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SUPPLEMENTARY INFORMATION

S1. BOS04-5B core details

Extraction of the BOS04-5B sediment succession took place between July and October of 2004. Drill
sites were chosen following a series of geophysical, seismic, and limnological studies conducted
between 2000-2002 , and drilling operations divided into two main parts: sediment (first two months),
and the hard-rock (impactite and bedrock) (Karp et al., 2002; Koeberl et al., 2007b, 2005). Drilling was
performed using the DOSECC/ICDP GLADS8O00 system custom-built specifically for lake drilling, from
which twenty-three sediment cores, and two hard-rock (impactite) cores were obtained in the course
of the 2004 ICDP drilling project (full details in Koeberl et al., (2005). This study focuses on the upper
~47 m section of a 296-m-long core extracted from deep-water (76 m) site 5 (core BOS04-5B). The
core extends from the present-day lake floor to the brecciated bedrock, includes a basal sediment
layer of impact-glass bearing accretionary lapilli with a thickness of ~30 cm, and has been dated by
40Ar/3%Ar to 1.08+0.04 Ma(Jourdan et al., 2009).

After drilling, the cores were shipped to the University of Rhode Island, where they were split,
described, imaged, and analysed using a Geotek® multi-sensor core logger for a suite of magnetic
and physical parameters. The cores were sampled for analysis of sediment magnetic hysteresis, x-ray
diffraction mineralogy, total organic and inorganic carbon content, bulk organic carbon and nitrogen
isotopes, and grain size. Core logging and physical sediment properties were used to develop a
standardized depth scale for core 5B: permitting comparison between holes (e.g., site 5b and 5c) and
coring locations (e.qg., site 4, site 5)(Shanahan et al., 2013). Core depths presented in this paper are

in meters below lake floor.

S2. Chronology

The BOSMORE7 model (Gosling et al., 2022) provides a newer, updated age-depth relationship for
the BOS04-5B core compared to those earlier presented by Shanahan et al. (2013) and Miller et al.
(2016). First, because it integrates the 3Ar/4°Ar-derived crater age of 1.07+0.11 Ma (Jourdan et al.,
2009; Koeberl et al., 1997) to generate more robust age uncertainties for the deeper core sections.
Second, because it does not include the six paleomagnetic excursions (Mono Lake, Laschamp, 4-a,
5-a, 5-b, 6-a) previously used as tie-points, owing to uncertainties in the reliability of these dates
(Gosling et al., 2022). An age-depth relationship was constructed using a Bayesian approach in R,
from which the model provided an ensemble of possible age models, their analytical age
uncertainties, and sedimentation rates (Blaauw and Christen, 2011). The code a used in model
generation is available from: https://doi.org/10.6084/m9.figshare.18319466 ).

In 2024, Vinnepand and colleagues used cyclicity in total natural gamma ray (NGR) data to create a
cyclostratigraphic age-depth model for the full (~946-kyr) BOS04-5B core. This model will be key for

study of the deeper (>200 ka) core sections where fewer absolute age markers are available
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(Shanahan et al. 2013). However, it is significantly lower resolution than the BOSMORE? chronology
in the upper ~47 m of the record, given that Vinnepand et al. (2024) did not include '4C ages in their
model generation. Not only does this limit the extent to which it can account for the high variability in
Lake Bosumtwi’s sedimentation regime during the Late Pleistocene (e.g., Shanahan et al. 2013;
McKay, 2012), but it also creates a >10-kyr offset from the BOSMORE? chronology for sediments >30
m depth. An offset that, in combination with ~10-kyr uncertainties for each of the three tie points in the
upper 50 m of the core, substantially reduces the overall precision of the model with respect to our
study interval. it does create substantial discrepancies. Therefore, given that the BOSMORE7 model
explicitly includes absolute dating points and their uncertainties within the here studied interval, it
provides age control for our data that is entirely independent from assumptions about past
environmental conditions, and unaffected by any age uncertainty stemming from inter-site

correlations.

