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Abstract. Quantification of proxy records obtained from
geological archives is key for extending the observational
record to estimate the rate, strength, and impact of past cli-
mate changes but also for validating climate model simula-
tions, improving future climate predictions. SCUBIDO (Sim-
ulating Climate Using Bayesian Inference with proxy Data
Observations) is a new statistical model for reconstructing
palaeoclimate variability and its uncertainty using Bayesian
inference on multivariate non-biological proxy data. We have
developed the model for annually laminated (varved) lake
sediments, as they provide a high temporal resolution to
reconstructions with precise chronologies. This model uses
non-destructive X-ray fluorescence core scanning (XRF-CS)
data (chemical elemental composition of the sediments) be-
cause it can provide multivariate proxy information at a near-
continuous, sub-millimetre resolution, and, when applied to
annually laminated (varved) lake sediments or sediments
with high accumulation rates, the reconstructions can be of
an annual resolution. Whilst this model has been built for
this proxy type, its flexibility means that the model could be
applied to other multivariate proxy datasets.

SCUBIDO uses a calibration period of instrumental cli-
mate data and overlapping µXRF-CS data to learn about the
direct relationship between each geochemical element (re-
flecting different depositional processes) and climate but also
the covariant response between the elements and climate.
The understanding of these relationships is then applied to
the rest of the record to transform the proxy values into a

posterior distribution of palaeoclimate with quantified uncer-
tainties. In this paper, we describe the mathematical details
of this Bayesian approach and show detailed walk-through
examples that reconstruct Holocene annual mean temper-
ature from two varved lake records from central England
and southern Finland. We choose to use varved sediments
to demonstrate this approach, as SCUBIDO does not include
a chronological module; thus the tight chronology associated
with varved sediments is important. The out-of-sample vali-
dation for both sites shows a good agreement between the re-
constructed and instrumental temperatures, emphasising the
validity of this approach. The mathematical details and code
have been synthesised into the R package, SCUBIDO, for
simplification and to encourage others to use this modelling
approach and produce their own reconstructions. Whilst the
model has been designed and tested on varved sediments,
µXRF-CS data from other types of sediment records that
record a climate signal could also benefit from this approach.

1 Introduction

Anthropogenic climate change over the most recent decades
has heightened the need to look beyond the instrumental pe-
riod to find common patterns in both today’s climate and fu-
ture climate projections (IPCC, 2023; Kaufman and McKay,
2022). This calls for chronologically constrained, climate-
sensitive proxy records to extend the understanding of cli-
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mate variability before the instrumental period. These re-
constructions can be used to contextualise present changes
observed in the climate system, to identify recurrent trends
which are unable to be observed in the short instrumental
record (e.g. decadal–centennial variability), and as potential
analogues for future climate scenarios (Bova et al., 2021; Liu
et al., 2020; Snyder, 2010). In addition, quantitative recon-
structions provide the opportunity to perform climate sen-
sitivity experiments between proxy reconstructions and cli-
mate model simulations, strengthening climate projections
for the future (Kageyama et al., 2018; Burls and Sagoo, 2022;
Zhu et al., 2022).

The Holocene epoch (11 700 years to present, where
present is 1950 CE) has been the focus of many proxy
and modelling investigations (e.g. Liu et al., 2014; Bader
et al., 2020; Kaufman et al., 2020a; Bova et al., 2021;
Erb et al., 2022). This time period experienced tempera-
tures which were similar to those of today, and the avail-
ability of proxy records makes the Holocene a favourable
interglacial to investigate climate variability across multi-
millennial timescales. Recently, there have been a num-
ber of new reconstructions of global temperature which are
based on large proxy dataset compilations (Kaufman et al.,
2020a, b; Osman et al., 2021; Erb et al., 2022). These syn-
thesise different marine (Osman et al., 2021), or a combi-
nation of terrestrial and marine (Kaufman et al., 2020b),
proxy records and either use statistical approaches (Kauf-
man et al., 2020a) or combine these with data assimilation
(Osman et al., 2021; Erb et al., 2022) to reconstruct cli-
mate both spatially and temporally. These have provided
great insight into climate variability across large spatial
scales, which is not possible when looking at individual site
records. However, they all have a common limitation, which
is the temporal resolution of their reconstructions. Due to
the nature of the proxies included in the large datasets (e.g.
pollen, isotopes, foraminifera), the proxy signal is often non-
continuous, creating a median reconstruction resolution of
ca. 100–200 years (Kaufman et al., 2020b). Whilst this tem-
poral resolution is acceptable for looking at spatially ex-
tensive and long-term climate variability across centennial
to millennial timescales (Cartapanis et al., 2022), higher-
frequency variability, such as the multi-decadal climate sys-
tem, is unable to be investigated, even though it is key to
improving climate predictions within this century (Cassou
et al., 2018). Erb et al. (2022) produced a global temper-
ature reconstruction at a decadal resolution. However, they
used the Temp12k dataset, in which only 11 out of the 1276
records have a decadal or higher temporal resolution and
some records have a resolution of up to 700 years (Kaufman
et al., 2020b; Erb et al., 2022). This means that, in order for
them to achieve a decadal reconstruction, they had to lever-
age from transient climate simulations in a data assimila-
tion approach to upscale their temporal resolution to decadal.
Whilst a lot can be learnt from their reconstruction, using the
transient simulations means that much of the decadal climate

variability observed in this reconstruction would be forced
by the model, rather than by the proxy data alone.

Reconstructions of climate from a proxy record, whether
for a single site or a compilation of multiple sites, require
a transformation from the qualitative climate information
derived from proxy values to a quantified climate param-
eter with physical units of measurements (i.e. °C, mm of
precipitation) (Chevalier et al., 2020). A number of statis-
tical or mechanistic methods can be used, each with vary-
ing levels of complexity, uncertainty, and functionality (Tin-
gley et al., 2012). Each method requires a calibration stage
or training set relying on modern observations of the rela-
tionship between the proxy and climate which is then pro-
jected onto the proxy data (Juggins and Birks, 2012). Quanti-
tative approaches have matured from rather simplistic meth-
ods, including linear regression (e.g. Imbrie and Kipp, 1971),
to methods of increased complexity, such as weighted av-
eraging regression (e.g. ter Braak and Juggins, 1993; Liu
et al., 2020), composite plus scaling (e.g. Jones et al., 2009;
Kaufman et al., 2020a), modern analogue techniques (e.g.
Jiang et al., 2010), and artificial neural networks (e.g. Weg-
mann and Juame-Santero, 2023), which are summarised
well in Chevalier et al. (2020). Interpreting the palaeocli-
mate record and reconstructing climate can be complex and
is often faced with several challenges, including uncertain
chronologies, assumptions on proxy formation and preser-
vation, and non-stationary relationships between the climate
system and proxy response through time (Sweeney et al.,
2018; Cahill et al., 2023). This is especially true when the
archives used to reconstruct climate have faced significant
alterations due to rising anthropogenic activity over the last
several thousand years, questioning the stationarity of proxy–
climate relationships. Each of these complexities has led to a
greater reliance on hierarchical statistical approaches, such as
Bayesian statistics to reconstruct climate through time (Tin-
gley et al., 2012).

