Articles | Volume 21, issue 10
https://doi.org/10.5194/cp-21-1679-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-1679-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Peatland trees record strong and temporally stable hydroclimate information in tree-ring δ13C and δ18O
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 1205, Geneva, Switzerland
Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
Kerstin Treydte
Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
Silvia Piccinelli
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 1205, Geneva, Switzerland
Division of Environment, Math, Psychology, and Health, Franklin University, 6924, Lugano, Switzerland
Loïc Francon
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 1205, Geneva, Switzerland
Department of Geography, University of Bonn, 53115, Bonn, Germany
Marçal Argelich Ninot
Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
Johannes Edvardsson
Laboratory for Wood Anatomy and Dendrochronology, Department of Geology, Lund University, 221 00, Lund, Sweden
Christophe Corona
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 1205, Geneva, Switzerland
Université Grenoble-Alpes, LECA UMR UGA-USMB-CNRS, 5553, Grenoble, France
Veiko Lehsten
Department of Physical Geography and Ecosystem Science, Lund University, 221 00, Lund, Sweden
Department of Natural Science, Design and Sustainable Development, Mit Sweden University, 831 25, Östersund, Sweden
Markus Stoffel
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 1205, Geneva, Switzerland
Department of Earth Sciences, University of Geneva, 1205, Geneva, Switzerland
Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205, Geneva, Switzerland
Related authors
No articles found.
Andreas Lundgren, Joachim Strengbom, Johannes Edvardsson, and Gustaf Granath
EGUsphere, https://doi.org/10.5194/egusphere-2025-2361, https://doi.org/10.5194/egusphere-2025-2361, 2025
Short summary
Short summary
By studying tree-rings and climatic data throughout Sweden, we have found that tree-growth in warm areas is more negatively affected by increasing temperature than tree-growth in cold areas. We also found that soil moisture has a very small effect when it comes to mitigating the negative effect of increasing temperature. These findings suggest that tree-growth responses to a changing climate will likely vary with the local climate but not so much with differences in soil moisture.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Nicolas Steeb, Virginia Ruiz-Villanueva, Alexandre Badoux, Christian Rickli, Andrea Mini, Markus Stoffel, and Dieter Rickenmann
Earth Surf. Dynam., 11, 487–509, https://doi.org/10.5194/esurf-11-487-2023, https://doi.org/10.5194/esurf-11-487-2023, 2023
Short summary
Short summary
Various models have been used in science and practice to estimate how much large wood (LW) can be supplied to rivers. This contribution reviews the existing models proposed in the last 35 years and compares two of the most recent spatially explicit models by applying them to 40 catchments in Switzerland. Differences in modelling results are discussed, and results are compared to available observations coming from a unique database.
Heli Huhtamaa, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 2077–2092, https://doi.org/10.5194/cp-18-2077-2022, https://doi.org/10.5194/cp-18-2077-2022, 2022
Short summary
Short summary
Tree-ring data and written sources from northern Fennoscandia reveal that large 17th century eruptions had considerable climatic, agricultural, and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the human consequences were commonly indirect, as various factors, like agro-ecosystems, resource availability, institutions, and personal networks, dictated how the volcanic cold pulses and related crop failures materialized on a societal level.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Deborah Zani, Veiko Lehsten, and Heike Lischke
Geosci. Model Dev., 15, 4913–4940, https://doi.org/10.5194/gmd-15-4913-2022, https://doi.org/10.5194/gmd-15-4913-2022, 2022
Short summary
Short summary
The prediction of species migration under rapid climate change remains uncertain. In this paper, we evaluate the importance of the mechanisms underlying plant migration and increase the performance in the dynamic global vegetation model LPJ-GM 1.0. The improved model will allow us to understand past vegetation dynamics and predict the future redistribution of species in a context of global change.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Joel Dawson White, Lena Ström, Veiko Lehsten, Janne Rinne, and Dag Ahrén
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-353, https://doi.org/10.5194/bg-2021-353, 2022
Revised manuscript not accepted
Short summary
Short summary
Microbes that produce CH4 play an important role to climate. Microbes which emit CH4 from wetlands is poorly understood. We observed that microbial community was of importance in explaining CH4 emission. We found, that microbes that produce CH4 hold the ability to produce and consume CH4 in multiple ways. This is important in terms of future climate scenarios, where wetlands are expected to shift. Therefore, we expect the community to be highly adaptive to future climate scenarios.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Cited articles
Ballesteros-Cánovas, J. A., Edvardsson, J., Corona, C., Mažeika, J., and Stoffel, M.: Estimation of recent peat accumulation with tree saplings, Progress in Physical Geography: Earth and Environment, 46, 515–529, https://doi.org/10.1177/03091333211073786, 2022.
