Articles | Volume 20, issue 3
https://doi.org/10.5194/cp-20-495-2024
https://doi.org/10.5194/cp-20-495-2024
Research article
 | 
13 Mar 2024
Research article |  | 13 Mar 2024

CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene

Julia Campbell, Christopher J. Poulsen, Jiang Zhu, Jessica E. Tierney, and Jeremy Keeler

Related authors

Response of coastal California hydroclimate to the Paleocene–Eocene Thermal Maximum
Xiaodong Zhang, Brett J. Tipple, Jiang Zhu, William D. Rush, Christian A. Shields, Joseph B. Novak, and James C. Zachos
Clim. Past, 20, 1615–1626, https://doi.org/10.5194/cp-20-1615-2024,https://doi.org/10.5194/cp-20-1615-2024, 2024
Short summary
Surface mass balance and climate of the Last Glacial Maximum Northern Hemisphere ice sheets: simulations with CESM2.1
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024,https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
DASH: a MATLAB toolbox for paleoclimate data assimilation
Jonathan King, Jessica Tierney, Matthew Osman, Emily J. Judd, and Kevin J. Anchukaitis
Geosci. Model Dev., 16, 5653–5683, https://doi.org/10.5194/gmd-16-5653-2023,https://doi.org/10.5194/gmd-16-5653-2023, 2023
Short summary
Importance of ice nucleation and precipitation on climate with the Parameterization of Unified Microphysics Across Scales version 1 (PUMASv1)
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
Geosci. Model Dev., 16, 1735–1754, https://doi.org/10.5194/gmd-16-1735-2023,https://doi.org/10.5194/gmd-16-1735-2023, 2023
Short summary
Causes of the weak emergent constraint on climate sensitivity at the Last Glacial Maximum
Martin Renoult, Navjit Sagoo, Jiang Zhu, and Thorsten Mauritsen
Clim. Past, 19, 323–356, https://doi.org/10.5194/cp-19-323-2023,https://doi.org/10.5194/cp-19-323-2023, 2023
Short summary

Related subject area

Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Cenozoic
The warm winter paradox in the Pliocene northern high latitudes
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022,https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022,https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016,https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016,https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
A model–model and data–model comparison for the early Eocene hydrological cycle
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016,https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary

Cited articles

Anagnostou, E., John, E., Babila, T., Sexton, P., Ridgwell, A., Lunt, D., Pearson, P., Chalk, T., Pancost, R., and Foster, G.: Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse, Nat. Commun., 11, 4436, https://doi.org/10.1038/s41467-020-17887-x, 2020. 
Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-2019, 2019. 
Bataille, C., Watford, D., Ruegg, S., Lowe, A., and Bowen, G.: Chemostratigraphic age model for the Tornillo Group: A possible link between fluvial stratigraphy and climate, Palaeogeogr. Palaeocl., 457, 277–289, https://doi.org/10.1016/j.palaeo.2016.06.023, 2016. 
Berger, A.: Milankovitch theory and climate, Rev. Geophys., 26, 624–657, https://doi.org/10.1029/RG026i004p00624, 1988. 
Bowen, G., Maibauer, B., Kraus, M., Rohl, U., Westerhold, T., Steimke, A., Gingerich, P., Wing, S., and Clyde, W.: Two massive, rapid released of carbon during the onset of the Paleocene–Eocene thermal maximum, Nat. Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316, 2014. 
Download
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.