Bayesian statistics is an approach based on Bayes’ the-
orem and can be summarised as applying prior knowledge
to update the probability of a hypothesis when new data
become available (van de Schoot et al., 2021). It has been
used to answer many statistical problems, including the re-
construction of palaeoclimate (e.g. Haslett et al., 2006; Par-
nell et al., 2015; Tierney et al., 2019; Cahill et al., 2023).
Many frequentist (non-Bayesian) approaches to reconstruct
climate mentioned previously often struggle to capture the
complex relationships inherent between climate and proxy
data. This occurs when the learnt relationship in the cali-
bration interval or training data is fixed and then applied
directly onto the palaeodata, resulting in the assumption of
a stationary relationship through time and fixed uncertainty
estimates (Birks et al., 2012; Sweeney et al., 2018; Zander
et al., 2024). However, we argue that climate often exhibits
non-stationary behaviour and that this needs to be captured in
the chosen model. By contrast, a Bayesian approach allows
a continued update about the belief of the relationship be-
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tween the proxy, the climate, and associated parameters (Chu
and Zhao, 2011). In addition, Bayesian analysis can holisti-
cally account for different sources of uncertainty influencing
a reconstruction (Birks et al., 2012; Sweeney et al., 2018).
Bayesian methods can consider the uncertainties at all stages
of the modelling process and model these as joint probabil-
ity distributions producing properly quantified uncertainties
with credible intervals (Tingley and Huybers, 2010; Sweeney
et al., 2018; Cahill et al., 2023).

A rising number of studies have used a Bayesian frame-
work in their climate reconstructions (e.g. Haslett et al.,
2006; Holmström et al., 2015; Parnell et al., 2015; Tierney
et al., 2019; Hernández et al., 2020; Cahill et al., 2023).
However, they provide low temporal resolutions, as they are
based on non-continuously sampled proxies, resulting in re-
constructions of climate across multi-decadal to centennial
timescales. This calls for a greater number of quantified
climate reconstructions using hierarchical modelling from
records with refined chronologies and proxies sampled at a
high resolution.

Micro-X-ray fluorescence core scanning (µXRF-CS here-
after) is a non-destructive approach which provides multi-
variate information about the geochemical composition of
marine and lacustrine sediment cores (Davies et al., 2015).
The geochemical information produced by µXRF-CS pro-
vides relative changes in the element abundance (Bertrand
et al., 2024). Unlike alternative geochemical proxies (e.g. sta-
ble isotopes) or biological proxies (e.g. pollen, foraminifera),
which require discrete sampling, the µXRF-CS approach
scans sediment sequences, continuously enabling the proxy
data to be produced at very high sampling resolutions
(up to 0.2 mm). When this approach is applied on sedi-
ment sequences with either sufficient sedimentation rates
(> 0.5mmyr−1) or annual laminations (varves) (Zolitschka
et al., 2015), it can provide proxy information at a seasonal
to decadal timescale. µXRF-CS has mostly been used to
qualitatively reconstruct palaeoenvironments, as the relative
changes in the geochemical composition of sediments are a
direct response to the changing climatic and environmental
conditions in the lake catchment system (Peti and Augusti-
nus, 2022).

Our main goal here is to combine the advantages of us-
ing Bayesian inference in climate reconstructions with the
palaeoclimate value of varved records. In this methods-based
paper, we aim to (i) present a Bayesian approach to transform
multivariate µXRF-CS data into a quantitative palaeoclimate
dataset; (ii) demonstrate the applicability of this approach
on two varved lake records from Europe; (iii) compare the
output of the Bayesian model to previously published recon-
structions to test the climatic reliability; and (iv) promote its
use through the user-friendly R package, SCUBIDO (Sim-
ulating Climate Using Bayesian Inference with proxy Data
Observations).

2 Methods

2.1 Proxy data

The modelling approach has been built for the use of µXRF-
CS data as the chosen proxy. Raw µXRF-CS data originate in
the form of element intensities, which are often non-linear to
the concentration of elements in the sediment and can also be
affected by the sediment’s physical properties, measurement
time, and sample geometry; therefore we use a centred log ra-
tio (clr hereafter) to mitigate against these problems (Aitchi-
son, 1986; Tjallingii et al., 2007; Weltje and Tjallingii, 2008;
Weltje et al., 2015; Dunlea et al., 2020). Transforming raw el-
ements to clr elements requires a dataset with minimal low or
null counts (Bertrand et al., 2024). Therefore, elements with
excessive null values should be removed before the trans-
formation is performed. Following this, this approach does
not assume that any element has a stronger relationship with
climate; thus, we pass all elements which were able to be
clr-transformed to the model.

2.2 Bayesian framework

For our quantitative reconstruction of climate given the
µXRF-CS proxy data, we use Bayesian inference and base
our framework on the modelling approach described in Par-
nell et al. (2015) and Hernández et al. (2020). Below we out-
line the notation used throughout:

– C is used to represent the value of the climate variable
at each time point.

– We use XRFij to indicate the centred-log-transformed
µXRF-CS data at each depth of the sediment core (i),
where i = 1, . . .,n depths. As the µXRF-CS data are
multivariate, j reflects the number of different centred-
log-ratio-transformed elements (j = 1, . . .,n elements).

– ti denotes the calibrated age (t) of each depth (i) in
calyrBP (before present, where present refers to 1950).
It is important to note that SCUBIDO does not contain
a geochronological module; thus age uncertainty is not
considered in this modelling approach.

