Articles | Volume 21, issue 4
https://doi.org/10.5194/cp-21-817-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-817-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence for millennial-scale interactions between Hg cycling and hydroclimate from Lake Bosumtwi, Ghana
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
now at: Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
Joost Frieling
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
Timothy M. Shanahan
Department of Earth and Planetary Sciences, University of Texas at Austin, Texas, USA
Tamsin A. Mather
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
Nicholas McKay
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
Stuart A. Robinson
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
David M. Pyle
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
Isabel M. Fendley
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
Ruth Kiely
Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
William D. Gosling
Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
Related authors
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 22, 4689–4704, https://doi.org/10.5194/bg-22-4689-2025, https://doi.org/10.5194/bg-22-4689-2025, 2025
Short summary
Short summary
In this study, we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in the depletion of 13C in the residual sporomorph, leaving rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying that diagenesis results in the depletion of 13C in pollen.
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Jan Petřík, Katarína Adameková, Sándor Kele, Rastislav Milovský, Libor Petr, Peter Tóth, and Nicholas McKay
EGUsphere, https://doi.org/10.5194/egusphere-2023-118, https://doi.org/10.5194/egusphere-2023-118, 2023
Preprint archived
Short summary
Short summary
Our analysis of the Santovka sedimentary record in Slovakia uncovered two major climate shifts at 8.2 and 7.4 ka BP. These shifts likely impacted temperature and humidity, and/or air mass circulation, and were caused by the drying of the lake at 7.4 ka BP. The sedimentary infill provides important information on the region's past climate, and future research must focus on its impact on the last hunter gatherers and first farmers in the context of spreading agriculture in Europe.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Cited articles
Åkerblom, S., Bishop, K., Björn, E., Lambertsson, L., Eriksson, T., and Nilsson, M. B.: Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands, Geochim. Cosmochim. Ac., 102, 1–11, https://doi.org/10.1016/j.gca.2012.10.025, 2013.
Amos, H. M., Sonke, J. E., Obrist, D., Robins, N., Hagan, N., Horowitz, H. M., Mason, R. P., Witt, M., Hedgecock, I. M., Corbitt, E. S., and Sunderland, E. M.: Observational and modeling constraints on global anthropogenic enrichment of mercury, Environ. Sci. Technol., 49, 4036–4047, https://doi.org/10.1021/es5058665, 2015.
Armenteros, I.: Diagenesis of Carbonates in Continental Settings, in: Developments in Sedimentology, Elsevier, 61–151, https://doi.org/10.1016/S0070-4571(09)06202-5, 2010.
Armstrong, E., Tallavaara, M., Hopcroft, P. O., and Valdes, P. J.: North African humid periods over the past 800,000 years, Nat. Commun. 14, 5549, https://doi.org/10.1038/s41467-023-41219-4, 2023.
Baxter, A. J., Verschuren, D., Peterse, F., Miralles, D. G., Martin-Jones, C. M., Maitituerdi, A., Van Der Meeren, T., Van Daele, M., Lane, C.S., Haug, G. H., Olago, D. O., and Sinninghe Damsté, J. S.: Reversed Holocene temperature–moisture relationship in the Horn of Africa, Nature, 620, 336–343, https://doi.org/10.1038/s41586-023-06272-5, 2023.
Benoit, J. M., Gilmour, C. C., Mason, R. P., and Heyes, A.: Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waterA, Environ. Sci. Technol., 33, 1780, https://doi.org/10.1021/es992007q, 1999.
Bertrand, S., Tjallingii, R., Kylander, M. E., Wilhelm, B., Roberts, S. J., Arnaud, F., Brown, E., and Bindler, R.: Inorganic geochemistry of lake sediments: A review of analytical techniques and guidelines for data interpretation, Earth-Sci. Rev., 249, 104639, https://doi.org/10.1016/j.earscirev.2023.104639, 2024.
Biester, H., Pérez-Rodríguez, M., Gilfedder, B.-S., Martínez Cortizas, A., and Hermanns, Y.-M.: Solar irradiance and primary productivity controlled mercury accumulation in sediments of a remote lake in the Southern Hemisphere during the past 4000 years: Primary productivity and mercury accumulation, Limnol. Oceanogr., 63, 540–549, https://doi.org/10.1002/lno.10647, 2018.
Bin, C., Xiaoru, W., and Lee, F. S. C.: Pyrolysis coupled with atomic absorption spectrometry for the determination of mercury in Chinese medicinal materials, Anal. Chim. Acta, 447, 161–169, https://doi.org/10.1016/S0003-2670(01)01218-1, 2001.
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., and Zhu, W.: Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling, Sci. Total Environ., 721, 137647, https://doi.org/10.1016/j.scitotenv.2020.137647, 2020.
Blais, J. M. and Kalff, J.: The influence of lake morphometry on sediment focusing, Limnol. Oceanogr., 40, 582–588, https://doi.org/10.4319/lo.1995.40.3.0582, 1995.
Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury Isotopes in Earth and Environmental Sciences, Annu. Rev. Earth Planet. Sci., 42, 249–269, https://doi.org/10.1146/annurev-earth-050212-124107, 2014.
Boamah, D. and Koeberl, C.: The Lake Bosumtwi impact structure in Ghana: A brief environmental assessment and discussion of ecotourism potential, Meteorit. Planet. Sci., 42, 561–567, https://doi.org/10.1111/j.1945-5100.2007.tb01061.x, 2007.
Bradley, R. S. and Diaz, H. F.: Late Quaternary Abrupt Climate Change in the Tropics and Sub-Tropics: The Continental Signal of Tropical Hydroclimatic Events (THEs), Rev. Geophys. 59, e2020RG000732, https://doi.org/10.1029/2020RG000732, 2021.
Branfireun, B. A., Cosio, C., Poulain, A. J., Riise, G., and Bravo, A. G.: Mercury cycling in freshwater systems – An updated conceptual model, Sci. Total Environ., 745, 140906, https://doi.org/10.1016/j.scitotenv.2020.140906, 2020.
