackleton, N. J.: Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the {M}editerranean region, Clim. Dynam., 19, 95–105, 2002.
Schneider, B., Latif, M., and Schmittner, A.: Evaluation of Different Methods to Assess Model Projections of the Future Evolution of the Atlantic Meridional Overturning Circulation, J. Climate, 20, 2121–2132, 2007.
Schulz, H., von Rad, U., and Erlenkeuser, H.: Correlation between Arabian Sea and Greenland climate oscillations of the past 110 000 years, Nature, 393, 54–57, 1998.
Shaffrey, L. and Sutton, R.: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model, J. Climate, 19, 1167–1181, 2006.
Stocker, T. F.: Climate change – The seesaw effect, Science, 282, 61–62, 1998.
Stommel, H. M.: Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–230, 1961.
Stouffer, R. J., Yin, J., Gregory, J. M., Diwon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G., and Weber, S. L.: Investigating the causes of the response of the thermohaline circulation to past and future climate changes, J. Climate, 19, 1365–1387, 2006.
Swingedouw, D., Braconnot, P., Delecluse, P., Guilyardi, E., and Marti, O.: The impact of global freshwater forcing on the thermohaline circulation: adjustment of N}orth {A}tlantic convection sites in a {CGCM, Clim. Dynam., 28, 291–305, 2007{a}.
Swingedouw, D., Braconnot, P., Delecluse, P., Guilyardi, E., and Marti, O.: Quantifying the AMOC feedbacks during a 2xCO2 stabilization experiment with land-ice melting, Clim. Dynam., 29, 521–534, 2007{b}.
Swingedouw, D., Mignot, J., Braconnot, P., Mosquet, E., Kageyama, M., and Alkama, R.: Impact of freshwater release in the N}orth {A}tlantic under different climate conditions in an {OAGCM, J. Climate, accepted, 2009.
Timmermann, A., Krebs, U., Justino, F., Goosse, H., and Ivanochko, T.: Mechanisms for millennial-scale global synchronization during the last glacial period, Paleoceanography, 20, PA4008, https://doi.org/10.1029/2004PA001090, 2005.
Turney, C. S. M., Kershaw, A. P., Clemens, S. C., Branch, N., Moss, P. T., and Fifield, L. K.: Millennial and orbital variations of El Niño}/{Southern Oscillation and high-latitude climate in the last glacial period, Nature, 428, 306–310, 2004.
Van Meerbeeck, C. J., Renssen, H., and Roche, D. M.: How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? - Perspectives from equilibrium simulations, Clim. Past, 5, 33–51, 2009.
Vellinga, M. and Wood, R. A.: Global climatic impacts of a collapse of the Atlantic thermohaline circulation, Clim. Change, 54, 251–267, 2002.
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., and Shen, C.-C.: Wet periods in northeastern {B}razil over the past 210 kyr linked to distant climate anomalies, Nature, 432, 740–743, 2004.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A high-resolution absolute-dated late {P}leistocene monsoon record from {H}ulu {C}ave, {C}hina, Science, 294, 2345–2348, 2001.
Weber, S. L. and Drijfhout, S. S.: Stability of the {A}tlantic {M}eridional {O}verturning {C}irculation in the {L}ast {G}lacial {M}aximum climate, Geophys. Res. Lett., 34, L22706, https://doi.org/10.1029/2007GL031437, 2007.
Weber, S. L., Drijfhout, S. S., Abe-Ouchi, A., Crucifix, M., Eby, M., Ganopolski, A., Murakami, S., Otto-Bliesner, B., and Peltier, W. R.: The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations, Clim. Past, 3, 51–64, 2007.
Xavier, P. K., Marzin, C., and Goswami, B. N.: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship, Q. J. Roy. Meteor. Soc., 133, 749–764, 2007.
Yang, H. and Liu, Z.: Tropical-extra-tropical climate interaction as revealed in idealized coupled climate model experiments, Clim. Dynam., 24, 863–879, 2005.
Zhang, R. and Delworth, T. L.: Simulated tropical response to a substantial weakening of the {A}tlantic thermohaline circulation, J. Climate, 18, 1853–1860, 2005.