Articles | Volume 20, issue 3
https://doi.org/10.5194/cp-20-495-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-495-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, USA
Christopher J. Poulsen
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, USA
Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
Jiang Zhu
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
Jessica E. Tierney
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Jeremy Keeler
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, USA
Related authors
No articles found.
Xiaodong Zhang, Brett J. Tipple, Jiang Zhu, William D. Rush, Christian A. Shields, Joseph B. Novak, and James C. Zachos
Clim. Past, 20, 1615–1626, https://doi.org/10.5194/cp-20-1615-2024, https://doi.org/10.5194/cp-20-1615-2024, 2024
Short summary
Short summary
This study is motivated by the current anthropogenic-warming-forced transition in regional hydroclimate. We use observations and model simulations during the Paleocene–Eocene Thermal Maximum (PETM) to constrain the regional/local hydroclimate response. Our findings, based on multiple observational evidence within the context of model output, suggest a transition toward greater aridity and precipitation extremes in central California during the PETM.
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Jonathan King, Jessica Tierney, Matthew Osman, Emily J. Judd, and Kevin J. Anchukaitis
Geosci. Model Dev., 16, 5653–5683, https://doi.org/10.5194/gmd-16-5653-2023, https://doi.org/10.5194/gmd-16-5653-2023, 2023
Short summary
Short summary
Paleoclimate data assimilation is a useful method that allows researchers to combine climate models with natural archives of past climates. However, it can be difficult to implement in practice. To facilitate this method, we present DASH, a MATLAB toolbox. The toolbox provides routines that implement common steps of paleoclimate data assimilation, and it can be used to implement assimilations for a wide variety of time periods, spatial regions, data networks, and analytical algorithms.
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
Geosci. Model Dev., 16, 1735–1754, https://doi.org/10.5194/gmd-16-1735-2023, https://doi.org/10.5194/gmd-16-1735-2023, 2023
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth system models. These updates include the ability to run the scheme on graphics processing units (GPUs), changes to the numerical description of precipitation, and a correction to the ice number. There are big improvements in the computational performance that can be achieved with GPU acceleration.
Martin Renoult, Navjit Sagoo, Jiang Zhu, and Thorsten Mauritsen
Clim. Past, 19, 323–356, https://doi.org/10.5194/cp-19-323-2023, https://doi.org/10.5194/cp-19-323-2023, 2023
Short summary
Short summary
The relationship between the Last Glacial Maximum and the sensitivity of climate models to a doubling of CO2 can be used to estimate the true sensitivity of the Earth. However, this relationship has varied in successive model generations. In this study, we assess multiple processes at the Last Glacial Maximum which weaken this relationship. For example, how models respond to the presence of ice sheets is a large contributor of uncertainty.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Jiang Zhu and Christopher J. Poulsen
Clim. Past, 17, 253–267, https://doi.org/10.5194/cp-17-253-2021, https://doi.org/10.5194/cp-17-253-2021, 2021
Short summary
Short summary
Climate sensitivity has been directly calculated from paleoclimate data. This approach relies on good understandings of climate forcings and interactions within the Earth system. We conduct Last Glacial Maximum simulations using a climate model to quantify the forcing and efficacy of ice sheets and greenhouse gases and to directly estimate climate sensitivity in the model. Results suggest that the direct calculation overestimates the truth by 25 % due to neglecting ocean dynamical feedback.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Cenozoic
The warm winter paradox in the Pliocene northern high latitudes
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O
Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction
A model–model and data–model comparison for the early Eocene hydrological cycle
A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime
The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison
Regional climate model experiments to investigate the Asian monsoon in the Late Miocene
The early Eocene equable climate problem revisited
High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
Short summary
We critically assess, for the first time since its inception in 1997, the theory behind the Coexistence Approach. This method has reconstructed purportedly accurate, often highly precise, palaeoclimates for a wide range of Cenozoic Eurasian localities. We argue that its basic assumptions clash with modern biological and statistical theory and that its modus operandi is fundamentally flawed. We provide guidelines on how to establish robust taxon-based palaeoclimate reconstruction methods.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
V. Pujalte, J. I. Baceta, and B. Schmitz
Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, https://doi.org/10.5194/cp-11-1653-2015, 2015
Short summary
Short summary
An abrupt increase in seasonal precipitation during the PETM in the Pyrenean Gulf has been proposed, based on the occurrence of extensive fine-grained siliciclastic deposits. This paper provides evidence that coarse-grained siliciclastics were also delivered, indicative of episodes of intense rainy intervals in an otherwise semiarid PETM climate. Further, evidence is presented that PETM kaolinites were most likely resedimented from Cretaceous lateritic profiles developed in the basement.