Barbour, M. M., Roden, J. S., Farquhar, G. D., and Ehleringer, J. R.: Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect, Oecologia, 138, 426–435, https://doi.org/10.1007/s00442-003-1449-3, 2004.
Becker, T., Kutzbach, L., Forbrich, I., Schneider, J., Jager, D., Thees, B., and Wilmking, M.: Do we miss the hot spots? – The use of very high resolution aerial photographs to quantify carbon fluxes in peatlands, Biogeosciences, 5, 1387–1393, https://doi.org/10.5194/bg-5-1387-2008, 2008.
Bégin, C., Gingras, M., Savard, M. M., Marion, J., Nicault, A., and Bégin, Y.: Assessing tree-ring carbon and oxygen stable isotopes for climate reconstruction in the Canadian northeastern boreal forest, Palaeogeogr. Palaeocl., 423, 91–101, https://doi.org/10.1016/j.palaeo.2015.01.021, 2015.
Belmecheri, S. and Lavergne, A.: Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings, Dendrochronologia, 63, 125748, https://doi.org/10.1016/j.dendro.2020.125748, 2020.
Boettger, T., Haupt, M., Knöller, K., Weise, S. M., Waterhouse, J. S., Rinne, K. T., Loader, N. J., Sonninen, E., Jungner, H., Masson-Delmotte, V., Stievenard, M., Guillemin, M.-T., Pierre, M., Pazdur, A., Leuenberger, M., Filot, M., Saurer, M., Reynolds, C. E., Helle, G., and Schleser, G. H.: Wood Cellulose Preparation Methods and Mass Spectrometric Analyses of δ13C, δ18O, and Nonexchangeable δ2H Values in Cellulose, Sugar, and Starch: An Interlaboratory Comparison, Anal. Chem., 79, 4603–4612, https://doi.org/10.1021/ac0700023, 2007.
Boggie, R.: Effect of Water-Table Height on Root Development of Pinus Contorta on Deep Peat in Scotland, Oikos, 23, 304, https://doi.org/10.2307/3543168, 1972.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G., and Vaganov, E. A.: Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals, The Holocene, 12, 737–757, https://doi.org/10.1191/0959683602hl587rp, 2002.
Bunn, A., Korpela, M., Biondi, F., Merian, P., Qeadan, F., and Zang, C.: dplR: Dendrochronology Program Library in R, R package version 1.7.6, https://CRAN.R-project.org/package=dplR (last access: 11 June 2025), 2012.
Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.: Recent European drought extremes beyond Common Era background variability, Nat. Geosci., 14, 190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021.
Carrer, M.: Individualistic and Time-Varying Tree-Ring Growth to Climate Sensitivity, PLoS ONE, 6, e22813, https://doi.org/10.1371/journal.pone.0022813, 2011.
Cedro, A. and Lamentowicz, M.: Contrasting responses to environmental changes by pine (Pinus sylvestris L.) growing on peat and mineral soil: An example from a Polish Baltic bog, Dendrochronologia, 29, 211–217, https://doi.org/10.1016/j.dendro.2010.12.004, 2011.
Cernusak, L. A. and English, N. B.: Beyond tree-ring widths: stable isotopes sharpen the focus on climate responses of temperate forest trees, Tree Physiol., 35, 1–3, https://doi.org/10.1093/treephys/tpu115, 2015.
Chambers, F. M. and Charman, D. J.: Holocene environmental change: contributions from the peatland archive, The Holocene, 14, 1–6, https://doi.org/10.1191/0959683604hl684ed, 2004.
Charman, D., Brown, A., Hendon, D., and Karofeld, E.: Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites, Quaternary Sci. Rev., 23, 137–143, https://doi.org/10.1016/j.quascirev.2003.10.006, 2004.
Cook, E. R. and Peters, K.: The Smoothing Spline: A New Approach to Standardizing Forest Interior Tree-Ring Width Series for Dendroclimatic Studies, Tree-Ring Bulletin, 41, 45–53, 1981.
Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., Rossi, S., Del Castillo, E. M., Campelo, F., Vavrčík, H., Camarero, J. J., Bryukhanova, M. V., Jyske, T., Gričar, J., Gryc, V., De Luis, M., Vieira, J., Čufar, K., Kirdyanov, A. V., Oberhuber, W., Treml, V., Huang, J.-G., Li, X., Swidrak, I., Deslauriers, A., Liang, E., Nöjd, P., Gruber, A., Nabais, C., Morin, H., Krause, C., King, G., and Fournier, M.: Woody biomass production lags stem-girth increase by over one month in coniferous forests, Nat. Plants, 1, 15160, https://doi.org/10.1038/nplants.2015.160, 2015.
Dahlke, H. E. and Lyon, S. W.: Early melt season snowpack isotopic evolution in the Tarfala valley, northern Sweden, Ann. Glaciol., 54, 149–156, https://doi.org/10.3189/2013AoG62A232, 2013.
Dey, P.: Estimation of Potential Evapotranspiration using Mcguinnes Bordne formulation, MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/ fileexchange/65593-estimation-of-potential-evapotranspiration-using-mcguinnes-bordne-formulation (last access: 16 April 2024), 2024.
Dinella, A., Giammarchi, F., and Tonon, G.: Are living peatland trees a reliable natural archive for climate reconstruction?, IAWA J., 40, 366–379, https://doi.org/10.1163/22941932-40190228, 2019.
Eckstein, J., Leuschner, H. H., Bauerochse, A., and Sass-Klaassen, U.: Subfossil bog-pine horizons document climate and ecosystem changes during the Mid-Holocene, Dendrochronologia, 27, 129–146, https://doi.org/10.1016/j.dendro.2009.06.007, 2009.
Edvardsson, J. and Hansson, A.: Multiannual hydrological responses in Scots pine radial growth within raised bogs in southern Sweden, Silva Fenn., 49, 1354, https://doi.org/10.14214/sf.1354, 2015.
Edvardsson, J., Leuschner, H. H., Linderson, H., Linderholm, H. W., and Hammarlund, D.: South Swedish bog pines as indicators of Mid-Holocene climate variability, Dendrochronologia, 30, 93–103, https://doi.org/10.1016/j.dendro.2011.02.003, 2012a.
Edvardsson, J., Linderson, H., Rundgren, M., and Hammarlund, D.: Holocene peatland development and hydrological variability inferred from bog-pine dendrochronology and peat stratigraphy – a case study from southern Sweden, J. Quaternary Sci., 27, 553–563, https://doi.org/10.1002/jqs.2543, 2012b.
Edvardsson, J., Edwards, T. W., Linderson, H., and Hammarlund, D.: Exploring climate forcing of growth depression in subfossil South Swedish bog pines using stable isotopes, Dendrochronologia, 32, 55–61, https://doi.org/10.1016/j.dendro.2013.08.002, 2014.
Edvardsson, J., Rimkus, E., Corona, C., Šimanauskienė, R., Kažys, J., and Stoffel, M.: Exploring the impact of regional climate and local hydrology on Pinus sylvestris L. growth variability – A comparison between pine populations growing on peat soils and mineral soils in Lithuania, Plant Soil, 392, 345–356, https://doi.org/10.1007/s11104-015-2466-9, 2015a.
Edvardsson, J., Šimanauskienė, R., Taminskas, J., Baužienė, I., and Stoffel, M.: Increased tree establishment in Lithuanian peat bogs – Insights from field and remotely sensed approaches, Sci. Total Environ., 505, 113–120, https://doi.org/10.1016/j.scitotenv.2014.09.078, 2015b.
Edvardsson, J., Stoffel, M., Corona, C., Bragazza, L., Leuschner, H. H., Charman, D. J., and Helama, S.: Subfossil peatland trees as proxies for Holocene palaeohydrology and palaeoclimate, Earth-Sci. Rev., 163, 118–140, https://doi.org/10.1016/j.earscirev.2016.10.005, 2016.
Ehleringer, J. R. and Dawson, T. E.: Water uptake by plants: perspectives from stable isotope composition, Plant Cell Environ., 15, 1073–1082, 1992.
Esper, J., Holzkämper, S., Büntgen, U., Schöne, B., Keppler, F., Hartl, C., George, S. St., Riechelmann, D. F. C., and Treydte, K.: Site-specific climatic signals in stable isotope records from Swedish pine forests, Trees, 32, 855–869, https://doi.org/10.1007/s00468-018-1678-z, 2018.