– θ is used to represent the parameters (µ,β0,β1,β2)
which govern the relationship between each of the
µXRF-CS elements at each time point and the climate
variable. These are subscripted with j to denote the el-
ement to which they refer.

– σc is used to represent the standard deviation of climate
per unit of time for our random walk model detailed in
this paper.

– A superscripted m and f are applied to each of the vari-
ables when referring to the modern and fossil datasets,
respectively. For example, Cm equates to the modern
climate, and XRFf refers to the fossil µXRF-CS data.
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More definitions of variables and model parameters used in
the model framework are presented in Table S1 in the Sup-
plement.

The Bayesian posterior distribution we aim to estimate is
outlined below:

p
(
Cf,θ,σc|XRFf,Cm,XRFm)

∝ p(XRFm
|Cm,θ ) ·p

(
Cf,Cm

|σc
)
p(σc)p(θ ) .

(1)

The posterior distribution on the left side of the equa-
tion, p(Cf,θ,σc|XRFf,Cm,XRFm), represents the probabil-
ity distribution of the fossil climate given fossil and mod-
ern µXRF-CS data and modern climate. We use the likeli-
hood expression p(XRFm

|Cm,θ ) to represent the calibration
period, where we learn about the relationship between the
µXRF-CS data and climate variable, discussed in more detail
in Sect. 2.3.2. p(XRFf

|Cf,θ ) then represents the likelihood
of the fossil data given the climate, and, finally, (Cf,Cm

|σc)
represents the prior distribution associated with the fossil cli-
mate and its dynamics over time.

2.2.1 Model fitting

To fit the above model, we follow the computational short-
cut of Parnell et al. (2015), which assumes that all the infor-
mation about the calibration parameters (θ ) comes from the
modern data. This means that the model is fitted in two parts,
with the first part being the estimation of θ within a calibra-
tion period and the second part estimating the fossil climate
(Cf) and σc. Thus, the resulting model becomes

p
(
Cf,θ,σc|XRFf,Cm,XRFm)

∝ p(θ,σc|XRFm
|Cm)

· p
(
XRFf

|Cf,θ,σc
)
p

(
Cf,Cm

|σc
)
p(σc) .

(2)

The first term on the right-hand side is estimated separately
and represents the posterior distribution of the modern cal-
ibration relationship parameters, which is then not further
learnt from the fossil data in the second part of the model fit.
Given the different parts of the modelling approach, we split
the following section into two, firstly fitting the modern cali-
bration period (Sect. 2.3.2) and secondly using what is learnt
from this stage to reconstruct fossil climate (Sect. 2.3.3).

2.2.2 Calibration model fitting

Like all quantitative transformations of palaeoclimate, the
first step is to understand the relationship between the proxy
and the climate variable. In our modelling approach, this rela-
tionship is learnt from the first term on the right-hand side of
Eq. (2) p(θ,σc|XRFm,Cm) and includes not only the causal
relationship between the individual µXRF-CS elements and
climate but also the covariance between the elements. The
data used for this section of the model are from the most re-
cent period and must be aligned with an overlapping period
of instrumental climate (Cm), and we call this our calibration
dataset.

This step assumes that some of the variability observed
in the proxy data is controlled by the climate variable; this
is sometimes referred to as a “forward” model. Here, we
want to estimate the posterior distribution of the θ param-
eters (β0,β1,β2,µ0) and the climate variability parameter σc
from a joint probability distribution using the following:

p (θ,σc|XRFm,Cm)∝ p(XRFm
|Cm,θ ) ·p (Cm

|σc)

· p(θ )p(σc) .
(3)

We use p(θ ) to represent the prior distribution of the
parameters β0,β1,β2,µ0, with σc and p(Cm

|σc) repre-
senting the prior distribution on modern climate (we use
a random walk with standard deviation σc at each time
point). p(XRFm

|Cm,θ ) is our likelihood distribution, and, fi-
nally, the parameter’s posterior distribution is represented by
p(θ,σc|XRFm,Cm).

To approximate the relationship between the clr-
transformed µXRF-CS data and the climate, we use a mul-
tivariate normal polynomial regression model for each of the
µXRF elements:

XRFm
i ∼MVN(Mi,6)

Mi = [µi1,µi2, . . .,µi11]

µij = β0j +β1j ·C(ti)+β2jC(ti)2 .

(4)

The mean term µij captures the relationship between cli-
mate and assumes a quadratic relationship with a single mode
when β2j < 0. We use 6 to represent the covariance matrix
of the relationship between each of the different elements
which are not explained by µij. We acknowledge that other
more complex models could be used to fit the relationship
between the climate and the µXRF-CS elements rather than
a polynomial model explained here. However, when experi-
menting with a more complicated P-spline model, we expe-
rienced overfitting and a significant reduction in the compu-
tational speed, whereas the polynomial regression model is
sufficient to capture the relationships between the elements
and climate without having a large computational burden.

Vague normal distributions are used for the priors on
β0,β1, and β2; an inverse Wishart prior on 6; and finally
a vague uniform prior distribution for σc:

B0j ∼N (0,100) , B1j ∼N (0,100), B2j ∼N (0,100)

6−1
∼Wishart(R,k+ 1) .

(5)

For the prior distribution on climate, we use a continuous-
time random walk:

P
(
Cm
i

)
∼N (Cm

i−1,ωi)

ωi =
(
tmi − t

m
i−1

)
· σ 2

c .
(6)

We give σc a vague uniform distribution: σc ∼ U (0,100). We
choose the use of vague priors in this part of the model be-
cause we do not want to make any assumption about the re-
lationship between the µXRF-CS elements and climate; in-
stead, we allow the model to learn only about the data.
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2.2.3 Fossil model fitting

Once the model has learnt about the relationship between the
µXRF-CS data and climate, the second part of the compu-
tational shortcut can commence (Parnell et al., 2015). This
firstly involves using the learnt relationship from the cal-
ibration period to create marginal data posteriors (MDPs),
which represent all the information about fossil climate con-
tained in one layer of µXRF data. Thus, we initially estimate
the Cf using only the information within a particular time
slice (XRFf). Using only the information from one time slice
at a time allows the model to marginalise over the parame-
ters (θ ) and reduce the dimensionality of the data. This step
decreases the computational burden of estimating both the
climate–proxy relationship and the fossil climate values in
the same step. Information on the MDP fitting can be found
in Sect. S2 in the Supplement and in more detail in Parnell
et al. (2015, 2016).