Bravo, A. G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., and Bertilsson, S.: Molecular composition of organic matter controls methylmercury formation in boreal lakes, Nat. Commun. 8, 14255, https://doi.org/10.1038/ncomms14255, 2017.
Brodie, C. R., Leng, M. J., Casford, J. S. L., Kendrick, C. P., Lloyd, J. M., Yongqiang, Z., and Bird, M. I.: Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods, Chem. Geol, 282, 67–83, https://doi.org/10.1016/j.chemgeo.2011.01.007, 2011.
Brooks, K., Scholz, C. A., King, J. W., Peck, J., Overpeck, J. T., Russell, J. M., and Amoako, P. Y. O.: Late-Quaternary lowstands of lake Bosumtwi, Ghana: Evidence from high-resolution seismic-reflection and sediment-core data, Palaeogeogr. Palaeocl. 216, 235–249, https://doi.org/10.1016/j.palaeo.2004.10.005, 2005.
Brumsack, H. J.: The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Palaeogeogr. Palaeocl., 232, 344–361, https://doi.org/10.1016/j.palaeo.2005.05.011, 2006.
Chang, M., Liu, B., Wang, B., Martinez-Villalobos, C., Ren, G., and Zhou, T.: Understanding Future Increases in Precipitation Extremes in Global Land Monsoon Regions, J. Climate 35, 1839–1851, https://doi.org/10.1175/JCLI-D-21-0409.1, 2022.
Chede, B. S., Venancio, I. M., Figueiredo, T. S., Albuquerque, A. L. S., and Silva-Filho, E. V.: Mercury deposition in the western tropical South Atlantic during the last 70 ka, Palaeogeogr. Palaeocl., 601, 111122, https://doi.org/10.1016/j.palaeo.2022.111122, 2022.
Cohen, A., Campisano, C., Arrowsmith, R., Asrat, A., Behrensmeyer, A. K., Deino, A., Feibel, C., Hill, A., Johnson, R., Kingston, J., Lamb, H., Lowenstein, T., Noren, A., Olago, D., Owen, R. B., Potts, R., Reed, K., Renaut, R., Schäbitz, F., Tiercelin, J.-J., Trauth, M. H., Wynn, J., Ivory, S., Brady, K., O'Grady, R., Rodysill, J., Githiri, J., Russell, J., Foerster, V., Dommain, R., Rucina, S., Deocampo, D., Russell, J., Billingsley, A., Beck, C., Dorenbeck, G., Dullo, L., Feary, D., Garello, D., Gromig, R., Johnson, T., Junginger, A., Karanja, M., Kimburi, E., Mbuthia, A., McCartney, T., McNulty, E., Muiruri, V., Nambiro, E., Negash, E. W., Njagi, D., Wilson, J. N., Rabideaux, N., Raub, T., Sier, M. J., Smith, P., Urban, J., Warren, M., Yadeta, M., Yost, C., and Zinaye, B.: The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits, Sci. Dril., 21, 1–16, https://doi.org/10.5194/sd-21-1-2016, 2016.
Cohen, A. S., Stone, J. R., Beuning, K. R. M., Park, L. E., Reinthal, P. N., Dettman, D., Scholz, C. A., Johnson, T. C., King, J. W., Talbot, M. R., Brown, E. T., and Ivory, S. J.: Ecological consequences of early Late Pleistocene megadroughts in tropical Africa, P. Natl. Acad. Sci. USA, 104, 16422–16427, https://doi.org/10.1073/pnas.0703873104, 2007.
Cohen, A. S., Campisano, C. J., Arrowsmith, J. R., Asrat, A., Beck, C. C., Behrensmeyer, A. K., Deino, A. L., Feibel, C. S., Foerster, V., Kingston, J. D., Lamb, H. F., Lowenstein, T. K., Lupien, R. L., Muiruri, V., Olago, D. O., Owen, R. B., Potts, R., Russell, J. M., Schaebitz, F., Stone, J. R., Trauth, M. H., and Yost, C. L.: Reconstructing the Environmental Context of Human Origins in Eastern Africa Through Scientific Drilling, Annu. Rev. Earth Planet. Sci., 50, 451–476, https://doi.org/10.1146/annurev-earth-031920-081947, 2022.
Cooke, C. A., Martínez-Cortizas, A., Bindler, R., and Sexauer Gustin, M.: Environmental archives of atmospheric Hg deposition – A review, Sci. Total Environ., 709, 134800, https://doi.org/10.1016/j.scitotenv.2019.134800, 2020.
Crocker, A. J., Naafs, B. D. A., Westerhold, T., James, R. H., Cooper, M. J., Röhl, U., Pancost, R. D., Xuan, C., Osborne, C. P., Beerling, D. J., and Wilson, P. A.: Astronomically controlled aridity in the Sahara since at least 11 million years ago, Nat. Geosci., 15, 671–676, https://doi.org/10.1038/s41561-022-00990-7, 2022.
deMenocal, P. B.: Plio-Pleistocene African Climate, Science, 270, 53–59, https://doi.org/10.1126/science.270.5233.53, 1995.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y., Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug, G. H.: Links between tropical rainfall and North Atlantic climate during the last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/ngeo1712, 2013.
Edwards, B. A., Kushner, D. S., Outridge, P. M., and Wang, F.: Fifty years of volcanic mercury emission research: Knowledge gaps and future directions, Sci. Total Environ., 757, 143800, https://doi.org/10.1016/j.scitotenv.2020.143800, 2021.
Engstrom, D. R. and Rose, N. L.: A whole-basin, mass-balance approach to paleolimnology, J. Paleolimnol., 49, 333–347, https://doi.org/10.1007/s10933-012-9675-5, 2013.
Fadina, O. A., Venancio, I. M., Belem, A., Silveira, C. S., de Bertagnolli, D. C., Silva-Filho, E. V., and Albuquerque, A. L. S.: Paleoclimatic controls on mercury deposition in northeast Brazil since the Last Interglacial, Quaternary Sci. Rev., 221, 105869, https://doi.org/10.1016/j.quascirev.2019.105869, 2019.