Farquhar, G. D., Ehleringer, J., and Hubick, K.: Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Biol., 40, 503–537, https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989.
Fonti, P., Heller, O., Cherubini, P., Rigling, A., and Arend, M.: Wood anatomical responses of oak saplings exposed to air warming and soil drought, Plant Biol., 15, 210–219, https://doi.org/10.1111/j.1438-8677.2012.00599.x, 2013.
Francon, L., Edvardsson, J., Corona, C., and Stoffel, M.: The timing of wood formation in peatland trees as obtained with different approaches, Dendrochronologia, 85, 126210, https://doi.org/10.1016/j.dendro.2024.126210, 2024.
Freléchoux, F., Buttler, A., Schweingruber, F. H., and Gobat, J. M.: Stand structure, invasion, and growth dynamics of bog pine (Pinus uncinata var. rotundata) in relation to peat cutting and drainage in the Jura Mountains, Switzerland, Can. J. Forest Res., 30, 1114–1124, 2000.
Fritts, H. C.: Tree rings and climate, 2. print., Academic Press, London, 567 pp., ISBN 012268450-8, 1978.
Gärtner, H. and Nievergelt, D.: The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters, Dendrochronologia, 28, 85–92, https://doi.org/10.1016/j.dendro.2009.09.002, 2010.
Gessler, A., Brandes, E., Keitel, C., Boda, S., Kayler, Z. E., Granier, A., Barbour, M., Farquhar, G. D., and Treydte, K.: The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?, New Phytol., 200, 144–157, https://doi.org/10.1111/nph.12359, 2013.
Gessler, A., Ferrio, J. P., Hommel, R., Treydte, K., Werner, R. A., and Monson, R. K.: Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood, Tree Physiol., 34, 796–818, https://doi.org/10.1093/treephys/tpu040, 2014.
Gore, A. J. P. and Goodall, D. W.: Ecosystems of the world: swamp, bog, fen and moor, Elsevier Scientific Publ, Amsterdam Oxford New York, ISBN 0-444-42003-7, 1983.
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming, Ecol. Appl., 1, 182–195, https://doi.org/10.2307/1941811, 1991.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hartl-Meier, C., Zang, C., Buntgen, U., Esper, J., Rothe, A., Gottlein, A., Dirnbock, T., and Treydte, K.: Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest, Tree Physiol., 35, 4–15, https://doi.org/10.1093/treephys/tpu096, 2015.
He, W., Mäkiranta, P., Straková, P., Ojanen, P., Penttilä, T., Bhuiyan, R., Minkkinen, K., and Laiho, R.: Fine-root production in boreal peatland forests: Effects of stand and environmental factors, Forest Ecol. Manag., 550, 121503, https://doi.org/10.1016/j.foreco.2023.121503, 2023.
He, W., Mäkiranta, P., Ojanen, P., Korrensalo, A., and Laiho, R.: Dynamics of fine-root decomposition and its response to site nutrient regimes in boreal drained-peatland and mineral-soil forests, Forest Ecol. Manag., 582, 122564, https://doi.org/10.1016/j.foreco.2025.122564, 2025.
Heikurainen, L.: Structure of Scots pine root systems in a pine swamp and effect of draining on the structure, Acta Forestalia Fennica, 65, 7466, https://doi.org/10.14214/aff.7466, 1955.
Helama, S., Arppe, L., Timonen, M., Mielikäinen, K., and Oinonen, M.: Age-related trends in subfossil tree-ring δ13C data, Chem. Geol., 416, 28–35, https://doi.org/10.1016/j.chemgeo.2015.10.019, 2015.
Hilasvuori, E., Berninger, F., Sonninen, E., Tuomenvirta, H., and Jungner, H.: Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland, J. Quaternary Sci., 24, 469–480, https://doi.org/10.1002/jqs.1260, 2009.
Hökkä, H., Salminen, H., and Ahti, E.: Effect of temperature and precipitation on the annual diameter growth of Scots pine on drained peatlands and adjacent mineral soil sites in Finland, Dendrochronologia, 30, 157–165, https://doi.org/10.1016/j.dendro.2011.02.004, 2012.
Holmes, R. L., Adams, R. K., and Fritts, H. C.: Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin with Procedures Used in the Chronology Development Work Including Users Manuals for Computer Programs COFECHA and ARSTAN, Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 1986.