C. D. Bradshaw, D. J. Lunt, R. Flecker, U. Salzmann, M. J. Pound, A. M. Haywood, and J. T. Eronen
Clim. Past, 8, 1257–1285, https://doi.org/10.5194/cp-8-1257-2012, https://doi.org/10.5194/cp-8-1257-2012, 2012
H. Tang, A. Micheels, J. Eronen, and M. Fortelius
Clim. Past, 7, 847–868, https://doi.org/10.5194/cp-7-847-2011, https://doi.org/10.5194/cp-7-847-2011, 2011
M. Huber and R. Caballero
Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, https://doi.org/10.5194/cp-7-603-2011, 2011
A. Jost, S. Fauquette, M. Kageyama, G. Krinner, G. Ramstein, J.-P. Suc, and S. Violette
Clim. Past, 5, 585–606, https://doi.org/10.5194/cp-5-585-2009, https://doi.org/10.5194/cp-5-585-2009, 2009
Cited articles
Anagnostou, E., John, E., Babila, T., Sexton, P., Ridgwell, A., Lunt, D., Pearson, P., Chalk, T., Pancost, R., and Foster, G.: Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse, Nat. Commun., 11, 4436, https://doi.org/10.1038/s41467-020-17887-x, 2020.
Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-2019, 2019.
Bataille, C., Watford, D., Ruegg, S., Lowe, A., and Bowen, G.: Chemostratigraphic age model for the Tornillo Group: A possible link between fluvial stratigraphy and climate, Palaeogeogr. Palaeocl., 457, 277–289, https://doi.org/10.1016/j.palaeo.2016.06.023, 2016.
Berger, A.: Milankovitch theory and climate, Rev. Geophys., 26, 624–657, https://doi.org/10.1029/RG026i004p00624, 1988.
Bowen, G., Maibauer, B., Kraus, M., Rohl, U., Westerhold, T., Steimke, A., Gingerich, P., Wing, S., and Clyde, W.: Two massive, rapid released of carbon during the onset of the Paleocene–Eocene thermal maximum, Nat. Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316, 2014.
Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The connected isotopic water cycle in the community earth system model version 1, J. Adv. Model Earth Sy., 11, 2547–2566, https://doi.org/10.1029/2019MS001663, 2019.
Burgener, L., Huntington, K., Hoke, G., Schauer, A., Ringham, M., Latorre, C., and Diaz, F.: Variations in soil carbonate formation and seasonal bias over > 4 km of relief in the western Andes revealed by clumped isotope thermometry, Earth Planet Sc. Lett., 441, 188–199, https://doi.org/10.1016/j.epsl.2016.02.033, 2016.
Byrne, M. and O'Gorman, P.: Land-ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations, J. Climate, 26, 4000–4016, https://doi.org/10.1175/jcli-d-12-00262.1, 2013.
Byrne, M. and Schneider, T.: Narrowing of the ITCZ in a warming climate: Physical mechanisms, Geophys. Res. Lett., 43, 350–357, https://doi.org/10.1002/2016GL070396, 2016.
Campbell, J.: CESM1.2 simulation data for “CO2 and orbitally driven oxygen isotope variability in the Early Eocene”, Zenodo [data set], https://doi.org/10.5281/zenodo.7971738, 2023.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961.
Cramwinckel, M., Burls, N., Fahad, A., Knapp, S., West, C., Reichgelt, T., Greenwood, D., Chan, W., Donnadieu, Y., Hutchinson, D., de Boer, A., Ladant, J., Morozova, P., Niezgodzki, I., Knorr, G., and Inglis, G.: Global and zonal-mean hydrological response to early Eocene warmth, Palaeoceanography, 38, 6, https://doi.org/10.1029/2022PA004542, 2023.
Dai, J., Zhang, X., Luo, Z., Liu, Z., He, X., Rao, Z., Guan, H.: Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region, J. Hydrol., 589, https://doi.org/10.1016/j.jhydrol.2020.125199, 2020.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Davis, B. and Brewer, S.: A unified approach to orbital, solar, and lunar forcing based on the earth's latitudinal insolation/temperature gradient, Quaternary Sci. Rev., 30, 1861–1874, https://doi.org/10.1016/j.quascirev.2011.04.016, 2011.