Figueiredo, T. S., Bergquist, B. A., Santos, T. P., Albuquerque, A. L. S., and Silva-Filho, E. V.: Relationship between glacial CO2 drawdown and mercury cycling in the western South Atlantic: An isotopic insight, Geology, 50, 3–7, https://doi.org/10.1130/g49942.1, 2022.
Foerster, V., Asrat, A., Bronk Ramsey, C., Brown, E. T., Chapot, M. S., Deino, A., Duesing, W., Grove, M., Hahn, A., Junginger, A., Kaboth-Bahr, S., Lane, C. S., Opitz, S., Noren, A., Roberts, H. M., Stockhecke, M., Tiedemann, R., Vidal, C. M., Vogelsang, R., Cohen, A. S., Lamb, H. F., Schaebitz, F., and Trauth, M. H.: Pleistocene climate variability in eastern Africa influenced hominin evolution, Nat. Geosci., 15, 805–811, https://doi.org/10.1038/s41561-022-01032-y, 2022.
Francisco López, A., Heckenauer Barrón, E. G., and Bello Bugallo, P. M.: Contribution to understanding the influence of fires on the mercury cycle: Systematic review, dynamic modelling and application to sustainable hypothetical scenarios, Environ. Monit. Assess., 194, 707, https://doi.org/10.1007/s10661-022-10208-3, 2022.
Frieling, J., Mather, T. A., März, C., Jenkyns, H. C., Hennekam, R., Reichart, G.-J., Slomp, C. P., and Van Helmond, N. A. G. M.: Effects of redox variability and early diagenesis on marine sedimentary Hg records, Geochim. Cosmochim. Ac., 351, 78–95, https://doi.org/10.1016/j.gca.2023.04.015, 2023.
Gao, X., Yuan, W., Chen, J., Huang, F., Wang, Z., Gong, Y., Zhang, Y., Liu, Y., Zhang, T., and Zheng, W.: Tracing the source and transport of Hg during pedogenesis in strongly weathered tropical soil using Hg isotopes, Geochim. Cosmochim. Ac., 361, 101–112, https://doi.org/10.1016/j.gca.2023.10.009, 2023.
Gehrke, G. E., Blum, J. D., and Meyers, P. A.: The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel, Geochim. Cosmochim. Ac., 73, 1651–1665, https://doi.org/10.1016/j.gca.2008.12.012, 2009.
Gosling, W. D., McMichael, C. N. H., Groenwoud, Z., Roding, E., Miller, C. S., and Julier, A. C. M.: Preliminary evidence for green, brown and black worlds in tropical western Africa during the Middle and Late Pleistocene, Palaeoecol. Afr., 35, 13–25, https://doi.org/10.1201/9781003162766, 2021.
Gosling, W. D., Miller, C. S., Shanahan, T. M., Holden, P. B., Overpeck, J. T., and van Langevelde, F.: A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change, Science, 376, 653–656, https://doi.org/10.1126/science.abg4618, 2022a.
Gosling, W. D., Scerri, E. M. L., and Kaboth-Bahr, S.: The climate and vegetation backdrop to hominin evolution in Africa, Philos. T. R. Soc. B, 377, 35249389, https://doi.org/10.1098/rstb.2020.0483, 2022b.
Grant, K. M., Grimm, R., Mikolajewicz, U., Marino, G., Ziegler, M., and Rohling, E. J.: The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes, Quaternary Sci. Rev., 140, 125–141, https://doi.org/10.1016/j.quascirev.2016.03.026, 2016.
Grant, K. M., Rohling, E. J., Westerhold, T., Zabel, M., Heslop, D., Konijnendijk, T., and Lourens, L.:. A 3 million year index for North African humidity/aridity and the implication of potential pan-African Humid periods. Quaternary Sci. Rev., 171, 100–118, https://doi.org/10.1016/j.quascirev.2017.07.005, 2017.
Grant, K. M., Amarathunga, U., Amies, J. D., Hu, P., Qian, Y., Penny, T., Rodriguez-Sanz, L., Zhao, X., Heslop, D., Liebrand, D., Hennekam, R., Westerhold, T., Gilmore, S., Lourens, L. J., Roberts, A. P., and Rohling, E. J.: Organic carbon burial in Mediterranean sapropels intensified during Green Sahara Periods since 3.2 Myr ago, Commun. Earth Environ., 3, 11, https://doi.org/10.1038/s43247-021-00339-9, 2022.
Grygar, T. M., Mach, K., and Martinez, M.: Checklist for the use of potassium concentrations in siliciclastic sediments as paleoenvironmental archives, Sediment. Geol., 382, 75–84, https://doi.org/10.1016/j.sedgeo.2019.01.010, 2019.
Guédron, S., Ledru, M. P., Escobar-Torrez, K., Develle, A. L., and Brisset, E.: Enhanced mercury deposition by Amazonian orographic precipitation: Evidence from high-elevation Holocene records of the Lake Titicaca region (Bolivia), Palaeogeogr. Palaeocl., 511, 577–587, https://doi.org/10.1016/j.palaeo.2018.09.023, 2018.
Gulati, R. D., Zadereev, E. S., and Degermendzhi, A. G. (Eds.): Ecology of Meromictic Lakes, Ecological Studies, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-49143-1, 2017.
Gustin, M. S., Bank, M. S., Bishop, K., Bowman, K., Branfireun, B., Chételat, J., Eckley, C. S., Hammerschmidt, C. R., Lamborg, C., Lyman, S., Martínez-Cortizas, A., Sommar, J., Tsui, M. T.-K., and Zhang, T.: Mercury biogeochemical cycling: A synthesis of recent scientific advances, Sci. Total Environ., 737, 139619, https://doi.org/10.1016/j.scitotenv.2020.139619, 2020.