S3: Mercury measurements

Total Hg (Hgr) in the bulk sediments of core BOS04-5B was measured using the RA-915 Portable
Mercury Analyzer with PYRO-915+ Pyrolyzer, Lumex (Bin et al., 2001) at the University of Oxford.
This instrument required that the lacustrine sediment samples were dried prior to analysis, for which
prior studies have used a range of techniques. These have included freeze-drying (Daga et al., 2016;
Guédron et al., 2019; Hermanns and Biester, 2013; Ribeiro Guevara et al., 2010), high-temperature
(Pérez-Rodriguez et al., 2019), and low-temperature oven drying (de Lacerda et al., 2017; Gelety et
al., 2007). To determine if/how heat exposure may affect sedimentary concentrations of Hg in soft
recent lacustrine sediments such as those from BOS04-5B, a pilot study was conducted using
externally sourced, homogenous material. Approximately 14cm3 of soft, muddy material was
separated and subjected to different drying conditions. Samples (in triplicate) were dried at three
temperatures, respectively: groups E1 and E3 at 40°C (oven), group E2 at 100°C (oven), and group
C1 at -50°C (freeze dryer). Exposure times were also systematically varied between samples, ranging
from one day (E2), to 1 week (E1 and C1), and four weeks (E3). Once dry, samples were ground
using a mortar and pestle to produce a homogenous powder, and six Hg analyses (method described

in section 3.4) were conducted for each group with three vials run as duplicates.

Our results showed a weak correlation between exposure temperature and Hg concentration (r2 =
0.09). The lowest mean Hg concentrations were measured in the samples dried at 100°C, which could
allude to Hg release during heating. Nonetheless, the results suggest that drying temperature does
not strongly affect sedimentary Hg concentrations, with mean values across all four groups ranging
from 27-30 ng g1. Following these results, BOS04-5B samples were prepared by oven-drying at 30°C
for 72 hours before grinding the sediment to powder form, as this presented the quickest, least

resource-intensive option and posed no risk of Hg loss.
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S4: TOC measurements

To measure TOC contents of the BOS04-5B succession, powdered sediment samples were split into
two aliquots and weighed. Weights for aliquot 1 were between 50-70 mg, and aliquot 2 between 90-
120 mg. Prior to coulometric analysis, samples in aliquot 2 were furnaced for 24 hours at 420°C in
order to remove organic carbon fractions. Both aliquots were then combusted in oxygen at 1220 °C to
break down the calcium carbonate and produce carbon dioxide (COz2), which was fed into a solution of
barium perchlorate. This would result in a change in the solution pH from an initial value of 10.0,
following which back titration to the original pH using electrolysis gives a measure of the amount of
carbon originally present — quantified by the amount of electricity required to restore a pH of 10.0, and
recorded in counts (Jenkyns, 1988; Jenkyns and Weedon, 2013). Counts obtained for Aliquots 1 and

2 were used to calculate the total carbon (TC) content of the sample in wt.%, using the formula:

TC = total Co;nts x 0.2 (Sl)

...whereby M is the sample mass in mg.
TOC were calculated as:
TOC =TC, — TC, (S2)

... whereby TC1 and TC: represent the TC values obtained for aliquots (1) and (2), respectively.
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Figure S1: A comparison of TOC datasets for the upper 47 m of core BOS04-5B, obtained by loss-on-ignition
(McKay, 2012; Scholz et al., 2007), and coulometry (this study). Sampling points are marked by stars on all
three plots.

S5: Authigenic carbonates

The BOS04-5B core contains (mangano-) siderite in variable amounts (McKay, 2012; Shanahan et al.
2008). These siderite-bearing intervals can be easily identified using bulk chemistry (e.g., XRF data),
as Mn is unlikely to be a significant component of other sedimentary minerals (Fig. S2). Siderites
commonly form in freshwater settings at shallow sediment depths under anaerobic (anoxic) conditions
accompanied by organic-rich sediments (Armenteros, 2010; Sebag et al., 2018). However, these
materials can make accurate measurement of organic carbon content in lacustrine sediment via
pyrolysis- or furnace-based methods more challenging, as thermal decomposition of siderite typically
starts at temperatures <420°C (Sebag et al., 2018): lower than that which is used to remove the
organic fraction on the Coulomat (Jenkyns, 1988), This means that any siderite-sourced carbon

released would lead to systematic overestimation of total organic carbon (Sebag et al., 2018).
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Preliminary (repeat) analyses of a Jurassic-age siderite nodule (~ 85% siderite by weight, n=4)

showed near-complete (>95%) siderite decomposition (carbonate-carbon loss) after furnacing

overnight at 420 °C. We then removed siderites from sixteen BOS04-5B samples spanning a range of

low-high Mn counts using a weak acid (warm 5% HCI) treatment, following the established

methodologies of Brodie et al. (2011) and Vinduskova et al. (2019), and compared acid-treated and

furnaced samples to assess the impact on TOC measurements for Bosumtwi material. The difference

between untreated and treated samples ranged between -1.6 % and 1.38 %, which aligns with the

expected difference between acid-treatment and pyrolysis-based methods for very organic-rich

sediments. There was, however, no systematic offset nor a clear correlation with the Mn counts from