Holmgren, M., Lin, C., Murillo, J. E., Nieuwenhuis, A., Penninkhof, J., Sanders, N., Van Bart, T., Van Veen, H., Vasander, H., Vollebregt, M. E., and Limpens, J.: Positive shrub–tree interactions facilitate woody encroachment in boreal peatlands, J. Ecol., 103, 58–66, https://doi.org/10.1111/1365-2745.12331, 2015.
Howie, S. A. and Meerveld, I. T.: The Essential Role of the Lagg in Raised Bog Function and Restoration: A Review, Wetlands, 31, 613–622, https://doi.org/10.1007/s13157-011-0168-5, 2011.
Janecka, K., Kaczka, R. J., Gärtner, H., Harvey, J. E., and Treydte, K.: Compression wood has a minor effect on the climate signal in tree-ring stable isotope records of montane Norway spruce, Tree Physiol., 40, 1014–1028, https://doi.org/10.1093/treephys/tpaa038, 2020.
Joelsson, L. M. T., Engström, E., and Kjellström, E.: Homogenization of Swedish mean monthly temperature series 1860–2021, Int. J. Climatol., 43, 1079–1093, https://doi.org/10.1002/joc.7881, 2023.
Kelly, J., Kljun, N., Eklundh, L., Klemedtsson, L., Liljebladh, B., Olsson, P.-O., Weslien, P., and Xie, X.: Modelling and upscaling ecosystem respiration using thermal cameras and UAVs: Application to a peatland during and after a hot drought, Agr. Forest Meteorol., 300, 108330, https://doi.org/10.1016/j.agrformet.2021.108330, 2021.
Kilian, M. R., Van Der Plicht, J., and Van Geel, B.: Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change, Quaternary Sci. Rev., 14, 959–966, https://doi.org/10.1016/0277-3791(95)00081-X, 1995.
Klesse, S., Weigt, R., Treydte, K., Saurer, M., Schmid, L., Siegwolf, R. T. W., and Frank, D. C.: Oxygen isotopes in tree rings are less sensitive to changes in tree size and relative canopy position than carbon isotopes, Plant Cell Environ., 41, 2899–2914, https://doi.org/10.1111/pce.13424, 2018.
Kozlowski, T. T.: Responses of woody plants to flooding and salinity, Tree physiology, 17, 490–490, 1997.
Kozlowski, T. T.: Plant responses to flooding of soil, BioScience, 34, 162–167, 1984.
Lamentowicz, M., Milecka, K., Gałka, M., Cedro, A., Pawlyta, J., Piotrowska, N., Lamentowicz, Ł., and Van Der Knaap, W. O.: Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine, Boreas, 38, 214–229, https://doi.org/10.1111/j.1502-3885.2008.00047.x, 2009.
Larsson, L.: CooRecorder and Cdendro programs of the CooRecorder/Cdendro package, http://www.cybis.se/forfun/dendro/, 2013.
Laumer, W., Andreu, L., Helle, G., Schleser, G. H., Wieloch, T., and Wissel, H.: A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses, Rapid Commun. Mass Sp., 40, 1934–1940, https://doi.org/10.1002/rcm.4105, 2009.
Leavitt, S. W.: Seasonal changes in tree rings: species and site coherence, and a possible drought influence, Can. J. Forest Res., 23, 210–218, https://doi.org/10.1139/x93-028, 1993.
Lehsten, D., Von Asmuth, J. R., and Kleyer, M.: Simulation of Water Level Fluctuations in Kettle Holes Using a Time Series Model, Wetlands, 31, 511–520, https://doi.org/10.1007/s13157-011-0174-7, 2011.
Li, X., Chang, S. X., and Salifu, K. F.: Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review, Environ. Rev., 22, 41–50, https://doi.org/10.1139/er-2013-0035, 2014.
Linderholm, H. W.: Climatic Influence on Scots Pine Growth on Dry and Wet Soils in the Central Scandinavian Mountains, Interpreted from Tree-Ring Widths, Silva Fenn., 35, 415–424, 2001.
Linderholm, H. W., Moberg, A., and Grudd, H.: Peatland pines as climate indicators? A regional comparison of the climatic influence on Scots pine growth in Sweden, Can. J. Forest Res., 32, 1400–1410, https://doi.org/10.1139/x02-071, 2002.
