Articles | Volume 21, issue 8
https://doi.org/10.5194/cp-21-1465-2025
https://doi.org/10.5194/cp-21-1465-2025
Research article
 | 
29 Aug 2025
Research article |  | 29 Aug 2025

SCUBIDO: a Bayesian modelling approach to reconstruct palaeoclimate from multivariate lake sediment data

Laura Boyall, Andrew C. Parnell, Paul Lincoln, Antti Ojala, Armand Hernández, and Celia Martin-Puertas

Related authors

Barriers and facilitators for using palaeoclimate evidence in UK climate decision making
Laura Boyall, Alice M. Milner, Klaus Dodds, and Celia Martin Puertas
EGUsphere, https://doi.org/10.5194/egusphere-2025-6350,https://doi.org/10.5194/egusphere-2025-6350, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary

Cited articles

Aitchison, J.: The statistical analysis of compositional data, Chapman & Hall, London, https://doi.org/10.1002/bimj.4710300705, 1986. 
Anchukaitis, K. J. and Smerdon, J. E.: Progress and uncertainties in global and hemispheric temperature reconstructions of the Common Era, Quaternary Sci. Rev., 286, 107537, https://doi.org/10.1016/j.quascirev.2022.107537, 2022. 
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T., Schmidt, H., Toohey, M., Wu, C.-J., and Claussen, M.: Global temperature modes shed light on the Holocene temperature conundrum, Nat. Commun., 11, 4726, https://doi.org/10.1038/s41467-020-18478-6, 2020. 
Bertrand, S., Tjallingii, R., Kylander, M .E., Wilhelm, B., Roberts, S. J., Arnaud, R., Brown, E., and Bindler, R.: Inorganic geochemistry of lake sediments: A review of analytical techniques and guidelines for data interpretation, Earth-Sci. Rev., 245, 104639, https://doi.org/10.1016/j.earscirev.2023.104639, 2024. 
Birks, H. J. B.: Overview of numerical methods in palaeolimnology, in: Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-2745-8_2, 19–92, 2012. 
Download
Short summary
We present a new approach to reconstructing annual mean temperature using geochemical data from lake sediments. This paper uses Bayesian inference, a type of statistical approach, and creates a model called Simulating Climate Using Bayesian Inference with proxy Data Observations (SCUBIDO), which takes the high-resolution geochemical data and transforms them into quantitative climate information at an annual resolution. We show the results from two lakes in England and Finland to produce temperature reconstructions for the past 8000 years with data every year.
Share