XRF data (Fig. S2c), suggesting that the carbon release from siderite did not appreciably bias TOC

measurements in our record.
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Figure S2: (a) Scan images of select sections of core BOS04-5B from Lake Bosumtwi, showing clear yellow-
white carbonate layers. (b) Comparison of Mn abundance (McKay, 2012) and total organic carbon (TOC) (this
study) data. (c) Relationship between Mn abundance, and the difference between TOCy and TOC;r.

S6: Correlation analyses

Pearson correlation coefficients (r) were calculated for the BOS04-5B XRF dataset from the following

equation:

r =

2 (i—x)i—y)

(S3)

...where x; and y; are the individual data points for the two variables, x- and y- are the means of the x

and y datasets, and n is the number of data points (157).

The resulting coefficient values indicate the direction and strength of the association between a two-

element pair, where r = -1 represents a perfect negative association, r = 0 represents no association,


https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
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and r = 1 represents a perfect positive association. Thus, higher values suggest that similar processes

influenced the concentration of the two elements in tandem.

The significance of the correlations presented in Figure 3b were assessed using a Student’s t

statistical test, where Pearson’s coefficient values (r) were first converted to a t-statistic using:

_ rxyn-2

= Tz

...where ris the correlation coefficient value, and n is the number of pairs in the test (157 for BOS04-

5b). These t-statistic values were converted to p-values using the TDIST function in Microsoft Excel:
p = TDIST(x, DF, tails) (S5)

...where xvalues represent the t-values obtained using eqn. 1, tzails signify the two-tailed probability

test (here taken as 2), and DF stands for degrees of freedom, which is calculated as:

DF=n—-2 (S6)

S7. Changepoint analyses

To test the significance of the shifts in Hgr identified, and discussed in our manuscript, we used
Paleontological Statistics Software (PAST) v.4.16 to apply a change point analysis function to the
BOS04-5B data (Hammer et al. 2001). The PAST software uses a Bayesian Markov chain Monte
Carlo (MCMC) approach, which estimates parameters by sampling from their probability distributions
rather than providing a single fixed result. By producing a large number of samples from the
probability distribution, the algorithm provides not just the most probable model based on the given
data, but also insights into the uncertainty and variability in the results. For example, a step-like curve
will be produced if the majority of simulations agree on the changepoint positions, and greater
uncertainty in changepoint positions will produce a more rounded appearance. Given the large range
in Hgr values exhibited by our data, a total of 1 million MCMC simulations were run, with a €10

changepoint limit.

This analysis highlights two distinct shifts in the Hgr data. The first between ~75 and 72 ka, and the
second between 12.6 and 3.7 ka (Fig. S3). These two shifts remained significant and visible even
when the maximum changepoint value was lowered; only when this number became <3 did the
change between ~75 and 73 ka become invisible, following which the sapropel-correlated signal
became dominant. These signals each correspond to Arid Interval-1 (Al-1) and sapropel layer 1,
respectively, and so confirm the significance of the visual changes in the Hgr curve during these two

intervals.
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Figure S3: The average changepoint model for BOS04-5B displayed as a purple curve, superimposed onto
the original Hgr values. The abruptness of the curve indicates the extent to which the MCMC simulations (n =
1000000) agree on the changepoint positions, where greater smoothing indicates greater variance between
simulations. Unit Al-1 is marked between 33.5 and 32.8 m depth (grey shading; Brooks et al., 2005; Scholz et
al., 2007), and sapropel layer 1 is marked between 3-5.5 m depth (brown shading; Shanahan et al., 2012,
2006).