Dong, B., Gregory, J., and Sutton, R.: Understanding land–sea warming contrast in response to increasing greenhouse gases, Part I: Transient adjustment, J. Climate, 22, 3079–3097, https://doi.org/10.1175/2009JCLI2652.1, 2009.
Douville, H., Raghavan, K., and Renwick, J.: Water cycle changes, in: Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1055–1210, https://doi.org/10.1017/9781009157896.010, 2021.
Fernandez, A., Tang, J., and Rosenheim, B.: Siderite `clumped' isotope thermometry: A new paleoclimate proxy for humid continental environments, Geochim. Cosmochim. Ac., 126, 411–421, https://doi.org/10.1016/j.gca.2013.11.006, 2014.
Flato, G. and Marotzke, J.: Evaluation of climate models, in: Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 741–866, https://doi.org/10.1017/CBO9781107415324, 2013.
Friedman, I. and O'Neil, J.: Compilation of stable isotope fractionation factors of geochemical interest, in: Data of Geochemistry, USGS, https://doi.org/10.3133/pp440KK, 1977.
Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J., Monechi, S., Morelli, G., and Lourens, L.: Orbital chronology of early Eocene hyperthermals from the Contessa Road section, central Italy, Earth Planet Sc. Lett., 290, 192–200, 192–200. https://doi.org/10.1016/j.epsl.2009.12.021, 2010.
Garel, S., Schnyder, J., Jacob, J., Dupuis, C., Boussafir, M., Milbeau, C., Storme, J-Y., Iakovleva, A., Yans, J., Baudin, F., Flehoc, C., and Quesnel, F.: Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France), Palaeogeogr. Palaeocl., 376, 184–199, https://doi.org/10.1016/j.palaeo.2013.02.035, 2013.
Gat, J. R.: Atmospheric water balance – the isotopic perspective, Hydrol. Process., 14, 1357–1369, https://doi.org/10.1002/1099-1085(20000615)14:8<1357::AID-HYP986>3.0.CO;2-7, 2000.
Gat, J. R. and Airey, P. L.: Stable water isotopes in the atmosphere/biosphere/lithosphere interface: Scaling-up from the local to continental scale, under humid and dry conditions, Global Planet. Change, 51, 25–33, https://doi.org/10.1016/j.gloplacha.2005.12.004, 2006.
Gierz, P., Werner, M., and Lohmann, G.: Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model, J. Adv. Model. Earth Sy., 9, 2027–2045, https://doi.org/10.1002/2017MS001056, 2017.
Handley, L., Pearson, P., McMillan, I., and Pancost, R.: Large terrestrial and marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary section from Tanzania, Earth Planet Sc. Lett., 275, 17–25, https://doi.org/10.1016/j.epsl.2008.07.030, 2008.
Handley, L., Crouch, E., and Pancost, R.: A New Zealand record of sea level rise and environmental change during the Paleocene–Eocene thermal maximum, Palaeogeogr. Palaeocl., 305, 185–200, https://doi.org/10.1016/j.palaeo.2011.03.001, 2011.
Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J. A. M., Müller, R. D., Markwick, P., and Huber, M.: A suite of early Eocene ( 55 Ma) climate model boundary conditions, Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, 2014.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Hurrell, J., Holland, M., Gent, P., Ghan, S., Kay, J., Kushner, P., Lamarque J., Large, W., Lawrence, D., Lindsay, K., Lipscomb, W., Long, M., Mahowald, N., Marsh, D., Neale, R., Rasch, R., Vavrus, S., Vertenstein, M., Bader, D., Collins, W., Hack, J., Kiehl, J., and Marshall, S.: The community earth system model: A framework for collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/bams-d-12-00121.1, 2013.
Inglis, G., Bhattacharya, T., Hemingway, J., Hollingsworth, E., Feakins, S., and Tierney, J.: Biomarker approaches for reconstructing terrestrial environmental change, Annu. Rev. Earth Pl. Sc., 50, 369–394, https://doi.org/10.1146/annurev-earth-032320-095943, 2022.
Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., and Pancost, R. D.: Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene, Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, 2020.