To accurately capture the climate dynamics of the fossil
period, we include a more informed prior for the random
walk of fossil climate by re-using the continuous-time ran-
dom walk from the modern calibration module and combine
each of the individual MDP layers once they are corrected.
This enables us to create a complete joint posterior distribu-
tion of the combined Cf and Cm and fit the model detailed in
Eq. (2). As above, the varying time steps are captured via a
dynamic precision term:

P
(
Cf
i

)
∼N

(
Cf
i−1,ωi

)
ωi =

(
t fi − t

f
i−1

)
· σ 2

c .
(7)

To fully learn the climate dynamics standard deviation pa-
rameter from both the fossil and the modern data, we set a
log-normal prior distribution for σc:

σc ∼ LN(a,b) . (8)

The values a and b are chosen to match the posterior distri-
bution from the modern calibration model fit.

The model produces an ensemble of posterior climate
paths that cover the fossil and modern periods. This considers
the uncertainties in the µXRF-CS proxy–climate relationship
with a mild smoothing constraint arising from the random
walk prior. The ensemble can then be summarised by taking
the median value of the posterior distribution Cf and calcu-
lating the 50 % and 95 % credible interval of the reconstruc-
tion using the 2.5 %, 25 %, 75 %, and 97.5 % percentiles for
plotting.

3 Walk-through example

This next section of the paper provides a walk-through ex-
ample of each stage of the Bayesian model fitting on real-
life µXRF-CS data. In an attempt to make this modelling ap-
proach as user-friendly as possible, we have produced the
R package SCUBIDO (Simulating Climate Using Bayesian

Inference with proxy Data Observations), which synthesises
the modelling process into several distinct steps. The pack-
age can be downloaded from the GitHub repository, https:
//github.com/LauraBoyall/SCUBIDO (last access: 15 August
2025), alongside a walk-through example and a link to a
video tutorial on how to use the R package.

We first demonstrate this example on the lake sediments
of Diss Mere, a small lake in the UK containing Holocene
varved sediments. This site has been chosen due to the sed-
iments being annually laminated for much of the Holocene
(from approximately 10 000–2000 years before 1950 CE, cal.
BP hereafter); it therefore has a refined chronology based on
annual layer counts with age uncertainties of less than a few
decades (Martin-Puertas et al., 2021), which is important for
this modelling approach, as we do not model or consider
chronological uncertainty. The averaged sedimentation rate
for the varved sequence is 0.4 mmyr−1, with variability be-
tween 0.1 and 1.8 mmyr−1 (Martin-Puertas et al., 2021). The
most recent 2 millennia are recorded in the top 9 m of the sed-
iment sequence, where the annual laminations are poorly pre-
served, and counting was not possible. However, the chronol-
ogy has been constrained through a series of radiometric dat-
ing techniques (14C, 137Cs) and tephrochronology, providing
a high average sedimentation rate of ca. 0.5 cmyr−1 and de-
scribed in detail in Boyall et al. (2024) and summarised in
Sect. S3. Both the modern sediment depositional processes
and palaeosediments have been studied in detail through
modern lake monitoring, microfacies analysis, and analysis
of the µXRF-CS record, which all highlighted that the main
environmental processes explaining the sediment deposition
in the lake have not changed through time and respond to
climate variations on seasonal to multi-centennial timescales
(Boyall et al., 2023; Martin-Puertas et al., 2023; Boyall et al.,
2024). Whilst human activity has had an impact on the lake
sedimentation in the last 2000 years, i.e. increased detrital
input into the lake (Boyall et al., 2024), the lake sedimenta-
tion and sediment composition keep responding to the annual
lake cycle (monomictic), which is driven by climate parame-
ters such as temperature and wind speed (Boyall et al., 2023).
The sensitivity of these sediments to weather and climate
variability thus provides scope for testing this modelling ap-
proach.

The Diss Mere sediments were scanned using an ITRAX
µXRF-Core scanner (Cox Analytical Systems) at the GFZ-
Potsdam, and geochemical elements include Si, S, K, Ca, Ti,
V, Mn, Fe, Rb, Sr, and Zr at 200 µm resolution with a dwell
time of 6 s and were later resampled to 400 µm for process-
ing (Boyall et al., 2024). These elements were chosen based
on having a standard error < 15% (Boyall et al., 2024) and
not too many null values to perform the clr transformation
(Bertrand et al., 2024).

Boyall et al. (2024) found a good visual relationship be-
tween the µXRF-CS data, specifically the element calcium
(Ca) (linked to temperature-induced authigenic calcite pre-
cipitation deposited during spring to early autumn), and
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annual mean temperature evolution through the Holocene
(Davis et al., 2003; Kaufman et al., 2020a; Rasmussen et al.,
2007). Whilst this study found the strongest relationship to
climate with Ca, all the elements are used in this modelling
approach, given that SCUBIDO models the covariance be-
tween the elements and learns from these relationships. For
the first 2000 years of the geochemical record between ca.
10 300 and 8100 cal aBP, the environmental interpretation of
the element data reflected a non-climate local signal associ-
ated with the stabilisation of the lake depositional environ-
ment during the early Holocene (Boyall et al., 2024). There-
fore, we attempt this modelling approach on only the geo-
chemical data from 8100 cal aBP to present. We emphasise
to future users of SCUBIDO that they should also conduct a
qualitative analysis of the µXRF-CS data and environmental
interpretation prior to using SCUBIDO to ensure that their
record is climate-sensitive and has not been subjected to sig-
nificant alterations from human activity.