Ha, J., Zhao, X., Yu, R., Barkay, T., and Yee, N.: Hg(II) reduction by siderite (FeCO3), Appl. Geochem., 78, 211–218, https://doi.org/10.1016/j.apgeochem.2016.12.017, 2017.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 4, 9, 2001 (code available at: https://www.nhm.uio.no/english/research/resources/past/, last access: 14 April 2025).
Han, S., Obraztsova, A., Pretto, P., Deheyn, D. D., Gieskes, J., and Tebo, B. M.: Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries, Mar. Chem., 111, 214–220, https://doi.org/10.1016/j.marchem.2008.05.002, 2008.
Hermanns, Y. M. and Biester, H.: A 17,300-year record of mercury accumulation in a pristine lake in southern Chile, J. Paleolimnol., 49, 547–561, https://doi.org/10.1007/s10933-012-9668-4, 2013.
Hermanns, Y. M., Cortizas, A. M., Arz, H., Stein, R., and Biester, H.: Untangling the influence of in-lake productivity and terrestrial organic matter flux on 4,250 years of mercury accumulation in Lake Hambre, Southern Chile, J. Paleolimnol., 49, 563–573, https://doi.org/10.1007/s10933-012-9657-7, 2013.
Hernández, A., Martin-Puertas, C., Moffa-Sánchez, P., Moreno-Chamarro, E., Ortega, P., Blockley, S., Cobb, K., Comas-Bru, L., Giralt, S., Goosse, H., Luterbacher, J., Martrat, B., Muscheler, R., Parnell, A., Pla-Rabes, S., Sjolte, J., Scaife, A., Swingedouw, D., Wise, E., and Xu, G. Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene, Earth-Sci. Rev., 209, 103286, https://doi.org/10.1016/j.earscirev.2020.103286, 2020.
Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., and Deshusses, M. A.: Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review, Environ. Sci. Technol., 47, 2441–2456, https://doi.org/10.1021/es304370g, 2013.
Jenkyns, H. C.: The Early Toarcian (Jurassic) Anoxic Event, American Journal of Science, 288, 101–151, https://doi.org/10.2475/ajs.288.2.101, 1988.
Jenkyns, H. C. and Weedon, G. P.: Chemostratigraphy (CaCO3, TOC, δ13Corg) of Sinemurian (Lower Jurassic) black shales from the Wessex Basin, Dorset and palaeoenvironmental implications, Newsletters on Stratigraphy, 46, 1–21, https://doi.org/10.1127/0078-0421/2013/0029, 2013.
Jeon, B., Scircle, A., Cizdziel, J. V., Chen, J., Black, O., Wallace, D. J., Zhou, Y., Lepak, R. F., and Hurley, J. P.: Historical deposition of trace metals in a marine sapropel from Mangrove Lake, Bermuda with emphasis on mercury, lead, and their isotopic composition, J. Soils Sediments 20, 2266–2276, https://doi.org/10.1007/s11368-020-02567-6, 2020.
Jones, W. B., Bacon, M., and Hastings, D. A.: The Lake Bosumtwi impact crater, Ghana, Geological Society of America Bulletin 92, 342–349, https://doi.org/10.1130/0016-7606(1981)92<342:TLBICG>2.0.CO;2, 1981.
Jourdan, F., Renne, P. R., and Reimold, W. U.: An appraisal of the ages of terrestrial impact structures, Earth Planet. Sc. Lett., 286, 1–13, https://doi.org/10.1016/j.epsl.2009.07.009, 2009.
Kaboth-Bahr, S., Gosling, W. D., Vogelsang, R., Bahr, A., and Scerri, E. M. L.: Paleo-ENSO influence on African environments and early modern humans, P. Natl. Acad. Sci. USA, 118, 1–6, https://doi.org/10.1073/pnas.2018277118, 2021.
Karp, A. T., Uno, K. T., Berke, M. A., Russell, J. M., Scholz, C. A., Marlon, J. R., Faith, J. T., and Staver, A. C.: Nonlinear rainfall effects on savanna fire activity across the African Humid Period, Quaternary Sci. Rev., 304, 107994, https://doi.org/10.1016/j.quascirev.2023.107994, 2023.
Katsev, S., Crowe, S. A., Mucci, A., Sundby, B., Nomosatryo, S., Haffner, G. D., and Fowle, D. A.: Mixing and its effects on biogeochemistry in the persistently stratified, deep, tropical Lake Matano, Indonesia, Limnol. Oceanogr., 55, 763–776, 2010.
Kiely, R., Paine, A. R., McMichael, C. H., and Gosling, W. D.: Heat, hydroclimate and herbivory: A late-pleistocene record of environmental change from tropical western Africa, Quatern. Int., 717, 109636, 2025.
Kinsley, C. W., Bradtmiller, L. I., McGee, D., Galgay, M., Stuut, J. B., Tjallingii, R., Winckler, G., and DeMenocal, P. B.: Orbital and Millennial-Scale Variability in Northwest African Dust Emissions Over the Past 67,000 years, Paleoceanogr. Paleocl., 37, 1–22, https://doi.org/10.1029/2020PA004137, 2022.
Koeberl, C., Peck, J., King, J., Milkereit, B., Overpeck, J., and Scholz, C.: The ICDP lake Bosumtwi drilling project: A first report, Scientific Drilling, 1, 23–27, https://doi.org/10.2204/iodp.sd.1.04.2005, 2005.
Koeberl, C., Milkereit, B., Overpeck, J. T., Scholz, C. A., Amoako, P. Y. O., Boamah, D., Danuor, S. K., Karp, T., Kueck, J., Hecky, R. E., King, J. W., and Peck, J. A.: An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project – An overview, Meteorit. Planet. Sci., 42, 483–511. https://doi.org/10.1111/j.1945-5100.2007.tb01057.x, 2007.
Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L., and Wefer, G: NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes, Quaternary Sci. Rev., 82, 56–67, https://doi.org/10.1016/j.quascirev.2013.10.013, 2013.
Kuss, J., Zülicke, C., Pohl, C., and Schneider, B.: Atlantic mercury emission determined from continuous analysis of the elemental mercury sea-air concentration difference within transects between 50° N and 50° S, Global Biogeochem. Cy., 25, https://doi.org/10.1029/2010GB003998, 2011.