S8: Variations in Hg host phases with time

Time-resolved variability in the degree of covariation between Hg, TOC, and detrital matter was
explored by means of a simple rolling-window (RW) correlation analysis, which has been highlighted
as an effective tool for exploration of compositional variability through time (Oehlert and Swart, 2019;
Sun et al., 2021; Ulfers et al., 2022; Wang et al., 2014). Applying this technique to the BOS04-5B Hg
data permits a broad assessment of variability in Hg host-phase relationships in this system through
time, identify any measurable changes that could reflect major changes in Hg burial dynamics, and
elucidate the potential mechanisms responsible for these changes. Once Pearson correlation
coefficients between the Hg, TOC, and Kar data had calculated, time series profiles were then

averaged across two window sizes - ~1-kyr and ~10-kyr (Fig. S4).
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Figure S4: Pearson’s correlation coefficients (p) between total Hg (Hgr) and centered-log ratio corrected
potassium (Ker), and Hgr and organic matter (TOC) data from core BOS04-5B from Lake Bosumtwi.
Significance bands are marked with dashed grey lines (+ 20%), and shaded areas indicate periods of high
correlation where R values exceed the upper limit of this threshold. A ~1-kyr window size corresponds to a
stratigraphic resolution of ~1 m, and a ~10-kyr window size to a stratigraphic resolution of ~10 m.

The Hg and TOC relationship identified by linear correlation analysis (Fig. S4) appears consistently
positive throughout the succession. Focussing on the ~10-kyr series, R values typically range
between ~0.9 and 0.2 with only transient instances where this value drops <0.2. Conversely, the
Hg/Ker profile shows a consistently negative relationship between Hgr and the detrital fraction in
BOS04-5B (Fig. S4), which fluctuates in an antithetical manner to the Hg and TOC profile. For
example, the weakest correlation between Hg and the detrital fraction is observed when the Hg and
TOC relationship is strongest between ~73 and 45 ka (Fig. S4). Nonetheless, a common feature
between the two plots is a broad downward trend in the correlation coefficients through time, with the
highest values generally observed in the deeper (older) core sections (Fig. SF4). Variability through
time is significantly more pronounced for the ~1-kyr-window profiles. Sporadic, high-amplitude peaks
at discrete points throughout the record show transient instances whereby the correlation between
Hg, organic matter and/or detrital influx changes measurably, suggesting that Hg signals recorded in
Lake Bosumtwi since ~100 ka could also reflect changes in the net flux of Hg into the system, and not

solely host phase availability.
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Figure S5: A record of Hgr (this study) for the upper ~47 m of core BOS04-5B, compared with X-ray
fluorescence data measured using XRF by McKay (2012), and corrected using a centered-log ratio (clr)
approach (Bertrand et al. 2024): all signaling changes detrital material influx into the basin.
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S9: Proxy records

Table S1: Details of proxy records displayed in Figure 5 (main text).

Core Location Latitude Proxy Interpretation Reference(s)

Grain-size distribution of the siliciclastic sediment fractions were used
to derive proportions of three statistically relevant endmembers:

Humidit coarse aeolian dust (EM1), fine aeolian dust (EM2), and hemi-pelagic

. umiaity mud (EM3). EM3 can be related to fluvial transport, and the (Tjallingii et al.,
GeoB7920  Atlantic Ocean 20°N Index (HI) proportions of aeolian endmembers EM1 and EM2 to subaerial 2008)

erosion and vegetation cover. Authors use the log ratios of EM3, EM1
and EM2 (log[EM3/(EM1 + EM2)]) to derive an index reflecting relative
changes of the continental humidity and vegetation cover.
TilAl in the open Eastern Mediterranean reflects relative variations in
North African aeolian vs riverine inputs to the basin. Aeolian-sourced

; TilAl in the open Eastern Mediterranean is enhanced relative to
ODP 927 Mediterranean 34°N TilAl fluvially-sourced Ti/Al because heavier (Ti-bearing) suspended (Grantze(;%I., 222,
Sea particles preferentially settle near the Nile fan. Al normalisation (for Ti )
and Ba) also removes closed-sum effects. Higher values signal an
aeolian source, lower values signal a fluvial source.
Reflects aeolian (mineral) dust export from the Sahara desert, and (Kinsley et al
ODP658 Atlantic Ocean 20°N Dust fluxes  broader variations in wind strength, wind speed, African monsoon 20‘52 N
intensity, humidity, and atmospheric circulation dynamics. )
MDO03- . Reflects aeolian (mineral) dust export from the Sahara desert, and (Skonieczny et al
Atlantic Ocean 18°N Dust fluxes  broader variations in wind strength, wind speed, African monsoon 2019y v
2705 intensity, humidity, and atmospheric circulation dynamics. )
_ Sediment reflectance as a proxy for terrigenous sediment deposition
MD03 Cariaco Basin 10°N Reﬂecfance into the ocean. Light/dark coloured laminations capture seasonally (Depl;(zﬁg otal,
2621 (L) varying sediment inputs into the basin, modulated by ITCZ dynamics. )
Large-scale changes in West African monsoon precipitation and
riverine
MDO3- Gulf of Guinea 2°N Sea-surface runoff are reflected in the isotopic and barium (Ba) composition of (Weldz%%t;et al.,
2707 temperature seawater and budget of dissolved Ba in Gulf of Guinea which is, in )