3.1 Data setup

One of the most fundamental considerations for any type of
palaeoclimate reconstruction is the choice of climate vari-
able to reconstruct (e.g. annual mean temperatures, precipi-
tation, growing season), given that different proxies are sen-
sitive to a number of climate drivers (Sweeney et al., 2018).
The SCUBIDO modelling approach can easily be adapted
to reconstruct different climate parameters with overlapping
instrumental data. However, it is important to note that not
all lakes are responsive to every climate parameter of inter-
est; thus the outputs may not be useful. For example, we
attempted to run SCUBIDO on the Diss Mere µXRF-CS
data to reconstruct both annual mean temperature and pre-
cipitation. However, the SCUBIDO output for precipitation
from Diss Mere was not successful, as the reconstruction was
completely flat, not resembling precipitation variability, and
there was no predictive power between the elements and in-
strumental precipitation. Annual mean temperature, on the
other hand, worked well, supporting the temperature signal
recorded in the µXRF-CS data during the Holocene (Boy-
all et al., 2024). Another point to highlight at this stage is
that we run the Bayesian model using a multivariate dataset
made of the elements measured by the µXRF scanner. We
do so to avoid any bias through time, as the climate–proxy
relationship might not be stable over time. SCUBIDO also
includes the relationship between elements (covariance) to
deal with this issue. As the top of the µXRF-CS data (most
recent period of sediment accumulation) begins at 1932 CE,
a long-term instrumental temperature dataset was required to
obtain a sufficient length for the model to learn about the
climate–proxy relationship. We therefore rely on the Hadley
Central England Temperature (HadCET; Met Office Hadley
Centre, 2024) dataset, which is the longest monthly tempera-
ture dataset available. However, it is worth noting that, whilst
this is the best instrumental record that we could use for

Diss Mere given the long record, the meteorological stations
used in this period of the record are not proximal to the site;
therefore some of the local temperature changes which are
recorded in the proxy record may not have been recorded by
the meteorological station or vice versa.

The first step was to divide the data into two: the mod-
ern calibration dataset (containing an age index (t), modern
µXRF-CS data (XRFm), and the overlapping instrumental
climate data (Cm)) and the fossil data (containing the age
(t) and µXRF-CS data for the remaining data (XRFf)). As
there are many µXRF-CS data points per year, we linearly
interpolated the data to resample to annual means and align
the XRFm dataset with the corresponding year in the Had-
CET dataset. We begin the calibration dataset at 1700 CE,
and the top of the µXRF-CS data finishes at 1932 CE, and,
because of a short gap where there was no µXRF-CS data
present, this meant that the calibration dataset was 193 years
long. Temperatures were converted into anomalies from the
mean of the calibration period, as this not only removes the
arbitrary mean of the temperature reconstruction, making the
data more comparable, but it can also better constrain the
climate values that the model can predict (see Sect. S2). The
fossil data were provided in their original temporal resolution
ranging between 5 data points per year to > 25 data points
per year depending on the sediment accumulation rate. This
resulted in 59 461 time slices covering the period between
8100 cal aBP and 1699 CE.

We check the model convergence using R̂ values (Gelman
and Rubin, 1992; Brooks and Gelman, 1998) and evaluate the
performance of the model using both in-sample and out-of-
sample posterior predictive calibration checks (Gelman et al.,
1995). We detail this analysis in more detail below.

3.2 Model fitting

The full model was run within the SCUBIDO R pack-
age. This package depends on Just Another Gibbs Sampler
(JAGS; Plummer, 2003) through the R package “R2jags” (Su
et al., 2024) to fit the modern calibration model and part of
the fossil modelling stage. We ran the calibration model for
100 000 iterations and ignored the first 40 000 runs to allow
the model to settle. We repeated this process four times us-
ing different starting values to run the Markov chain Monte
Carlo (MCMC) process in parallel. The R̂ values were con-
sistently < 1.05, indicating that the algorithm had success-
fully converged during the MCMC process (Gelman and Ru-
bin, 1992; Brooks and Gelman, 1998; Vehtari et al., 2021;
Su et al., 2024). Figure 1 shows the quadratic relationships
between the individual µXRF-CS elements and temperature
in the calibration period.

In more conventional approaches, where µXRF-CS data
are used to qualitatively reconstruct climate, only one ele-
ment, or pair of elements (in the form of a ratio), is used
at a time to reconstruct climate (for example, Zander et al.,
2024). This would be equivalent to our approach if had we
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Figure 1. Relationship between the µXRF-CS elements and instrumental annual mean temperature from the calibration period. Individual
µXRF-CS elements are plotted against the instrumental climate anomaly data for each year. The quadratic relationships are represented
by lines, with the solid, dotted, and dashed lines representing the uncertainty ranges of 50 %, 95 %, and 75 %, respectively. Note that this
modelling approach uses multivariate response regression; however, these plots display the individual response between each element and
climate, hence the weak relationships plotted.

used a diagonal structure for 6 (Eq. 4). Such a diagonal
structure treats every element as independent and therefore
may falsely reduce the uncertainty in the resulting recon-
structions. However, the novel contribution of our model is
that it includes a multivariate response regression approach
that also models the covariances between the elements, so
we argue that it produces more realistic, but also more uncer-
tain, reconstructions. This explains why Fig. 1 shows only
weak relationships between the individual 11 elements and
temperature. When each of these relationships are combined
in the multivariate response regression, our model provides a
more precise posterior estimate of climate.

The fossil reconstruction stage for Diss Mere used 2000 it-
erations and ignored the first 200 runs and repeated this pro-
cess four times. Fewer iterations are required for this stage
for convergence, as the model complexity is substantially re-
duced compared to the modern calibration stage as MDPs are
used. R̂ values were < 1.05, indicating satisfactory conver-
gence of the algorithm. The full reconstruction using all the
SCUBIDO functions took approximately 16 h on a standard
computer using a single core.

3.3 Model validation

As a more rigorous test of the model performance, and to
maximise the use of the palaeoclimate reconstructions for
climate services and model calibration, we further test its un-
certainty calibration properties using an out-of-sample 5-fold
cross-validation routine (Mauri et al., 2015; Chevalier et al.,
2020). We removed 20 % of the modern data and re-fitted the
full model to obtain posterior estimates of the climate vari-
able for years which the model did not see during the training
phase. We repeated this step five times, such that each obser-
vation year was removed once. We can then compare these
out-of-sample predicted climate values with the true values
in the modern data and see how often their uncertainty ranges
cross with the true values. For example, in an ideal model,
95 % of these values would lie within the 95 % interval, 50 %
would lie in the 50 % interval, etc. Although, in real-world
data, the estimated proportion inside the credible intervals
may be slightly higher or lower, out-of-sample evaluation of
climate reconstructions seems not to be a common feature in
the literature, but we would strongly advocate this in the fu-
ture, especially if a goal is for the reconstructions to be used
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Figure 2. Results from the out-of-sample validation with true in-
strumental temperatures and reconstructed temperatures. Coloured
dots represent the temperature values, and error bars represent the
predicted temperature’s 95 % uncertainty interval for each of the 5
folds. Note that the dashed red line is not the regression line and
instead reflects the 1 : 1 relationship between true and reconstructed
temperatures.

beyond the palaeoclimate community to, for example, help
constrain climate model simulations.