Larrasoaña, J. C., Roberts, A. P., and Rohling, E. J.: Dynamics of Green Sahara Periods and Their Role in Hominin Evolution, PLoS ONE, 8, e76514, https://doi.org/10.1371/journal.pone.0076514, 2013.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Leiva González, J., Diaz-Robles, L. A., Cereceda-Balic, F., Pino-Cortés, E., and Campos, V.: Atmospheric Modelling of Mercury in the Southern Hemisphere and Future Research Needs: A Review, Atmosphere 13, 1226, https://doi.org/10.3390/atmos13081226, 2022.
Lent, R. M. and Alexander, C. R.: Mercury accumulation in Devils Lake, north Dakota – effects of environmental variation in closed-basin lakes on mercury chronologies, Water Air Soil Pollut., 98, 275–296, 1996.
Lézine, A.-M., Izumi, K., Kageyama, M., and Achoundong, G.: A 90,000-year record of Afromontane forest responses to climate change, Science, 363, 177–181, https://doi.org/10.1126/science.aav6821, 2019.
Li, F., Ma, C., and Zhang, P.: Mercury Deposition, Climate Change and Anthropogenic Activities: A Review, Front. Earth Sci., 8, 316, https://doi.org/10.3389/feart.2020.00316, 2020.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, 1–17, https://doi.org/10.1029/2004PA001071, 2005.
Liu, M., Zhang, Q., Maavara, T., Liu, S., Wang, X., and Raymond, P. A.: Rivers as the largest source of mercury to coastal oceans worldwide, Nat. Geosci., 14, 672–677, https://doi.org/10.1038/s41561-021-00793-2, 2021.
Lupien, R., Uno, K., Rose, C., deRoberts, N., Hazan, C., De Menocal, P., and Polissar, P.: Low-frequency orbital variations controlled climatic and environmental cycles, amplitudes, and trends in northeast Africa during the Plio-Pleistocene, Commun. Earth Environ., 4, 360, https://doi.org/10.1038/s43247-023-01034-7, 2023.
Lyman, S. N., Cheng, I., Gratz, L. E., Weiss-Penzias, P., and Zhang, L.: An updated review of atmospheric mercury, Sci. Total Environ., 707, 135575, https://doi.org/10.1016/j.scitotenv.2019.135575, 2020.
Machado, W., Sanders, C. J., Santos, I. R., Sanders, L. M., Silva-Filho, E. V., and Luiz-Silva, W.: Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland, Environ. Pollut., 213, 30–35, https://doi.org/10.1016/j.envpol.2016.02.002, 2016.
Mason, R. P., Laporte, J. M., and Andres, S.: Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish, Arch. Environ. Con. Tox., 38, 283–297, https://doi.org/10.1007/s002449910038, 2000.
McKay, N. P.: A multidisciplinary approach to late Quaternary paleoclimatology with an emphasis on sub-saharan West Africa and the last interglacial period (PhD Thesis), University of Arizona, Arizona, https://repository.arizona.edu/handle/10150/238647, 2012.
Menviel, L., Govin, A., Avenas, A., Meissner, K. J., Grant, K. M., and Tzedakis, P. C.: Drivers of the evolution and amplitude of African Humid Periods, Commun. Earth Environ., 2, 237, https://doi.org/10.1038/s43247-021-00309-1, 2021.
Miller, C. S. and Gosling, W. D.: Quaternary forest associations in lowland tropical West Africa, Quaternary Sci. Rev., 84, 7–25, https://doi.org/10.1016/j.quascirev.2013.10.027, 2014.
Miller, C. S., Gosling, W. D., Kemp, D. B., Coe, A. L., and Gilmour, I.: Drivers of ecosystem and climate change in tropical West Africa over the past ∼ 540 000 years, J. Quaternary Sci., 31, 671–677, https://doi.org/10.1002/jqs.2893, 2016.
Moore, H. R., Crocker, A. J., Belcher, C. M., Meckler, A. N., Osborne, C. P., Beerling, D. J., and Wilson, P. A.: Hydroclimate variability was the main control on fire activity in northern Africa over the last 50,000 years, Quaternary Sci. Rev., 288, 107578, 2022.
Nalbant, J., Schneider, L., Hamilton, R., Connor, S., Biester, H., Stuart-Williams, H., Bergal-Kuvikas, O., Jacobsen, G., and Stevenson, J.: Fire, volcanism and climate change: the main factors controlling mercury (Hg) accumulation rates in Tropical Lake Lantoa, Sulawesi, Indonesia (∼ 16,500–540 cal yr BP), Front. Environ. Chem., 4, 1241176, https://doi.org/10.3389/fenvc.2023.1241176, 2023.
Nicholson, S. E.: The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability, ISRN Meteorology, 2013, 1–32, https://doi.org/10.1155/2013/453521, 2013.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and Selin, N. E.: A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9, 2018.
O'Mara, N. A., Skonieczny, C., McGee, D., Winckler, G., Bory, A. J.-M., Bradtmiller, L. I., Malaizé, B., and Polissar, P. J.: Pleistocene drivers of Northwest African hydroclimate and vegetation, Nat. Commun., 13, 3552, https://doi.org/10.1038/s41467-022-31120-x, 2022.
Outridge, P. M., Stern, G. A., Hamilton, P. B., and Sanei, H.: Algal scavenging of mercury in preindustrial Arctic lakes, Limnol. Oceanogr., 64, 1558–1571, https://doi.org/10.1002/lno.11135, 2019.
Outridge, P. M., Sanei, L. H., Stern, G. A., Hamilton, P. B., and Goodarzi, F.: Evidence for Control of Mercury Accumulation Rates in Canadian High Arctic Lake Sediments by Variations of Aquatic Primary Productivity, Environ. Sci. Technol., 41, 5259–5265, https://doi.org/10.1021/es070408x, 2007.