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L., Krishnan, S., Cardonna, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M., de la Parra, F., Moron, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H., Navarrete, R., Parra, F., Alvaran, M., Osorno, J., Crowley, J., Valencia, V., and Vervoort, J.: Effects of rapid global warming at the Paleocene–Eocene boundary on neotropical vegetation, Science, 330, 957–961, https://doi.org/10.1126/science.1193833, 2010.
Kahmen, A., Hoffmann, B., Schefub, E., Arndt, S., Cernusak, L., West, J., and Sachse, D.: Leaf water deuterium enrichment shapes leaf wax n-alkane ??D values of angiosperm plants II: Observational evidence and global implications, Geochim. Cosmochim. Ac., 111, 50–63, https://doi.org/10.1016/j.gca.2012.09.004, 2013.
Keery, J. S., Holden, P. B., and Edwards, N. R.: Sensitivity of the Eocene climate to CO2 and orbital variability, Clim. Past, 14, 215–238, https://doi.org/10.5194/cp-14-215-2018, 2018.
Kelson, J., Watford, D., Bataille, C., Huntington, K., Hyland, E., and Bowen, G.: Warm terrestrial subtropics during the Paleocene and Eocene: Carbonate clumped isotope evidence from the Tornillo Basin, Texas (USA), Palaeogeogr. Palaeocl. 33, 1230–1249, https://doi.org/10.1029/2018pa003391, 2018.
Kelson, J., Huntington, K., Breecker, D., Burgener, L., Gallagher, T., Hoke, G., and Petersen, S.: A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates, Quaternary Sci. Rev., 234, https://doi.org/10.1016/j.quascirev.2020.106259, 2020.
Kiehl, J., Shields, C., Snyder, M., Zachos, J., and Rothstein, M.: Greenhouse and orbital forced climate extreme during the early Eocene, Philos. T. R. Soc. A, 376, 2130, https://doi.org/10.1098/rsta.2017.0085, 2018.
Koch, P., Zachos, J., and Dettman, D.: Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA), Palaeogeogr. Palaeocl., 115, 61–89, https://doi.org/10.1016/0031-0182(94)00107-j, 1995.
Konecky, B., Dee, S., and Noone, D.: WaxPSM: A forward model of leaf wax hydrogen isotope ratios to bridge proxy and model estimates of past climate, J. Geophys. Res.-Biogeo., 124, 2107–2125, https://doi.org/10.1029/2018JG004708, 2019a.
Konecky, B., Noone, D., and Cobb, K.: The influence of competing hydroclimate processes on stable isotope ratios in tropical rainfall, Geophys. Res. Lett., 46, 1622–1633, https://doi.org/10.1029/2018GL080188, 2019b.
Lawrence, K., Sloan, L., and Sewall, J.: Terrestrial climatic response to precessional orbital forcing in the Eocene, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, Geol. Soc. Am., 369, https://doi.org/10.1130/0-8137-2369-8.65, 2003.
Lourens, L., Sluijs, A., Zachos, J., Thomas, E., Rohl, U., Bowles, J., and Raffi, I.: Astronomical pacing of late Paleocene to early Eocene global warming events, Nature, 435, 1083–1087, https://doi.org/10.1038/nature03814, 2005.
Lunt, D., Ridgwell, A., Sluijs, A., Zachos, J., Hunter, S., and Haywood, A.: A model for orbital pacing of methane hydrate destabilization during the Paleogene, Nat. Geosci., 4, 775–778, https://doi.org/10.1038/ngeo1266, 2011.
Luz, B., Barkan, E., Yam, R., and Shemesh, A.: Fractionation of oxygen and hydrogen isotopes in evaporating water, Geochim. Cosmochim. Ac., 73, 6697–6703, https://doi.org/10.1016/j.gca.2009.08.008, 2009.
Mulch, A., Teyssier, C., Cosca, M., and Chamberlain, C.: Stable isotope paleoaltimetry of Eocene core complexes in the North American Cordillera, Tectonics, 26, 4, https://doi.org/10.1029/2006TC001995, 2007.
Muller, R., Cannon, J., Qin, X., Watson, R., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S., and Zahirovic, S.: GPlates: Building a virtual earth through deep time, Geochem. Geophy. Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
National Center for Atmospheric Research: The Community Earth System Model version 1.2.2, SVN [code], https://svn-ccsm-models.cgd.ucar.edu/cesm1/exp_tags/pcesm_cesm1_2_2_tags/dt-cesm1.0_cesm1_2_2_1/ (last access: 11 March 2024), 2019.