The results of the 5-fold cross validation showed that, in
97.4 % of the 193 calibration temperatures, the reconstruc-
tions fell within the 95 % credible interval (Fig. 2). The cov-
erage percentage for each individual fold ranged by 5.4 %,
from 94.6 %–100 %. This demonstrates the validity of the
modelling approach and shows that most of the temperature
variability observed in the instrumental record is captured
within the confidence intervals of the reconstructed climate.

The coefficient of determination (r2) for the true and re-
constructed temperature is 0.42 (P 5 0.001), which suggests
that there is some skill in the model prediction of the median
values; however, it does suggest that not all the median values
perfectly align with the true instrumental temperature. This is
not uncommon for palaeoclimate reconstructions, especially
as we are comparing proxy data that can also be affected by
non-climate factors, such as human activity and internal lake
processes. In addition, we are using instrumental temperature
data which are not located proximal to the lake and contain
large uncertainties, especially in the earliest years of the Had-
CET dataset (Parker et al., 1992). Nevertheless, the coverage
percentage and overall good fit of the model can provide a
reasonable assumption of the validity of this approach.

4 Annually resolved annual mean temperature
reconstructions in Europe

4.1 Case site 1: Diss Mere, central England

The reconstruction of annually resolved temperatures for
the past 8100 cal aBP given the µXRF-CS from Diss Mere
using Bayesian inference is presented in Fig. 3. The me-
dian Holocene temperature reconstructed from Diss Mere
is 9.65 °C and has a maximum range of 1.68 °C, with tem-
perature anomalies between −1.26 and 0.42 °C (7.90 and
9.58 °C absolute temperatures). Most of the temperatures be-
fore ca. 2000 cal aBP are cooler than present (9.16 °C), with
only isolated centennial-scale periods where temperatures
are warmer (Fig. 3). The centennial to interannual variabil-
ity is, however, reduced in the last 2 millennia, which may
reflect the switch to non-varved sediments at this time. The
first millennium of the Common Era is slightly warmer than
today, remaining similar to present (Fig. 3).

4.2 Case site 2: Lake Nautajärvi, southern Finland

We have applied the SCUBIDO approach to reconstruct
Holocene annual mean temperature from Nautajärvi, a lake
in southern Finland with different lithology and sedimen-
tation processes to those of Diss Mere. Lake Nautajärvi is
also a varved lake but shows uninterrupted laminated sedi-
ments from the early Holocene to present (Ojala and Alenius,
2005). Except for the first 200 years of the record (9852–
9625 cal aBP), when varves were thick (ca. 5 mm) due to a
high detrital input during the formation of the lake (Ojala
and Alenius, 2005; Ojala et al., 2008b), the sedimentation
rate at Nautajärvi (0.2–1.6 mmyr−1) is similar to the varve
thickness of Diss Mere (0.1–1.4 mmyr−1). Analysis of both
the sediments and the µXRF-CS data from Nautajärvi re-
vealed that the lake, and subsequent sediment record, is re-
sponsive to climate variability (Ojala et al., 2008a; Lincoln
et al., 2025); thus it is also a good record on which to apply
the Bayesian methodology. Table 1 summarises the charac-
teristics of the modelling approach applied on the Lake Nau-
tajärvi varved sediment sequence; for full details about the
µXRF-CS data from Nautajärvi, please refer to Lincoln et al.
(2025).

Figure 4 shows the annual temperature reconstruction
from Nautajärvi for the past ca. 9800 years overlaid on top of
the Diss Mere reconstruction. The average Holocene temper-
ature reconstructed from Nautajärvi is 5.1 °C (Fig. S4) and
has a range of 1.60 °C between 4.22 and 6.03 °C (−0.39 and
1.22 °C anomalies), which is within the range of variabil-
ity observed during the instrumental period. Overall, the re-
constructed Holocene temperatures at Nautajärvi are cooler
than present, except for the period between ca. 7000 and
4000 cal aBP, where temperatures are warmer and experi-
ence greater variability.
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Figure 3. Annually resolved temperature reconstruction from Diss Mere. The dark-green line represents the median reconstruction, with the
50th percentile and 95th percentile in darker green and lighter green, respectively. The data are presented in anomalies for the UK long-term
average across 1991–2020, and the dashed grey line marks the centred mean of 0 °C using this period.

Table 1. Summary table of the Lake Nautajärvi data used for the Bayesian reconstruction. More information about the µXRF-CS instrument
setup is presented in Lincoln et al. (2025).

µXRF-CS setup

µXRF-CS details µXRF-CS elements used Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Rb, Sr, and Zr

Instrument setup Sediments were scanned with a dwell time of 6 s, conducted using an Rh tube.
Rh X-ray source operated at 30 kV and 60 mA.

Calibration data Meteorological data Temperature data for Nautajärvi were from 16 weather stations within a 200 km
radius from the lake obtained gathered using the “rnoaa” package (Chamberlain
et al., 2024). Annual mean temperature is used. Data preservation from the
interwar years (1918–1945) is limited and/or missing; thus these have been
excluded from the calibration dataset (Fig. S2 in the Supplement).

Age range −70 to 68 cal aBP

Number of time slices 102

Reconstruction data Age range 69 to 9829 cal aBP

Number of time slices 16 418

The comparison of Nautajärvi and Diss Mere through the
Holocene shows slightly different multi-millennial tempera-
ture evolutions, where temperatures in England steadily in-
crease, whereas Finland reaches maximum temperatures in
the mid-Holocene and then decreases thereafter (Fig. 4). We
discuss millennial-scale trends in the next section when we
compare our reconstructions with published low-resolution
Holocene temperature reconstructions. On multi-decadal
to centennial timescales, there is a good agreement be-
tween the anomaly values at both sites showing similar
trends and amplitude of change, especially with the variabil-
ity during the mid-Holocene from ca. 4000–6500 calyrBP
(Fig. S5). Larger variability in Diss Mere (England) prior to

6500 calyrBP compared to Nautajärvi (Finland) might re-
flect different regional climate sensitivity during a period
when the instability of the Laurentide ice sheet and hydro-
logical changes in the Baltic Sea region still had an important
role in the reconfiguration of the climate system and spatial
distribution of climate patterns in the Northern Hemisphere
(Yu and Harrison, 1995; Wastegård, 2022).