Loader, N. J., Santillo, P. M., Woodman-Ralph, J. P., Rolfe, J. E., Hall, M. A., Gagen, M., Robertson, I., Wilson, R., Froyd, C. A., and McCarroll, D.: Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions, Chem. Geol., 252, 62–71, https://doi.org/10.1016/j.chemgeo.2008.01.006, 2008.
Malinen, J., Maltamo, N., and Verkasalo, E.: Stem and wood properties of Norway spruce on drained peatlands and mineral forest lands in Southern Finland, Balt. For., 11, 21–37, 2005.
Martínez-Sancho, E., Cernusak, L. A., Fonti, P., Gregori, A., Ullrich, B., Pannatier, E. G., Gessler, A., Lehmann, M. M., Saurer, M., and Treydte, K.: Unenriched xylem water contribution during cellulose synthesis influenced by atmospheric demand governs the intra-annual tree-ring δ18O signature, New Phytol., 240, 1743–1757, https://doi.org/10.1111/nph.19278, 2023.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quaternary Sci. Rev., 23, 771–801, https://doi.org/10.1016/j.quascirev.2003.06.017, 2004.
Migoń, P. and Lidmar-Bergström, K.: Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic, Earth-Sci. Rev., 56, 285–324, https://doi.org/10.1016/S0012-8252(01)00068-X, 2001.
Murray, F.: On the computation of saturation vapor pressure, J. Appl. Meteorol., 6, 203–204, https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2, 1967.
Nardini, A., Tomasella, M., and Di Bert, S.: Bedrock: the hidden water reservoir for trees challenged by drought, Trees, 38, 1–11, https://doi.org/10.1007/s00468-023-02482-6, 2024.
Offermann, C., Ferrio, J. P., Holst, J., Grote, R., Siegwolf, R., Kayler, Z., and Gessler, A.: The long way down–are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes?, Tree Physiol., 31, 1088–1102, https://doi.org/10.1093/treephys/tpr093, 2011.
Penttilä, T.: Growth response of peatland stands to drainage in northern Finland, in: Peat and Peatlands – Diversification and Innovation, Canadian Society for Peat and Peatlands 1, 70–77, 1991.
Pilcher, J. R., Baillie, M. G. L., Brown, D. M., McCormac, F. G., Macsweeney, P. B., and McLawrence, A. S.: Dendrochronology of Subfossil Pine in the North of Ireland, J. Ecol., 83, 665, https://doi.org/10.2307/2261634, 1995.
Pouliot, R., Rochefort, L., and Karofeld, E.: Initiation of microtopography in revegetated cutover peatlands: Initiation of microtopography, Appl. Veg. Sci., 14, 158–171, https://doi.org/10.1111/j.1654-109X.2010.01118.x, 2011.
Reynolds-Henne, C. E., Siegwolf, R. T. W., Treydte, K. S., Esper, J., Henne, S., and Saure, M.: Temporal stability of climate-isotope relationships in tree rings of oak and pine (Ticino, Switzerland), Global Biogeochem. Cy., 21, GB4009, https://doi.org/10.1029/2007GB002945, 2007.
Roden, J. S., Lin, G., and Ehleringer, J. R.: A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose, Geochim. Cosmochim. Ac., 64, 21–35, https://doi.org/10.1016/S0016-7037(99)00195-7, 2000.
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate, Science, 258, 981–985, 1992.
Sarris, D., Siegwolf, R., and Körner, C.: Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines, Agr. Forest Meteorol., 168, 59–68, https://doi.org/10.1016/j.agrformet.2012.08.007, 2013.
Saurer, M., Siegenthaler, U., and Schweingruber, F.: The climate-carbon isotope relationship in tree rings and the significance of site conditions, Tellus B, 47, 320–330, https://doi.org/10.3402/tellusb.v47i3.16051, 1995.
Saurer, M., Siegwolf, R. T. W., and Schweingruber, F. H.: Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years, Glob. Change Biol., 10, 2109–2120, https://doi.org/10.1111/j.1365-2486.2004.00869.x, 2004.
Saurer, M., Cherubini, P., Reynolds-Henne, C. E., Treydte, K. S., Anderson, W. T., and Siegwolf, R. T. W.: An investigation of the common signal in tree ring stable isotope chronologies at temperate sites, J. Geophys. Res., 113, G04035, https://doi.org/10.1029/2008JG000689, 2008.