Paine, A. R., Fendley, I. M., Frieling, J., Mather, T. A., Lacey, J. H., Wagner, B., Robinson, S. A., Pyle, D. M., Francke, A., Them II, T. R., and Panagiotopoulos, K.: Mercury records covering the past 90 000 years from lakes Prespa and Ohrid, SE Europe, Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, 2024.
Pan, J., Zhong, W., Wei, Z., Ouyang, J., Shang, S., Ye, S., Chen, Y., Xue, J., and Tang, X.: A 15,400-year record of natural and anthropogenic input of mercury (Hg) in a sub-alpine lacustrine sediment succession from the western Nanling Mountains, South China, Environ. Sci. Pollut. R., 27, 20478–20489, https://doi.org/10.1007/s11356-020-08421-z, 2020.
Pausata, F. S. R., Gaetani, M., Messori, G., Berg, A., Maia de Souza, D., Sage, R. F., and deMenocal, P. B.: The Greening of the Sahara: Past Changes and Future Implications, One Earth, 2, 235–250, https://doi.org/10.1016/j.oneear.2020.03.002, 2020.
Peck, J. A., Green, R. R., Shanahan, T., King, J. W., Overpeck, J. T., and Scholz, C. A.: A magnetic mineral record of Late Quaternary tropical climate variability from Lake Bosumtwi, Ghana, Palaeogeogr. Palaeocl., 215, 37–57, https://doi.org/10.1016/j.palaeo.2004.08.003, 2004 (data available at: https://www.ncei.noaa.gov/access/paleo-search/study/5454, last access: 14 April 2025).
Pérez-Rodríguez, M., Margalef, O., Corella, J. P., Saiz-Lopez, A., Pla-Rabes, S., Giralt, S., and Cortizas, A. M.: The role of climate: 71 ka of atmospheric mercury deposition in the southern hemisphere recorded by Rano Aroi Mire, Easter Island (Chile), Geosciences, 8, 374, https://doi.org/10.3390/geosciences8100374, 2018.
Pilla, R. M., Williamson, C. E., Adamovich, B. V., Adrian, R., Anneville, O., Chandra, S., Colom-Montero, W., Devlin, S. P., Dix, M. A., Dokulil, M. T., Gaiser, E. E., Girdner, S. F., Hambright, K. D., Hamilton, D. P., Havens, K., Hessen, D. O., Higgins, S. N., Huttula, T. H., Huuskonen, H., Isles, P. D. F., Joehnk, K. D., Jones, I. D., Keller, W. B., Knoll, L. B., Korhonen, J., Kraemer, B. M., Leavitt, P. R., Lepori, F., Luger, M. S., Maberly, S. C., Melack, J. M., Melles, S. J., Müller-Navarra, D. C., Pierson, D. C., Pislegina, H. V., Plisnier, P.-D., Richardson, D. C., Rimmer, A., Rogora, M., Rusak, J. A., Sadro, S., Salmaso, N., Saros, J. E., Saulnier-Talbot, É., Schindler, D. E., Schmid, M., Shimaraeva, S. V., Silow, E. A., Sitoki, L. M., Sommaruga, R., Straile, D., Strock, K. E., Thiery, W., Timofeyev, M. A., Verburg, P., Vinebrooke, R. D., Weyhenmeyer, G. A., and Zadereev, E.: Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes, Sci. Rep., 10, 20514, https://doi.org/10.1038/s41598-020-76873-x, 2020.
Pompeani, D. P., Cooke, C. A., Abbott, M. B., and Drevnick, P. E.: Climate, Fire, and Vegetation Mediate Mercury Delivery to Midlatitude Lakes over the Holocene, Environ. Sci. Technol., 52, 8157–8164, https://doi.org/10.1021/acs.est.8b01523, 2018.
Ravichandran, M.: Interactions between mercury and dissolved organic matter – A review, Chemosphere 55, 319–331, https://doi.org/10.1016/j.chemosphere.2003.11.011, 2004.
Russell, J., Talbot, M. R., and Haskell, B. J.: Mid-holocene climate change in Lake Bosumtwi, Ghana, Quaternary Res., 60, 133–141, https://doi.org/10.1016/S0033-5894(03)00065-6, 2003.
Sanei, H., Grasby, S., and Beauchamp, B.: Latest Permian mercury anomalies, Geology, 40, 63–66, 2012.
Schneider, L., Cooke, C. A., Stansell, N. D., and Haberle, S. G.: Effects of climate variability on mercury deposition during the Older Dryas and Younger Dryas in the Venezuelan Andes, J. Paleolimnol., 63, 211–224, https://doi.org/10.1007/s10933-020-00111-7, 2020.
Schneider, L., Fisher, J. A., Diéguez, M. C., Fostier, A.-H., Guimaraes, J. R. D., Leaner, J. J., and Mason, R.: A synthesis of mercury research in the Southern Hemisphere, part 1: Natural processes, Ambio, 52, 897–917, https://doi.org/10.1007/s13280-023-01832-5, 2023.
Scholz, C. A., Johnson, T. C., Cohen, A. S., King, J. W., Peck, J. A., Overpeck, J. T., Talbot, M. R., Brown, E. T., Kalindekafe, L., Amoako, P. Y. O., Lyons, R. P., Shanahan, T. M., Castañeda, I. S., Heil, C. W., Forman, S. L., McHargue, L. R., Beuning, K. R., Gomez, J., and Pierson, J.: East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins, P. Natl. Acad. Sci. USA, 104, 16416–16421, https://doi.org/10.1073/pnas.0703874104, 2007.
Schultze, M., Boehrer, B., Wendt-Potthoff, K., Katsev, S., and Brown, E. T.: Chemical Setting and Biogeochemical Reactions in Meromictic Lakes, in: Ecology of Meromictic Lakes, Springer, 35–61, https://doi.org/10.1007/978-3-319-49143-1_3, 2017.