turn, archived in microfossils that accumulate in marine sediments.

S10: Crater origin and geology

The Bosumtwi crater was formed by an asteroid impact 1.08 = 0.04 Ma ago (Fig. S6; Jourdan et al.,
2009; Koeberl et al., 1997). Evidence for low shock metamorphism and impact melt fragment
abundance in Bosumtwi crater-sourced samples suggests the majority of heavily shocked material
was ejected from the crater (Coney et al., 2007; Koeberl et al., 2007a), with evidence for distal
material ejection ~300 km away (Koeberl et al., 2007a, 1997). On one hand, this vertical displacement
of material may have caused the simultaneous vaporization and emission of geogenic Hg at the
surface immediately following impact (Artemieva et al., 2017; Feignon et al., 2022). Quantitative
estimates suggest that ~94,000-480,000 Mg Hg was emitted at the Earth’s surface following the
Chicxulub impact event (Artemieva et al., 2017; Fendley et al., 2019), and lithostratigraphic evidence
for toasting of shocked quartz in the Bosumtwi crater suggest that the target rocks were particularly
volatile-rich (Coney et al., 2007; Koeberl et al., 2007b). However, the extent to which the geogenic Hg
pool may contribute to signals recorded in Lake Bosumtwi is difficult to constrain, given that impact
breccias extracted from the basin show no measurable evidence for a meteoritic component in the
Bosumtwi crater (Koeberl et al., 2007b); meaning that the Hg concentration of the Bosumtwi impactor

remains unknown.
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Figure S6: A schematic geological map of the Bosumtwi impact structure, Ghana. Adapted from Koeberl et al.
(2007)

195 S11: Regional volcanism

196  Volcanic activity is a key component of the global Hg cycle (Pyle and Mather, 2003), and higher

197 natural Hg concentrations in soil, air and bedrock found predominantly at or surrounding plate

198 boundaries where tectonic, volcanic, and geothermal activities are most intense (Edwards et al.,

199 2021; Rytuba, 2003; Schluter, 2000). There are no active volcanoes in Ghana, however, Lake

200 Bosumtwi is located in close proximity to several highly productive volcanic regions. These include the
201 East African Rift Zone (Biggs et al., 2021; Pyle, 1999; Vidal et al., 2022), the Cameroon Volcanic Line
202 (CVL), the Canary Islands, and Cape Verde (Pyle, 1999). Identification of cryptotephra produced by
203 the ~74 ka eruption of Toba volcano (Indonesia) in Lake Malawi also highlights the potential for

204  deposition of volcanogenic material over Africa originating from distal, exceptionally large eruptions
205 (Lane et al., 2013). However, the resolution of BOS04-5B precludes our ability to examine Hg

206 emissions with respect to single eruption events (Fig. S7). Although we do find a coincidence

207 between the frequency of tropical volcanism and intervals of elevated Hg concentration in Lake

208 Bosumtwi (Fig. S7), it is likely that this is a function of the progressive improvement in eruption

209 recording with time (Colby et al., 2022; Fontijn et al., 2018; Vidal et al., 2022), and/or a global rise in
210 Hg emissions resulting from industrial practices during the Holocene (United Nations Environment
211 Programme, 2018): both of which could further increase wet deposition of Hg in the terrestrial realm.
212 Taken together, eruption record incompleteness coupled with time-transgressive changes in the

213 global atmospheric Hg burden both complicate the ability to unambiguously correlate enhanced