Saurer, M., Spahni, R., Frank, D. C., Joos, F., Leuenberger, M., Loader, N. J., McCarroll, D., Gagen, M., Poulter, B., Siegwolf, R. T. W., Andreu-Hayles, L., Boettger, T., Dorado Liñán, I., Fairchild, I. J., Friedrich, M., Gutierrez, E., Haupt, M., Hilasvuori, E., Heinrich, I., Helle, G., Grudd, H., Jalkanen, R., Levanič, T., Linderholm, H. W., Robertson, I., Sonninen, E., Treydte, K., Waterhouse, J. S., Woodley, E. J., Wynn, P. M., and Young, G. H. F.: Spatial variability and temporal trends in water-use efficiency of European forests, Glob. Change Biol., 20, 3700–3712, https://doi.org/10.1111/gcb.12717, 2014.
Seftigen, K., Linderholm, H. W., Loader, N. J., Liu, Y., and Young, G. H. F.: The influence of climate on and ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains, Chem. Geol., 286, 84–93, https://doi.org/10.1016/j.chemgeo.2011.04.006, 2011.
Siegwolf, R. T. W., Brooks, J. R., Roden, J., and Saurer, M. (Eds.): Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-92698-4, 2022.
Smiljanić, M. and Wilmking, M.: Drivers of stem radial variation and its pattern in peatland Scots pines: A pilot study, Dendrochronologia, 47, 30–37, https://doi.org/10.1016/j.dendro.2017.12.001, 2018.
Smiljanić, M., Seo, J.-W., Läänelaid, A., Van Der Maaten-Theunissen, M., Stajić, B., and Wilmking, M.: Peatland pines as a proxy for water table fluctuations: Disentangling tree growth, hydrology and possible human influence, Sci. Total Environ., 500–501, 52–63, https://doi.org/10.1016/j.scitotenv.2014.08.056, 2014.
Timell, T. E.: Compression wood in gymnosperms, Springer-Verlag, Berlin Heidelberg New York Tokyo, ISBN 978-3-540-15715-1, 1986.
Torbenson, M., Klippel, L., Hartl, C., Reinig, F., Treydte, K., Büntgen, U., Trnka, M., Schöne, B., Schneider, L., and Esper, J.: Investigation of age trends in tree-ring stable carbon and oxygen isotopes from northern Fennoscandia over the past millennium, Quatern. Int., 631, 105–114, https://doi.org/10.1016/j.quaint.2022.05.017, 2022.
Treydte, K., Schleser, G. H., Schweingruber, F. H., and Winiger, M.: The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps): A case study with respect to altitude, exposure and soil moisture, Tellus B, 53, 593–611, https://doi.org/10.3402/tellusb.v53i5.16639, 2001.
Treydte, K., Frank, D., Esper, J., Andreu, L., Bednarz, Z., Berninger, F., Boettger, T., D'Alessandro, C. M., Etien, N., Filot, M., Grabner, M., Guillemin, M. T., Gutierrez, E., Haupt, M., Helle, G., Hilasvuori, E., Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger, M., Loader, N. J., Masson-Delmotte, V., Pazdur, A., Pawelczyk, S., Pierre, M., Planells, O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K. T., Saracino, A., Saurer, M., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, M., Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S., Weigl, M., and Schleser, G. H.: Signal strength and climate calibration of a European tree-ring isotope network, Geophys. Res. Lett., 34, L24302, https://doi.org/10.1029/2007GL031106, 2007.
Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., Saurer, M., Siegwolf, R., Battipaglia, G., Werner, W., and Gessler, A.: Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment, New Phytol., 202, 772–783, https://doi.org/10.1111/nph.12741, 2014.
Treydte, K., Liu, L., Padrón, R. S., Martínez-Sancho, E., Babst, F., Frank, D. C., Gessler, A., Kahmen, A., Poulter, B., Seneviratne, S. I., Stegehuis, A. I., Wilson, R., Andreu-Hayles, L., Bale, R., Bednarz, Z., Boettger, T., Berninger, F., Büntgen, U., Daux, V., Dorado-Liñán, I., Esper, J., Friedrich, M., Gagen, M., Grabner, M., Grudd, H., Gunnarsson, B. E., Gutiérrez, E., Hafner, P., Haupt, M., Hilasvuori, E., Heinrich, I., Helle, G., Jalkanen, R., Jungner, H., Kalela-Brundin, M., Kessler, A., Kirchhefer, A., Klesse, S., Krapiec, M., Levanič, T., Leuenberger, M., Linderholm, H. W., McCarroll, D., Masson-Delmotte, V., Pawelczyk, S., Pazdur, A., Planells, O., Pukiene, R., Rinne-Garmston, K. T., Robertson, I., Saracino, A., Saurer, M., Schleser, G. H., Seftigen, K., Siegwolf, R. T. W., Sonninen, E., Stievenard, M., Szychowska-Krapiec, E., Szymaszek, M., Todaro, L., Waterhouse, J. S., Weigl-Kuska, M., Weigt, R. B., Wimmer, R., Woodley, E. J., Vitas, A., Young, G., and Loader, N. J.: Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years, Nat. Geosci., 17, 58–65, https://doi.org/10.1038/s41561-023-01335-8, 2024.