Schütze, M., Tserendorj, G., Pérez-Rodríguez, M., Rösch, M., and Biester, H.: Prediction of Holocene mercury accumulation trends by combining palynological and geochemical records of lake sediments (Black Forest, Germany), Geosciences, 8, 358, https://doi.org/10.3390/geosciences8100358, 2018.
Schütze, M., Gatz, P., Gilfedder, B., and Biester, H.: Why productive lakes are larger mercury sedimentary sinks than oligotrophic brown water lakes, Limnol. Oceanogr., 66, 1316–1332, https://doi.org/10.1002/lno.11684, 2021.
Sebag, D., Garcin, Y., Adatte, T., Deschamps, P., Ménot, G., and Verrecchia, E. P.: Correction for the siderite effect on Rock-Eval parameters: Application to the sediments of Lake Barombi (southwest Cameroon), Org. Geochem., 123, 126–135, https://doi.org/10.1016/j.orggeochem.2018.05.010, 2018.
Segato, D., Saiz-Lopez, A., Mahajan, A. S., Wang, F., Corella, J. P., Cuevas, C. A., Erhardt, T., Jensen, C. M., Zeppenfeld, C., Kjær, H. A., Turetta, C., Cairns, W. R. L., Barbante, C., and Spolaor, A.: Arctic mercury flux increased through the Last Glacial Termination with a warming climate, Nat. Geosci., 16, 439–445, https://doi.org/10.1038/s41561-023-01172-9, 2023.
Selin, N. E.: Global biogeochemical cycling of mercury: a review, Annu. Rev. Env. Resour., 34, 43–63, 2009.
Shanahan, T. M., Overpeck, J. T., Wheeler, C. W., Beck, J. W., Pigati, J. S., Talbot, M. R., Scholz, C. A., Peck, J., and King, J. W.: Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana, Palaeogeogr. Palaeocl., 242, 287–302, https://doi.org/10.1016/j.palaeo.2006.06.007, 2006.
Shanahan, T. M., Overpeck, J. T., Sharp, W. E., Scholz, C. A., and Arko, J. A.: Simulating the response of a closed-basin lake to recent climate changes in tropical West Africa (Lake Bosumtwi, Ghana), Hydrol. Process., 21, 1678–1691, https://doi.org/10.1002/hyp.6359, 2007.
Shanahan, T. M., Overpeck, J. T., Beck, J. W., Wheeler, C. W., Peck, J. A., King, J. W., and Scholz, C. A.: The formation of biogeochemical laminations in Lake Bosumtwi, Ghana, and their usefulness as indicators of past environmental changes, J. Paleolimnol., 40, 339–355, https://doi.org/10.1007/s10933-007-9164-4, 2008a.
Shanahan, T. M., Overpeck, J. T., Scholz, C. A., Beck, J. W., Peck, J., and King, J. W.: Abrupt changes in the water balance of tropical West Africa during the late Quaternary, J. Geophys. Res., 113, D12108, https://doi.org/10.1029/2007JD009320, 2008b.
Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L., Peck, J. A., Scholz, C. A., and King, J. W.: Atlantic forcing of persistent drought in West Africa, Science, 324, 377–380, https://doi.org/10.1126/science.1166352, 2009.
Shanahan, T. M., Beck, J. W., Overpeck, J. T., McKay, N. P., Pigati, J. S., Peck, J. A., Scholz, C. A., Heil, C. W., and King, J.: Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: New constraints from laminae analysis and radiocarbon age modeling, Palaeogeogr. Palaeocl., 361–362, 49–60, https://doi.org/10.1016/j.palaeo.2012.08.001, 2012.
Shanahan, T. M., Peck, J. A., McKay, N., Heil, C. W., King, J., Forman, S. L., Hoffmann, D. L., Richards, D. A., Overpeck, J. T., and Scholz, C.: Age models for long lacustrine sediment records using multiple dating approaches – An example from Lake Bosumtwi, Ghana, Quat. Geochronol., 15, 47–60, https://doi.org/10.1016/j.quageo.2012.12.001, 2013.
Shanahan, T. M., Mckay, N. P., Hughen, K. A., Overpeck, J. T., Otto-Bliesner, B., Heil, C. W., King, J., Scholz, C. A., and Peck, J.: The time-transgressive termination of the African humid period, Nat. Geosci., 8, 140–144, https://doi.org/10.1038/ngeo2329, 2015 (data available at: https://www.ncei.noaa.gov/access/paleo-search/study/18355, last access: 14 April 2025).
Shen, J., Feng, Q., Algeo, T. J., Liu, Jinling, Zhou, C., Wei, W., Liu, Jiangsi, Them, T. R., Gill, B. C., and Chen, J.: Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy, Earth Planet. Sc. Lett., 543, 116333, https://doi.org/10.1016/j.epsl.2020.116333, 2020.
Skonieczny, C., McGee, D., Winckler, G., Bory, A., Bradtmiller, L. I., Kinsley, C. W., Polissar, P. J., De Pol-Holz, R., Rossignol, L., and Malaizé, B.: Monsoon-driven Saharan dust variability over the past 240,000 years, Sci. Adv., 5, 1–9, https://doi.org/10.1126/sciadv.aav1887, 2019.
Soerensen, A. L., Mason, R. P., Balcom, P. H., Jacob, D. J., Zhang, Y., Kuss, J., and Sunderland, E. M.: Elemental Mercury Concentrations and Fluxes in the Tropical Atmosphere and Ocean, Environ. Sci. Technol., 48, 11312–11319, https://doi.org/10.1021/es503109p, 2014.
Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A.: A review of worldwide atmospheric mercury measurements, Atmos. Chem. Phys., 10, 8245–8265, https://doi.org/10.5194/acp-10-8245-2010, 2010.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Angot, H., Barbante, C., Brunke, E.-G., Arcega-Cabrera, F., Cairns, W., Comero, S., Diéguez, M. D. C., Dommergue, A., Ebinghaus, R., Feng, X. B., Fu, X., Garcia, P. E., Gawlik, B. M., Hageström, U., Hansson, K., Horvat, M., Kotnik, J., Labuschagne, C., Magand, O., Martin, L., Mashyanov, N., Mkololo, T., Munthe, J., Obolkin, V., Ramirez Islas, M., Sena, F., Somerset, V., Spandow, P., Vardè, M., Walters, C., Wängberg, I., Weigelt, A., Yang, X., and Zhang, H.: Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres, Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, 2017.