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Damste, J., Dickens, G., and Expedition 302 Scientists: Arctic hydrology during global warming at the Paleocene/Eocene thermal maximum, Nature, 442, 671–675, https://doi.org/10.1038/nature05043, 2006.
Piedrahita, V., Galeotti, S., Zhao, X., Roberts, A., Rohling, E., Heslop, D., Florindo, F., Grant, K., Rodríguez-Sanz, L., Reghellin, D., and Zeebe, R.: Orbital phasing of the Paleocene–Eocene Thermal Maximum, Earth Planet Sc. Lett., 598, 117839, https://doi.org/10.1016/j.epsl.2022.117839, 2022.
Poulsen, C. and Jeffery, M.: Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens, Geology, 39, 595–598, https://doi.org/10.1130/g32052.1, 2011.
Poulsen, C., Pollard, D., and White, T.: General circulation model simulation of the δ18O content of continental precipitation in the middle Cretaceous: A model-proxy comparison, Geology, 35, 199–202, https://doi.org/10.1130/g23343a.1, 2007.
Rae, J., Zhang, Y., Liu, X., Foster, G., Stoll, H., and Whiteford, R.: Atmospheric CO2 over the past 66 million years from marine archives, Annu. Rev. Earth Pl. Sc., 49, 609–641, https://doi.org/10.1146/annurev-earth-082420-063026, 2021.
Risi, C., Galewsky, J., Reverdin, G., and Brient, F.: Controls on the water vapor isotopic composition near the surface of tropical oceans and role of boundary layer mixing processes, Atmos. Chem. Phys., 19, 12235–12260, https://doi.org/10.5194/acp-19-12235-2019, 2019.
Sachse, D., Billault, I., Bowen, G., Chikaraishi, Y., Dawson, T., Feakins, S., Freeman, K., Magill, C., McInerney, F., van der Meer, M., Polissar, P., Robins, R., Sachs, J., Schmidt, H-L., Sessions, A., White, J., West, J., and Kahmen, A.: Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms, Annu. Rev. Earth Pl. Sc., 40, 221–249, https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Singh, H., Bitz, C., Donohoe, A., Nusbaumer, J., and Noone, D.: A mathematical framework for analysis of water tracers. Part II: Understanding large-scale perturbations in the hydrological cycle dur to CO2 doubling, J. Climate, 29, 6765–6782, https://doi.org/10.1175/JCLI-D-16-0293.1, 2016.
Smith, F., Wing, S., and Freeman, K.: Magnitude of the carbon isotope excursion at the Paleocene–Eocene thermal maximum: The role of plant community change, Earth Planet Sc. Lett., 262, 50–65, https://doi.org/10.1016/j.epsl.2007.07.021, 2007.
Snell, K., Thrasher, B., Eiler, J., Koch, P., Sloan, L., and Tabor, N.: Hot summers in the Bighorn Basin during the early Paleogene, Geology, 41, 55–58, https://doi.org/10.1130/g33567.1, 2013.
Tardif, D., Toumoulin, A., Frédéric, F., Donnadieu, Y., Le Hir, G., Barbolini, N., Licht, A., Ladant, J. B., Sepulchre, P., Viovy, N., Hoorn, C., and Dupont-Nivet, G.: Orbital variations as a major driver of climate and biome distribution during the greenhouse to icehouse transition, Sci. Adv., 7, 43, https://doi.org/10.1126/sciadv.abh2819, 2021.
Thompson, A., Zhu, J., Poulsen, C., Tierney, J., and Skinner, C.: Northern Hemisphere vegetation change drives a Holocene thermal maximum, Science, 8, 15, https://doi.org/10.1126/sciadv.abj6535, 2022.
Tichy, H., Hellwisg, M., and Kallina, W.: Revisiting theories of humidity transduction: A focus on electrophysiological data, Front. Physiol., 8, 1, https://doi.org/10.3389/fphys.2017.00650, 2017.