Treydte, K. S., Frank, D. C., Saurer, M., Helle, G., Schleser, G. H., and Esper, J.: Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record, Geochim. Cosmochim. Ac., 73, 4635–4647, https://doi.org/10.1016/j.gca.2009.05.057, 2009.
Vitas, A. and Erlickytë, R.: Influence of droughts to the radial growth of Scots Pine (Pinus sylvestris L.) at different site conditions, Balt. For., 13, 10–16, 2007.
Von Asmuth, J. R., Bierkens, M. F. P., and Maas, K.: Transfer function-noise modeling in continuous time using predefined impulse response functions, Water Resources Research, 38, 23-1–23-12, https://doi.org/10.1029/2001WR001136, 2002.
Von Asmuth, J. R., Maas, K., Bakker, M., and Petersen, J.: Modeling Time Series of Ground Water Head Fluctuations Subjected to Multiple Stresses, Groundwater, 46, 30–40, https://doi.org/10.1111/j.1745-6584.2007.00382.x, 2008.
White, J. D., Ahrén, D., Ström, L., Kelly, J., Klemedtsson, L., Keane, B., and Parmentier, F.-J. W.: Methane producing and reducing microorganisms display a high resilience to drought in a Swedish hemi-boreal mire, ESS Open Archive [preprint], https://doi.org/10.22541/essoar.167327310.06866368/v1, 2023.
Wigley, T., Briffa, K. R., and Jones, P.: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, J. Appl. Meteorol. Clim., 23, 201–2013, 1984.
Wilmking, M., Hallinger, M., Van Bogaert, R., Kyncl, T., Babst, F., Hahne, W., Juday, G. P., De Luis, M., Novak, K., and Völlm, C.: Continuously missing outer rings in woody plants at their distributional margins, Dendrochronologia, 30, 213–222, https://doi.org/10.1016/j.dendro.2011.10.001, 2012.
Wilmking, M., Van Der Maaten-Theunissen, M., Van Der Maaten, E., Scharnweber, T., Buras, A., Biermann, C., Gurskaya, M., Hallinger, M., Lange, J., Shetti, R., Smiljanic, M., and Trouillier, M.: Global assessment of relationships between climate and tree growth, Glob. Change Biol., 26, 3212–3220, https://doi.org/10.1111/gcb.15057, 2020.
Young, G. H. F., Demmler, J. C., Gunnarson, B. E., Kirchhefer, A. J., Loader, N. J., and McCarroll, D.: Age trends in tree ring growth and isotopic archives: A case study of Pinus sylvestris L. from northwestern Norway, Global Biogeochem. Cy., 25, GB2020, https://doi.org/10.1029/2010GB003913, 2011.
Zang, C. and Biondi, F.: treeclim: an R package for the numerical calibration of proxy-climate relationships, Ecography, 38, 431–436, https://doi.org/10.1111/ecog.01335, 2015.
Zeiger, E. and Farquhar, G. D. (Eds.): Stomatal function, Stanford University Press, Stanford, CA, 503 pp., ISBN 0-8047-1347-2, 1987.
Zoltai, S. C. and Pettapiece, W. W.: Tree distribution on perennially frozen earth hummocks, Arctic Alpine Res., 6, 403–411, 1974.
Short summary
Peatlands hold valuable insights about past climate, but the link between tree growth and water conditions remains unclear. We analyzed tree-ring stable isotopes from Scots pines in Swedish peatlands to study their response to water levels and climate. Unlike tree-ring widths, stable isotopes showed strong, consistent signals of water table levels and summer climate. This improves our ability to reconstruct past climate changes from peatland trees.
Peatlands hold valuable insights about past climate, but the link between tree growth and water...