Stager, J. C., Ryves, D. B., Chase, B. M., and Pausata, F. S. R.: Catastrophic Drought in the Afro-Asian Monsoon Region During Heinrich Event 1, Science, 331, 1299–1302, https://doi.org/10.1126/science.1198322, 2011.
Swart, P. K.: The geochemistry of carbonate diagenesis: The past, present and future, Sedimentology, 62, 1233–1304, https://doi.org/10.1111/sed.12205, 2015.
Talbot, M. R. and Johannessen, T.: A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter, Earth Planet. Sc. Lett., 110, 23–37, https://doi.org/10.1016/0012-821X(92)90036-U, 1992.
Them, T. R., Jagoe, C. H., Caruthers, A. H., Gill, B. C., Grasby, S. E., Gröcke, D. R., Yin, R., and Owens, J. D.: Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic), Earth Planet. Sc. Lett., 507, 62–72, https://doi.org/10.1016/j.epsl.2018.11.029, 2019.
Tisserand, D., Guédron, S., Viollier, E., Jézéquel, D., Rigaud, S., Campillo, S., Sarret, G., Charlet, L., and Cossa, D.: Mercury, organic matter, iron, and sulfur co-cycling in a ferruginous meromictic lake, Appl. Geochem., 146, 105463, https://doi.org/10.1016/j.apgeochem.2022.105463, 2022.
Tjallingii, R., Claussen, M., Stuut, J.-B. W., Fohlmeister, J., Jahn, A., Bickert, T., Lamy, F., and Röhl, U.: Coherent high- and low-latitude control of the northwest African hydrological balance, Nat. Geosci., 1, 670–675, https://doi.org/10.1038/ngeo289, 2008.
Trauth, M. H., Asrat, A., Berner, N., Bibi, F., Foerster, V., Grove, M., Kaboth-Bahr, S., Maslin, M. A., Mudelsee, M., and Schäbitz, F.: Northern Hemisphere Glaciation, African climate and human evolution, Quaternary Sci. Rev., 268, 107095, https://doi.org/10.1016/j.quascirev.2021.107095, 2021.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Turner, B. F., Gardner, L. R., and Sharp, W. E.: The hydrology of lake Bosumtwi, a climate-sensitive lake in Ghana, West Africa, J. Hydrol., 183, 243–261, https://doi.org/10.1016/0022-1694(95)02982-6, 1996.
United Nations Environment Programme: Global Mercury Assessment, United Nations, https://www.unep.org/resources/publication/global-mercury-assessment-2018 (last access: 11 April 2025), 2018.
USGS/NASA Landsat: A satellite view of Lake Bosumtwi, Ghana, 26 December 2014, https://orbitalhorizon.com/ (last access: 11 April 2025), 2014.
Vindušková, O., Jandová, K., and Frouz, J.: Improved method for removing siderite by in situ acidification before elemental and isotope analysis of soil organic carbon, J. Plant Nutr. Soil Sc. 182, 82–91, https://doi.org/10.1002/jpln.201800164, 2019.
Vinnepand, M., Zeeden, C., Wonik, T., Gosling, W., Noren, A., Kück, J., Pierdominici, S., Voigt, S., Abadi, M. S., Ulfers, A., Danour, S., Afrifa, K., and Kaboth-Bahr, S.: An age-depth model for Lake Bosumtwi (Ghana) to reconstruct one million years of West African climate and environmental change, Quaternary Sci. Rev., 325, 108478, https://doi.org/10.1016/j.quascirev.2023.108478, 2024a.
Vinnepand, M., Zeeden, C., Wonik, T., Gosling, W. D., Noren, A., Kück, J., Pierdominici, S., Voigt, S., Sadar Abadi, M., Ulfers, A., Danour, S., Afrifa, K., and Kaboth-Bahr, S.: Age and smoothed natural gamma ray (NGR) data from core GLAD6 BOS04 5B, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.969451, 2024b.
Weldeab, S., Lea, D. W., Schneider, R. R., and Andersen, N.: 155,000 Years of West African Monsoon and Ocean Thermal Evolution, Science, 316, 1303–1307, https://doi.org/10.1126/science.1140461, 2007.
White, F.: The vegetation of Africa: a descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa, Natural resources research, 20. Unesco, Paris, ISBN 92-3-101955-4, 1983.
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., and Sharma, S.: Global lake responses to climate change, Nat. Rev. Earth Environ., 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5, 2020.
Yin, R., Wang, X., Sun, R., Gao, L., Deng, C., Tian, Z., Luo, A., and Lehmann, B.: Linking the mercury biogeochemical cycle to the deep mercury cycle: A mercury isotope perspective, Chem. Geol., 654, 122063, https://doi.org/10.1016/j.chemgeo.2024.122063, 2024.
Zaferani, S. and Biester, H.: Mercury Accumulation in Marine Sediments – A Comparison of an Upwelling Area and Two Large River Mouths, Front. Mar. Sci., 8, 732720, https://doi.org/10.3389/fmars.2021.732720, 2021.
Zolitschka, B., Francus, P., Ojala, A. E. K., and Schimmelmann, A.: Varves in lake sediments – a review, Quaternary Sci. Rev., 117, 1–41, 2015.
Zou, J., Chang, Y.P ., Zhu, A., Chen, M. T., Kandasamy, S., Yang, H., Cui, J., Yu, P. S., and Shi, X.: Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current, Quaternary Sci. Rev., 265, 107051, https://doi.org/10.1016/j.quascirev.2021.107051, 2021.
Short summary
Few tropical mercury (Hg) records extend beyond ~ 12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present an ~ 96 kyr Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial timescales.
Few tropical mercury (Hg) records extend beyond ~ 12 ka, meaning our current understanding of Hg...