Tierney, J., Poulsen, C., Montanez, I., Bhattacharya, T., Feng, R., Ford, H., Honisch, B., Inglis, G., Petersen, S., Sagoo, N., Tabor, C., Thirumalai, K., Zhu, J., Burls, N., Foster, G., Godderis, Y., Huber, B., Ivany, L., Turner, S., Lunt, D., Mcelwain, J., Mills, B., Otto-Bliesner, B., Ridgwell, A., and Zhang, Y.: Past climates inform our future, Science, 370, 6517, https://doi.org/10.1126/science.aay3701, 2020.
Tierney, J., Zhu, J., Li, M., Ridgwell, A., Hakim, G., Poulsen, C., Whiteford, R., Raw, J., and Kump, L.: Spatial patterns of climate change across the Paleocene–Eocene thermal maximum, P. Natl. Acad. Sci. USA, 119, e2205326119, https://doi.org/10.1073/pnas.2205326119, 2022.
Tipple, B., Pagani, M., Krishnan, S., Dirghangi, S., Galeotti, S., Agnini, C., Giusberti, L., and Rio D.: Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles variations during the Paleocene–Eocene thermal maximum (PETM), Earth Planet Sc. Lett., 311, 82–92, https://doi.org/10.1016/j.epsl.2011.08.045, 2011.
Westerhold, T., Rohl, U., McCarren, H., and Zachos, J.: Latest on the absolute age of the Paleocene–Eocene thermal maximum (PETM): New insights from exact stratigraphic position of key ash layers +19 and −17, Earth Planet Sc. Lett., 287, 412–419, https://doi.org/10.1016/j.epsl.2009.08.027, 2009.
Westerhold, T., Rohl, U., and Laskar, J.: Time scale controversy: Accurate orbital calibration of the early Paleogene, Geochem. Geophy. Geosy., 13, Q06015, https://doi.org/10.1029/2012gc004096, 2012.
White, T., Bradley, D., Haeussler, P., and Rowley, D.: Late Paleocene-early Eocene paleosols and a new measure of the transport distance of Alaska's Yakutat terrane, J. Geol., 125, 113–123, https://doi.org/10.1086/690198, 2017.
van Dijk, J., Fernandez, A., Muller, I., Lever, M., and Bernasconi S.: Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C, Geochim. Cosmochim. Ac., 220, 535–551, https://doi.org/10.1016/j.gca.2017.10.009, 2018.
van Dijk, J., Fernandez, A., Storch, J., White, T., Lever, M., Muller, I., Bishop, S., Seifert, R., Driese, S., Krylov, A., Ludvigson, G., Turchyn, A., Link, C., Wittkop, C., and Bernasconi, S.: Experimental calibration of clumped isotopes in siderite between 8.5 and 62 °C and its application as paleo-thermometer in paleosols, Geochim. Cosmochim. Ac., 254, 1–20, https://doi.org/10.1016/j.gca.2019.03.018, 2019.
van Dijk, J., Fernandez, A., Bernasconi, S., Rugenstein, J., Passey, S., and White, T.: Spatial pattern of super-greenhouse warmth controlled by elevated specific humidity, Nat. Geosci., 13, 739–744, https://doi.org/10.1038/s41561-020-00648-2, 2020.
Zachos, J., McCarren, H., Murphy, B., Rohl, U., and Westerhold, T.: Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals, Earth Planet. Sc. Lett., 299, 242–249, https://doi.org/10.1016/j.epsl.2010.09.004, 2010.
Zeebe, R., Westerhold, T., Littler, K., and Zachos, J.: Orbital forcing of the Paleocene and Eocene carbon cycle, Palaeoceanography, 32, 440–465, https://doi.org/10.1002/2016pa003054, 2017.
Zhu, J., Liu, Z., Otto-Bliesner, B., Brady, E., Noone, D., Zhang, J., Tomas, R., Jahn, A., Nusbaumer, J., and Wong, T.: Reduced ENSO variability at the LGM revealed by an isotope-enabled earth system model, Geophys. Res. Lett., 44, 6984–6992, https://doi.org/10.1002/2017GL073406, 2017.
Zhu, J., Poulsen, C., and Tierney, J.: Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks, Science, 5, eaax1874, https://doi.org/10.1126/sciadv.aax1874, 2019.
Zhu, J., Poulsen, C., Otto-Bliesner, B., Liu, Z., Brady, E., and Noone, D.: Simulation of Early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction, Earth Planet Sc. Lett., 537, https://doi.org/10.1016/j.epsl.2020.116164, 2020.
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on...