4.3 Palaeoclimate comparisons

No previously published reconstructions of annual mean
temperature exist for Diss Mere or Nautajärvi, so there can
be no comparison to test whether the temperatures pro-
duced from the SCUBIDO modelling approach are sensible
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Figure 4. Annually resolved temperature reconstruction from Nautajärvi for the past ca. 9800 years (pink) overlaid on Diss Mere’s recon-
struction (green). The dark-pink line represents the median reconstruction, with the 50th percentile and 95th percentile in darker pink and
lighter pink, respectively. The anomalies are calculated with reference to the 1991–2020 mean from the instrumental data. The dashed grey
line marks the 0 °C mean.

on longer timescales. Whilst there have been some publi-
cations from these lake records which discuss climate vari-
ability, the proxies discussed are either not interpreted as
temperature (e.g. summer varve thickness from Diss Mere;
Martin-Puertas et al., 2023), reflect temperature in the sum-
mer season only (e.g. the Caclr record from Diss Mere; Boy-
all et al., 2024), or reconstruct the growing degree-day (e.g.
from Nautajärvi in Ojala et al., 2008a) and thus may not cap-
ture the same variability and trends as our annual mean tem-
perature reconstructions. Therefore, we compare our recon-
struction results with large spatial multi-proxy reconstruc-
tions (Temp12k, Kaufman et al., 2020a) and data assimi-
lation results (Last Glacial Maximum Reanalysis (LGMR),
Osman et al., 2021; Holocene-DA, Erb et al., 2022) for the
same period (Fig. 5). We choose these reconstructions to
compare with because they are all based on large-scale data
compilations utilising a range of models and proxy types.
The Temp12k and Holocene-DA reconstructions both use the
Temperature 12k proxy database (Kaufman et al., 2020b),
with the Temp-12k reconstruction using a multi-method en-
semble to reconstruct temperatures at a centennial resolution
(Kaufman et al., 2020a) and the Holocene-DA reconstruction
using an updated version of this dataset in a data assimilation
framework to combine with transient climate simulations in
order to obtain a reconstruction of temperature at a decadal
resolution (Erb et al., 2022). On the other hand, the LGMR
reconstruction uses only marine proxy records in a data as-
similation approach to produce a reconstruction of tempera-
ture at a multi-centennial resolution.

The multi-millennial trends in the reconstructions are best
demonstrated with both Fig. 5a and b, showing the clear
evolution of temperatures through the Holocene. Figure 5a

shows the slope from linear models conducted on the dif-
ferent reconstructions to explore the evolution of tempera-
ture through time. The Diss Mere, Holocene-DA (Erb et al.,
2022), and LGMR (Osman et al., 2021) linear models all
demonstrate an amelioration of temperature through the
Holocene with similar rates of warming, especially during
the early to mid-Holocene, where there are almost no dif-
ferences between the records (Fig. 5a). The Temp-12k re-
construction from Kaufman et al. (2020a) and the Nauta-
järvi reconstruction from this study deviate from the gen-
eral increasing trend observed in the other reconstructions
and instead show an overall decrease in temperature from
the early to late Holocene (Fig. 5a). These records have a
more definitive early Holocene Thermal Maximum (HTM)
with cooling thereafter in comparison with the other recon-
structions, hence the linear model describing a general de-
crease in temperature through time. As part of the current dis-
cussion on the Holocene temperature conundrum (Liu et al.,
2020), the differences in temperature evolution between the
reconstructions may be a factor of a seasonal bias, which has
been already noted for the Temp-12k reconstruction reflect-
ing mostly summer conditions and/or spatial imbalances in
proxy distributions, especially in the higher latitudes (Bova
et al., 2021; Erb et al., 2022).

The amplitude of variability from the SCUBIDO-
produced reconstructions from this study is much larger than
the global reconstructions. Ultimately, this is because the
LGMR and Temp12k have low temporal resolutions, caus-
ing the reconstruction to be smoothed, and contain a range of
proxy types. Whilst the Holocene-DA reconstruction tech-
nically has data every 10 years, as mentioned in their study
(Erb et al., 2022), the reconstruction does not contain robust
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Figure 5. Comparison between different Holocene temperature reconstructions in anomalies. Note that the reference period for all these
reconstructions is the mean between 2000–0 cal aBP. (a) Linear relationships between the reconstructed temperature and time for Diss Mere
(green), Nautajärvi (purple), LGMR (Osman et al., 2021) (blue), Temp12k (Kaufman et al., 2020) (yellow), and the Holocene-DA (Erb
et al., 2022) (orange). (b) The reconstructions from the above studies with Diss Mere and Nautajärvi resampled to 100 years to explore
the centennial-scale variability and match the resolution of the other reconstructions. The LGMR and Temp12k are presented at a 200-year
resolution. The envelopes for each line in the respective colours represent the uncertainty for each reconstruction. (c) A focus window on the
Common Era with the Diss Mere temperature reconstruction with the LMR (Tardif et al., 2019) (orange) for a grid 50 : 60° N, 5° W : 15° E.
The solid bold lines are at the 10-year decadal moving average, whereas the transparent envelopes are the original annual resolution.

decadal information from the proxy records and is achieved
instead by utilising both proxy and transient models to-
gether; thus the low amplitude is still inherent from the low-
resolution proxy data used.

The last 2 millennia

Reconstructing palaeoclimate for the Common Era (past
2000 years) has been the focus of many climate studies (e.g.
Smerdon and Pollack, 2016; PAGES2k Consortium, 2017;
Tardif et al., 2019; Anchukaitis and Smerdon, 2022). To
test the Bayesian reconstructions from this study through
a period of increased anthropogenic disturbance, we com-
pare the reconstructions to the Last Millennium Reanalysis

(LMR; Tardif et al., 2019) (Fig. 5c). Whilst the LMR and the
Bayesian reconstructions are annual, we decide to compare
at a 10-year resolution to reduce noise and explore the main
decadal-scale trends between each record. Despite increased
anthropogenic disturbance to the lake system over the past
2000 years at Diss Mere (Boyall et al., 2024) and a disrup-
tion to the proxy signal and lake functioning, the comparison
between the overall trend of the LMR and Bayesian temper-
ature reconstructions is good and showed similar temporal
evolutions (Fig. 5c).

