Articles | Volume 21, issue 1
https://doi.org/10.5194/cp-21-95-2025
https://doi.org/10.5194/cp-21-95-2025
Research article
 | 
14 Jan 2025
Research article |  | 14 Jan 2025

Sustainability of regional Antarctic ice sheets under late Eocene seasonal atmospheric conditions

Dennis H. A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt

Related authors

Potential effect of the marine carbon cycle on the multiple equilibria window of the Atlantic Meridional Overturning Circulation
Amber A. Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1567–1590, https://doi.org/10.5194/esd-15-1567-2024,https://doi.org/10.5194/esd-15-1567-2024, 2024
Short summary
Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024,https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
AMOC stability amid tipping ice sheets: the crucial role of rate and noise
Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 859–873, https://doi.org/10.5194/esd-15-859-2024,https://doi.org/10.5194/esd-15-859-2024, 2024
Short summary
Highly stratified mid-Pliocene Southern Ocean in PlioMIP2
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024,https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary
The movement of atmospheric blocking systems: can we still assume quasi-stationarity?
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-999,https://doi.org/10.5194/egusphere-2024-999, 2024
Short summary

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Cenozoic
The geometry of sea-level change across a mid-Pliocene glacial cycle
Meghan E. King, Jessica R. Creveling, and Jerry X. Mitrovica
Clim. Past, 21, 53–65, https://doi.org/10.5194/cp-21-53-2025,https://doi.org/10.5194/cp-21-53-2025, 2025
Short summary
Using a multi-layer snow model for transient paleo-studies: surface mass balance evolution during the Last Interglacial
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025,https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
South Asian summer monsoon enhanced by the uplift of the Iranian Plateau in Middle Miocene
Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou
Clim. Past, 20, 1817–1836, https://doi.org/10.5194/cp-20-1817-2024,https://doi.org/10.5194/cp-20-1817-2024, 2024
Short summary
Aerosol uncertainties in tropical precipitation changes for the mid-Pliocene warm period
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024,https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary
Highly stratified mid-Pliocene Southern Ocean in PlioMIP2
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024,https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary

Cited articles

Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016. a
Baatsen, M., van Hinsbergen, D. J. J., von der Heydt, A. S., Dijkstra, H. A., Sluijs, A., Abels, H. A., and Bijl, P. K.: Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic, Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, 2016. a
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020. a, b, c, d
Baatsen, M., Bijl, P., von der Heydt, A., Sluijs, A., and Dijkstra, H.: Resilient Antarctic monsoonal climate prevented ice growth during the Eocene, Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, 2024. a, b
Barr, I. D., Spagnolo, M., Rea, B. R., Bingham, R. G., Oien, R. P., Adamson, K., Ely, J. C., Mullan, D. J., Pellitero, R., and Tomkins, M. D.: 60 million years of glaciation in the Transantarctic Mountains, Nat. Commun., 13, 5526, https://doi.org/10.1038/s41467-022-33310-z, 2022. a, b, c
Download
Short summary
Late Eocene summers, 34 million years ago, were hot on Antarctica, with temperatures up to 30 °C. We also know that during this period the first Antarctic ice sheet formed. Since climate models do not show the transition from this warm climate to ice sheet formation accurately, we imposed regional ice sheets onto the continent in a realistic climate and show that these ice sheets do not melt away. This suggests that the initiation of ice sheet growth might have happened during warmer periods.