214  volcanic emissions to greater Hg deposition in our record.
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Figure S7: (a) Map of Africa showing volcanic regions with evidence for activity during the late Quaternary (<
100 ka): Cl — Canary Islands, CVL — Cameroon Volcanic Line, EAR — East African Rift. Individual systems are
marked as grey triangles, and the direction of major atmospheric circulation systems as grey arrows. Lake
Bosumtwi is marked as a navy-blue star; (b) Map of the Northern Hemisphere. Black triangles mark volcanic
regions possessing known eruptions (>magnitude 4.0) dated between 100-0 ka, as listed in the LaMEVE
database (Crosweller et al., 2012). Lake Bosumtwi is marked as a navy-blue star; (c) Time-resolved Hg
accumulation rate (Hgar) and residual Hg (Hgr) data for BOS04-5B (Lake Bosumtwi) compared to the number
and timing of radiometrically-dated eruptions in Africa and the Northern Hemisphere, based on the LaMEVE
database and regional tephrostratigraphic records. Circles denoting individual eruptions are coloured with
respect to magnitude.
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S12: Fire activity

Combustion of terrestrial vegetation is one way catchment-stored Hg may be re-emitted into the
atmosphere (Bishop et al., 2020). Elemental Hg (Hg®) retains a low re-volatilisation temperature of
100-300°C (Friedli et al., 2009), and the total amount of Hg released during a wildfire event will vary
depending on the plant species’ sink capacity (e.g., Kumar et al., 2018; Zhou et al., 2021). Thus,
guantifying the severity, intensity (temperature), and primary fuel source of past fire activity has been
posited to provide important information regarding wildfire contributions to changes in the terrestrial
Hg cycle (Daga et al., 2016; Guédron et al., 2019). However, in Lake Bosumtwi, preliminary
macrocharcoal analysis suggests that Hg sequestration is not directly coupled to wildfire intensity
and/or frequency (Fig. S8) (Kiely, 2023). For example, high macrocharcoal particle counts coincide
with some of the largest Hg peaks at ~36 ka, whereas fire appears completely absent between 3 and
0 ka: an interval in which the highest Hg concentrations are observed (Fig. S8). Moreover, peaks in
concentration also often ‘lag’ behind macrocharcoal enrichments by ~2-kyr (Fig. S8), and so whether

these two signals are mechanistically linked remains unclear.

There are several possible reasons for the observed lack of coherence between fire severity, intensity
and Hg concentration in Lake Bosumtwi: (1) large quantities of particulate-bound Hg were emitted into
the atmosphere during arid intervals, but were only deposited into the lake when precipitation was
sufficiently heavy. Thus, following dissemination of the primary signal (Francisco Lopez et al., 2022;
Kumar et al., 2018; Melendez-Perez et al., 2014); (2) the lake’s closed structure limited downstream
transport of Hg released from burned soils and bound to fine and coarse particulate matter(Bishop et
al., 2020; Jensen et al., 2017; Ku et al., 2018); and/or (3) fire-derived Hg signals were overprinted by
more dominant processes influencing the sediment record (e.g., primary productivity, detrital mineral
supply) (de Lacerda et al., 2017; Paine et al., 2024; Schiitze et al., 2018). Although we cannot rule out
the possibility that wildfire activity did affect Hg fluxes into the Lake Bosumtwi system, preliminary
data suggest that other drivers were likely more influential; namely moisture-driven changes in

sedimentation, productivity, and detrital material supply.
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Figure S8: 50-kyr records of total mercury (Hgt) and mercury accumulation rate (Hgar) for Lake Bosumtwi
from this study, with proxy datasets from prior studies of the same lake. These include forest (woody) taxa
abundance represented by detrended correspondence analysis (DCA) axis 1(Gosling et al., 2022; Miller et al.,
2016), percentage abundance of Poaceae (grass) pollen(Miller et al., 2016), microcharcoal
concentrations(Miller et al., 2016), and macrocharcoal volume(Kiely, 2023). A distinct lake low stand (LS)
based on seismic profiles and sedimentological data is marked between 33.5 and 32.8 m depth (grey
shading)(Brooks et al., 2005; Scholz et al., 2007), and sapropel layer 1 is marked between 3-5.5 m depth
(brown shading)(Shanahan et al., 2012, 2006). Unit Al-1 is marked between 33.5 and 32.8 m depth (grey
shading)(Brooks et al., 2005; Scholz et al., 2007), and sapropel layer 1 is marked between 3-5.5 m depth
(brown shading)(Shanahan et al., 2012, 2006).
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