In the first millennium (0–1000 CE), the LMR is much less
variable than the Bayesian reconstructions, and this can prob-
ably be attributed to the very low number of proxy records
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used for the first few hundred years of the reconstruction
(Tardif et al., 2019). Between ca. 500 and 1000 CE, each of
the reconstructions are very similar (Fig. 5c) and follow the
1000 CE temperature decrease. There are some periodic in-
creases in temperature at around 1100–1300 CE, mostly seen
at Nautajärvi, but these might reflect the Medieval Climate
Anomaly, as they begin to decrease across all reconstructions
at ca. 1300 CE.

The good consistency between the records highlights that,
despite the different sediment varve characteristics, varve
formation processes, and interactions between sedimentation
and human activity, the Bayesian approach is able to recon-
struct a quantified local to regional climate record from the
µXRF-CS.

5 Conclusions and recommendations for future use
of SCUBIDO

This study presents the first attempt at reconstructing quan-
titative annual mean temperatures from multivariate µXRF-
data from sediment records using Bayesian inference. Sev-
eral methodological decisions were made when building
SCUBIDO which we believe can help contribute to the ad-
vancement of climate reconstructions within the community.
The most important choice was to use Bayesian inference
not only to obtain a single temperature estimate at each
time point, but also to obtain a full posterior distribution to
properly quantify uncertainties. In addition, we designed the
model to include all geochemical elements and have SCU-
BIDO model their covariances instead of relying on prior as-
sumptions about relationships, and the final choice was to
synthesise SCUBIDO into an R package for the community.
We believe that this was the best way to be as user-friendly
as possible, as we think others could find this approach inter-
esting and help make new annually resolved palaeoclimate
reconstructions.

The ability of the Bayesian theorem to handle various
types of data, changing time steps/resolutions, and gaps
within datasets has been utilised in this study; for exam-
ple, there are periods within the µXRF-CS records from both
Diss Mere and Nautajärvi which have short gaps and pe-
riods where the sedimentation rates are variable, resulting
in changing time steps. However, this was easily mitigated
against by using a Bayesian framework.

In this paper, we apply SCUBIDO to two proxy records to
reconstruct Holocene annual mean temperature in Europe,
and the results showed consistency with previously pub-
lished palaeoclimate reconstructions on a multi-millennial
timescale. However, given the model and the high-resolution
proxy data from this study, it provides a much more detailed
overview of temperature evolution through the Holocene by
increasing the resolution to annual at a single site. Of course,
the records to which we compared our model (Holocene-
DA, Temp12k, and LGMR) have the advantage of also be-

ing spatial reconstructions and not just temporal like in our
study. The goal would be for more people in the palaeocli-
mate community to use SCUBIDO and thus produce more
reconstructions of an annual resolution to then be incorpo-
rated into these large data compilations.

Whilst we encourage other groups to use this approach
with their µXRF-CS records, there are some precautions
which should be taken, since SCUBIDO does not provide
a physical model between the climate and geochemical sedi-
ment composition. Like all palaeoclimate reconstructions us-
ing different statistical techniques, there is still some assump-
tion that the proxy–climate relationship does not deviate too
much through time to what is observed in the calibration pe-
riod. This is important to consider when sites have experi-
enced substantial alterations in human activity or other depo-
sitional changes, and we recommend carefully checking that
the major shifts in the climate reconstruction are explained
from climate or are rather explained by changes in the sed-
imentology (e.g. transitions from varved to non-varved de-
posits and changes in the varve microfacies). Because of this,
we encourage users to qualitatively interpret their µXRF-CS
records to see whether the lake remains sensitive to climate
through time, to find the climate parameter to which the lake
is sensitive, and be cautious of the results if there are sub-
stantial human-induced changes to the µXRF-CS record.

Finally, because µXRF-CS data are highly site-specific and
sensitive to local systems, it is not possible to calibrate one
site and apply that calibration period to another µXRF-CS
lake record which may be common in other proxies, e.g.
pollen (Parnell et al., 2016).

Future developments of the SCUBIDO approach should
include integrating age uncertainty into the model, as age en-
sembles are currently not used. This means that, at present,
lake data with stronger chronological age models would
likely produce better reconstructions, as aligning the cali-
bration instrumental climate data with the correct layers of
µXRF-CS data is important. This is an important consid-
eration for future users who do not have a varve sequence
or a tight chronology in their lake records. Another poten-
tial avenue for future development using SCUBIDO is to in-
corporate additional meteorological datasets and model them
alongside temperature. Since other meteorological processes
likely contribute to the noise in the reconstruction, capturing
their joint dependencies may lead to improved reconstruction
accuracy.

Code and data availability. The SCUBIDO R pack-
age was used to run the models and can be downloaded
from the following GitHub page: https://github.com/
LauraBoyall/SCUBIDO (last access: 15 August 2025; DOI:
https://doi.org/10.5281/zenodo.16883480, Boyall et al.,
2025). The µXRF-CS data for Diss Mere can be found at
https://doi.org/10.5281/zenodo.15168266 (Boyall and Martin-
Puertas, 2025), and the µXRF-CS data for Nautajärvi can be found
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at https://doi.org/10.5281/zenodo.14645779 (Lincoln, 2025). The
data used to compare the Diss Mere and Nautajärvi reconstructions
to those in Fig. 5 can be found at https://doi.org/10.25921/vzys-
1280 (Kaufman et al., 2020b, c) for the Temp12k reconstruction
and at https://doi.org/10.5281/zenodo.6426332 (Erb et al., 2022a,
b) for the Holocene-DA reconstruction. The LGMR reconstruction
can be found at https://doi.org/10.25921/njxd-hg08 (Osman et al.,
2021a, b), and the LMR of Tardif et al. (2019) can be found at https:
//atmos.washington.edu/~hakim/lmr/. The instrumental tempera-
ture dataset used to calibrate Diss Mere can be downloaded from
https://doi.org/10.5285/35fb8318798e437ba5b108e5eca6e92d
(Met Office, 2025), and the data to calibrate Nau-
tajärvi were downloaded using the rnoaa R package
(https://github.com/ropensci/rnoaa, Chamberlain et al., 2024).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/cp-21-1465-2025-supplement.
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