Supplement of Clim. Past, 21, 1465–1480, 2025 https://doi.org/10.5194/cp-21-1465-2025-supplement © Author(s) 2025. CC BY 4.0 License.





#### Supplement of

# SCUBIDO: a Bayesian modelling approach to reconstruct palaeoclimate from multivariate lake sediment data

Laura Boyall et al.

Correspondence to: Laura Boyall (l.boyall@bangor.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

#### **Supplementary Information 1:** notations and variables used in the approach

Supplementary Table 1: Definitions of variables and model parameters used in the Bayesian framework.

| Symbol                                      | Description                                                    |
|---------------------------------------------|----------------------------------------------------------------|
| $C_i$                                       | Climate variable at time point i                               |
| $C^m, C^f$                                  | Modern and fossil climate variable vectors                     |
| $XRF_{ij}$                                  | Clr-transformed $\mu$ XRF-CS data at depth $i$ and element $j$ |
| $t_i$                                       | Calibrated age (in cal years BP) of depth <i>i</i>             |
| $\theta$                                    | Vector of regression parameters                                |
|                                             | $(\beta_{0}, \beta_{1}, \beta_{2}, \mu_{0})$                   |
| $\sigma_c$                                  | Standard deviation of the climate random walk                  |
| $\mu_{ij}$                                  | Mean of the multivariate normal distribution                   |
|                                             | for element j j at depth i                                     |
| Σ                                           | Covariance matrix of residuals from the regression             |
| MVN                                         | Multivariate normal distribution                               |
| $M_i$                                       | Vector of mean values $\mu_{ij}$ across all                    |
|                                             | elements for depth i                                           |
| $\omega_i$                                  | Variance term in the continuous-time                           |
|                                             | random walk, scaled by age spacing                             |
| $\beta_{0}$ , $\beta_{1}$ , and $\beta_{2}$ | Regression coefficients for element <i>j</i>                   |
| MDP                                         | Marginal Data Posterior (posterior                             |
|                                             | distribution for each time slice)                              |
| $\Sigma^{-1} \sim Wishart(R, k+1)$          | Prior on inverse covariance matrix                             |
| $\sigma_c \sim \text{LN}(a, b)$             | Log-normal prior on random walk standard deviation             |

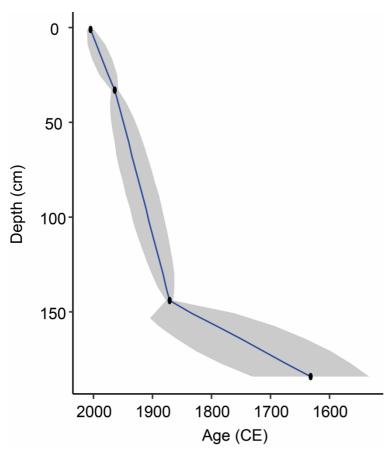
**Supplementary Information 2**: mathematical details on the marginal data posterior fitting.

Marginal data posteriors

In order to fit the marginal data posteriors (MDPs) we use the  $\theta$  which was calculated in the calibration stage and introduce the fossil XRF data ( $XRF^f$ ). We use k MDPs of each time slice as a reference to the sum of each multivariate normal distribution for each of the 11 chemical elements (j)

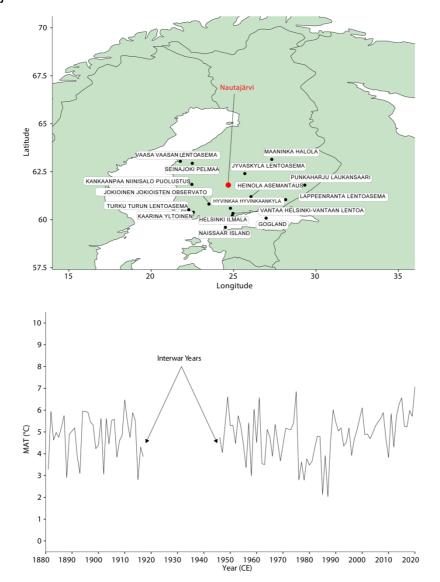
$$MDP_{ik} \mid C_i \sim MVN(\mu_{MDP_i}, prec_{MDP_i})$$

This stage also requires the use of a climate grid which is 50 possible climate values which are placed on a 50 x 50 regular grid. For example, if we were estimating temperature anomalies, the grid may look like a 50-part sequence from -3  $^{\circ}$ C to +3  $^{\circ}$ C, or precipitation may look like -100 mm to +100 mm. By having the climate grid helps the model choose sensible climate scenarios.


The output of the final MDP calculation is a MDP for each layer of the fossil XRF data which can be used within the final reconstruction of climate through time.

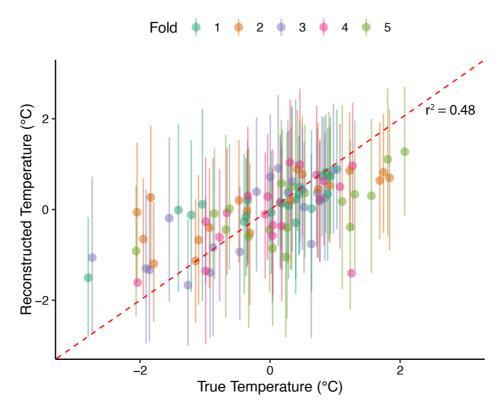
In the walk-through example (Section 4.0 main text), the climate grid chosen for Diss Mere was -3 °C and +3 °C having a range of 6 °C in total which is sufficient to cover the variability in temperatures reconstructed in the Holocene for other studies (Osman et al., 2021).

#### **Supplementary Information 3** Diss Mere's non-varved chronology


The full chronology and age model for the non-varved sediments is described and

published in Boyall et al. (2024). This is based on a combination of tephra layers that link the non-varved and the varve chronology, radiocarbon dates and the 1963 CE  $^{137}$ Cs peak. The average age uncertainty for the non-varved section of Diss Mere is  $\pm$  65 years and thus is higher than the varve chronology. During the calibration period (1700 – 1932 CE), the age uncertainty is smaller at the top of the sequence with a maximum uncertainty of  $\pm$  22 years between 1932 CE and 1800 CE, however this increases gradually to  $\pm$  110 years for the following century (Supplementary Figure 1). The sedimentation rate within this period is very high (0.15 cm/year) and includes up to 20 data points per year.

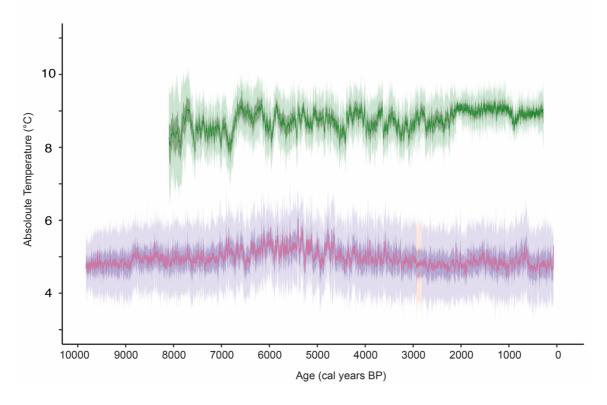



Supplementary Figure 1: Age-depth model for Diss Mere during the calibration period and the full age model for the non-varved section of the Diss Mere sediments can be found in Boyall et al. (2024).

## **Supplementary Information 4:** locations of meteorological weather stations for Nautajärvi calibration

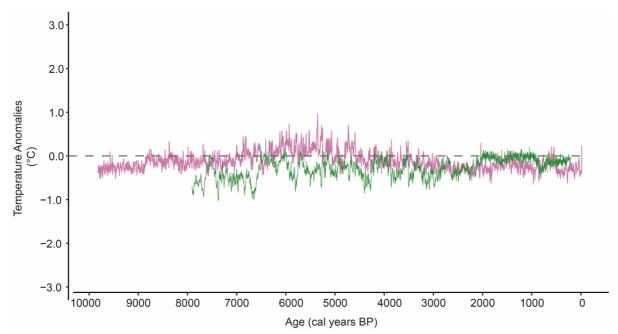


Supplementary Figure 2: A figure showing the locations of the weather stations used to build a composite record of annual mean temperatures for Nautajärvi and a timeseries showing the record with an interwar period of no data.


#### Supplementary Information 5: Validation results for Nautajärvi.



Supplementary Figure 3: True vs reconstructed temperature for Nautajärvi with the colours dots and bars representing the fold results for the median and confidence intervals, respectively.


The same out-of-sample validation approach detailed in the main manuscript for Diss Mere was applied on the calibration period for Nautajärvi. The coverage percentage for is 94.95% and the  $r^2$  value is 0.48 (P = <0.001).

# **Supplementary Information 6:** Absolute temperatures of the Diss Mere and Nautajärvi reconstruction



Supplementary Figure 4: A figure showing the Diss Mere (green) and Nautajärvi (purple) reconstructions in absolute temperatures

## **Supplementary Information 7**: Diss Mere and Nautajärvi temperature reconstructions



Supplementary Figure 5: Diss Mere (green) and Nautajärvi (purple) reconstructions without uncertainty envelopes. Reference period 1991-2020